Python torchvision.transforms.RandomHorizontalFlip() Examples
The following are 30 code examples for showing how to use torchvision.transforms.RandomHorizontalFlip(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
torchvision.transforms
, or try the search function
.
Example 1
Project: transferlearning Author: jindongwang File: data_loader.py License: MIT License | 9 votes |
def load_data(root_path, dir, batch_size, phase): transform_dict = { 'src': transforms.Compose( [transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'tar': transforms.Compose( [transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = datasets.ImageFolder(root=root_path + dir, transform=transform_dict[phase]) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return data_loader
Example 2
Project: transferlearning Author: jindongwang File: data_loader.py License: MIT License | 7 votes |
def load_training(root_path, dir, batch_size, kwargs): transform = transforms.Compose( [transforms.Resize([256, 256]), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor()]) data = datasets.ImageFolder(root=root_path + dir, transform=transform) train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True, **kwargs) return train_loader
Example 3
Project: self-supervised-da Author: Jiaolong File: data_loader.py License: MIT License | 7 votes |
def get_rot_train_transformers(args): size = args.img_transform.random_resize_crop.size scale = args.img_transform.random_resize_crop.scale img_tr = [transforms.RandomResizedCrop((int(size[0]), int(size[1])), (scale[0], scale[1]))] if args.img_transform.random_horiz_flip > 0.0: img_tr.append(transforms.RandomHorizontalFlip(args.img_transform.random_horiz_flip)) if args.img_transform.jitter > 0.0: img_tr.append(transforms.ColorJitter( brightness=args.img_transform.jitter, contrast=args.img_transform.jitter, saturation=args.jitter, hue=min(0.5, args.jitter))) mean = args.normalize.mean std = args.normalize.std img_tr += [transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)] return transforms.Compose(img_tr)
Example 4
Project: transferlearning Author: jindongwang File: data_load.py License: MIT License | 6 votes |
def load_data(data_folder, batch_size, phase='train', train_val_split=True, train_ratio=.8): transform_dict = { 'train': transforms.Compose( [transforms.Resize(256), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'test': transforms.Compose( [transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = datasets.ImageFolder(root=data_folder, transform=transform_dict[phase]) if phase == 'train': if train_val_split: train_size = int(train_ratio * len(data)) test_size = len(data) - train_size data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4) val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=4) return [train_loader, val_loader] else: train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4) return train_loader else: test_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=4) return test_loader ## Below are for ImageCLEF datasets
Example 5
Project: transferlearning Author: jindongwang File: data_load.py License: MIT License | 6 votes |
def load_imageclef_train(root_path, domain, batch_size, phase): transform_dict = { 'src': transforms.Compose( [transforms.Resize((256, 256)), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'tar': transforms.Compose( [transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = ImageCLEF(root_dir=root_path, domain=domain, transform=transform_dict[phase]) train_size = int(0.8 * len(data)) test_size = len(data) - train_size data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return train_loader, val_loader
Example 6
Project: transferlearning Author: jindongwang File: data_load.py License: MIT License | 6 votes |
def load_imageclef_test(root_path, domain, batch_size, phase): transform_dict = { 'src': transforms.Compose( [transforms.Resize((256,256)), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'tar': transforms.Compose( [transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = ImageCLEF(root_dir=root_path, domain=domain, transform=transform_dict[phase]) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return data_loader
Example 7
Project: transferlearning Author: jindongwang File: data_loader.py License: MIT License | 6 votes |
def load_data(data_folder, batch_size, train, kwargs): transform = { 'train': transforms.Compose( [transforms.Resize([256, 256]), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]), 'test': transforms.Compose( [transforms.Resize([224, 224]), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) } data = datasets.ImageFolder(root = data_folder, transform=transform['train' if train else 'test']) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, **kwargs, drop_last = True if train else False) return data_loader
Example 8
Project: transferlearning Author: jindongwang File: data_loader.py License: MIT License | 6 votes |
def load_train(root_path, dir, batch_size, phase): transform_dict = { 'src': transforms.Compose( [transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'tar': transforms.Compose( [transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = datasets.ImageFolder(root=root_path + dir, transform=transform_dict[phase]) train_size = int(0.8 * len(data)) test_size = len(data) - train_size data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return train_loader, val_loader
Example 9
Project: pytorch-multigpu Author: dnddnjs File: train.py License: MIT License | 6 votes |
def main(): best_acc = 0 device = 'cuda' if torch.cuda.is_available() else 'cpu' print('==> Preparing data..') transforms_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]) dataset_train = CIFAR10(root='../data', train=True, download=True, transform=transforms_train) train_loader = DataLoader(dataset_train, batch_size=args.batch_size, shuffle=True, num_workers=args.num_worker) # there are 10 classes so the dataset name is cifar-10 classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') print('==> Making model..') net = pyramidnet() net = nn.DataParallel(net) net = net.to(device) num_params = sum(p.numel() for p in net.parameters() if p.requires_grad) print('The number of parameters of model is', num_params) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=args.lr) # optimizer = optim.SGD(net.parameters(), lr=args.lr, # momentum=0.9, weight_decay=1e-4) train(net, criterion, optimizer, train_loader, device)
Example 10
Project: sgd-influence Author: sato9hara File: outlier.py License: MIT License | 6 votes |
def cifar10(): transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) trainset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_train, seed=0) valset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_test, seed=0) testset = MyCIFAR10.CIFAR10(root='./data', train=False, download=True, transform=transform_test, seed=0) net_func = MyNet.CifarAE return net_func, trainset, valset, testset
Example 11
Project: sgd-influence Author: sato9hara File: train.py License: MIT License | 6 votes |
def cifar10(): transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) trainset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_train, seed=0) valset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_test, seed=0) testset = MyCIFAR10.CIFAR10(root='./data', train=False, download=True, transform=transform_test, seed=0) net_func = MyNet.CifarNet return net_func, trainset, valset, testset
Example 12
Project: Recycle-GAN Author: aayushbansal File: base_dataset.py License: MIT License | 6 votes |
def get_transform(opt): transform_list = [] if opt.resize_or_crop == 'resize_and_crop': osize = [opt.loadSize, opt.loadSize] transform_list.append(transforms.Scale(osize, Image.BICUBIC)) transform_list.append(transforms.RandomCrop(opt.fineSize)) elif opt.resize_or_crop == 'crop': transform_list.append(transforms.RandomCrop(opt.fineSize)) elif opt.resize_or_crop == 'scale_width': transform_list.append(transforms.Lambda( lambda img: __scale_width(img, opt.fineSize))) elif opt.resize_or_crop == 'scale_width_and_crop': transform_list.append(transforms.Lambda( lambda img: __scale_width(img, opt.loadSize))) transform_list.append(transforms.RandomCrop(opt.fineSize)) if opt.isTrain and not opt.no_flip: transform_list.append(transforms.RandomHorizontalFlip()) transform_list += [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] return transforms.Compose(transform_list)
Example 13
Project: verb-attributes Author: uwnlp File: imsitu_loader.py License: MIT License | 6 votes |
def transform(is_train=True, normalize=True): """ Returns a transform object """ filters = [] filters.append(Scale(256)) if is_train: filters.append(RandomCrop(224)) else: filters.append(CenterCrop(224)) if is_train: filters.append(RandomHorizontalFlip()) filters.append(ToTensor()) if normalize: filters.append(Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])) return Compose(filters)
Example 14
Project: Clothing-Detection Author: simaiden File: bbox_aug.py License: GNU General Public License v3.0 | 6 votes |
def im_detect_bbox_hflip(model, images, target_scale, target_max_size, device): """ Performs bbox detection on the horizontally flipped image. Function signature is the same as for im_detect_bbox. """ transform = TT.Compose([ T.Resize(target_scale, target_max_size), TT.RandomHorizontalFlip(1.0), TT.ToTensor(), T.Normalize( mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD, to_bgr255=cfg.INPUT.TO_BGR255 ) ]) images = [transform(image) for image in images] images = to_image_list(images, cfg.DATALOADER.SIZE_DIVISIBILITY) boxlists = model(images.to(device)) # Invert the detections computed on the flipped image boxlists_inv = [boxlist.transpose(0) for boxlist in boxlists] return boxlists_inv
Example 15
Project: ClassyVision Author: facebookresearch File: util.py License: MIT License | 6 votes |
def __init__( self, crop_size: int = ImagenetConstants.CROP_SIZE, mean: List[float] = ImagenetConstants.MEAN, std: List[float] = ImagenetConstants.STD, ): """The constructor method of ImagenetAugmentTransform class. Args: crop_size: expected output size per dimension after random cropping mean: a 3-tuple denoting the pixel RGB mean std: a 3-tuple denoting the pixel RGB standard deviation """ self.transform = transforms.Compose( [ transforms.RandomResizedCrop(crop_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=mean, std=std), ] )
Example 16
Project: metric-learning-divide-and-conquer Author: CompVis File: transform.py License: GNU Lesser General Public License v3.0 | 6 votes |
def make(sz_resize = 256, sz_crop = 227, mean = [104, 117, 128], std = [1, 1, 1], rgb_to_bgr = True, is_train = True, intensity_scale = None): return transforms.Compose([ RGBToBGR() if rgb_to_bgr else Identity(), transforms.RandomResizedCrop(sz_crop) if is_train else Identity(), transforms.Resize(sz_resize) if not is_train else Identity(), transforms.CenterCrop(sz_crop) if not is_train else Identity(), transforms.RandomHorizontalFlip() if is_train else Identity(), transforms.ToTensor(), ScaleIntensities( *intensity_scale) if intensity_scale is not None else Identity(), transforms.Normalize( mean=mean, std=std, ) ])
Example 17
Project: imgclsmob Author: osmr File: cifar10_cls_dataset.py License: MIT License | 6 votes |
def cifar10_train_transform(ds_metainfo, mean_rgb=(0.4914, 0.4822, 0.4465), std_rgb=(0.2023, 0.1994, 0.2010), jitter_param=0.4): assert (ds_metainfo is not None) assert (ds_metainfo.input_image_size[0] == 32) return transforms.Compose([ transforms.RandomCrop( size=32, padding=4), transforms.RandomHorizontalFlip(), transforms.ColorJitter( brightness=jitter_param, contrast=jitter_param, saturation=jitter_param), transforms.ToTensor(), transforms.Normalize( mean=mean_rgb, std=std_rgb) ])
Example 18
Project: self-supervised-da Author: Jiaolong File: data_loader.py License: MIT License | 6 votes |
def get_jig_train_transformers(args): size = args.img_transform.random_resize_crop.size scale = args.img_transform.random_resize_crop.scale img_tr = [transforms.RandomResizedCrop((int(size[0]), int(size[1])), (scale[0], scale[1]))] if args.img_transform.random_horiz_flip > 0.0: img_tr.append(transforms.RandomHorizontalFlip(args.img_transform.random_horiz_flip)) if args.img_transform.jitter > 0.0: img_tr.append(transforms.ColorJitter( brightness=args.img_transform.jitter, contrast=args.img_transform.jitter, saturation=args.jitter, hue=min(0.5, args.jitter))) tile_tr = [] if args.jig_transform.tile_random_grayscale: tile_tr.append(transforms.RandomGrayscale(args.jig_transform.tile_random_grayscale)) mean = args.normalize.mean std = args.normalize.std tile_tr = tile_tr + [transforms.ToTensor(), transforms.Normalize(mean=mean, std=std)] return transforms.Compose(img_tr), transforms.Compose(tile_tr)
Example 19
Project: pytorch_deephash Author: flyingpot File: train.py License: MIT License | 6 votes |
def init_dataset(): transform_train = transforms.Compose( [transforms.Resize(256), transforms.RandomCrop(227), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]) transform_test = transforms.Compose( [transforms.Resize(227), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]) trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=0) testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=True, num_workers=0) return trainloader, testloader
Example 20
Project: sepconv Author: martkartasev File: dataset.py License: MIT License | 6 votes |
def __init__(self, patches, use_cache, augment_data): super(PatchDataset, self).__init__() self.patches = patches self.crop = CenterCrop(config.CROP_SIZE) if augment_data: self.random_transforms = [RandomRotation((90, 90)), RandomVerticalFlip(1.0), RandomHorizontalFlip(1.0), (lambda x: x)] self.get_aug_transform = (lambda: random.sample(self.random_transforms, 1)[0]) else: # Transform does nothing. Not sure if horrible or very elegant... self.get_aug_transform = (lambda: (lambda x: x)) if use_cache: self.load_patch = data_manager.load_cached_patch else: self.load_patch = data_manager.load_patch print('Dataset ready with {} tuples.'.format(len(patches)))
Example 21
Project: nasnet-pytorch Author: wandering007 File: imagenet.py License: MIT License | 6 votes |
def preprocess(self): if self.train: return transforms.Compose([ transforms.RandomResizedCrop(self.image_size), transforms.RandomHorizontalFlip(), transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.2), transforms.ToTensor(), transforms.Normalize(self.mean, self.std), ]) else: return transforms.Compose([ transforms.Resize((int(self.image_size / 0.875), int(self.image_size / 0.875))), transforms.CenterCrop(self.image_size), transforms.ToTensor(), transforms.Normalize(self.mean, self.std), ])
Example 22
Project: NAO_pytorch Author: renqianluo File: utils.py License: GNU General Public License v3.0 | 6 votes |
def _data_transforms_cifar10(cutout_size): CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124] CIFAR_STD = [0.24703233, 0.24348505, 0.26158768] train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) if cutout_size is not None: train_transform.transforms.append(Cutout(cutout_size)) valid_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) return train_transform, valid_transform
Example 23
Project: DetNAS Author: megvii-model File: bbox_aug.py License: MIT License | 6 votes |
def im_detect_bbox_hflip(model, images, target_scale, target_max_size, device): """ Performs bbox detection on the horizontally flipped image. Function signature is the same as for im_detect_bbox. """ transform = TT.Compose([ T.Resize(target_scale, target_max_size), TT.RandomHorizontalFlip(1.0), TT.ToTensor(), T.Normalize( mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD, to_bgr255=cfg.INPUT.TO_BGR255 ) ]) images = [transform(image) for image in images] images = to_image_list(images, cfg.DATALOADER.SIZE_DIVISIBILITY) boxlists = model(images.to(device)) # Invert the detections computed on the flipped image boxlists_inv = [boxlist.transpose(0) for boxlist in boxlists] return boxlists_inv
Example 24
Project: real-world-sr Author: ManuelFritsche File: data_loader.py License: MIT License | 6 votes |
def __init__(self, noisy_dir, crop_size, upscale_factor=4, cropped=False, flips=False, rotations=False, **kwargs): super(TrainDataset, self).__init__() # get all directories used for training if isinstance(noisy_dir, str): noisy_dir = [noisy_dir] self.files = [] for n_dir in noisy_dir: self.files += [join(n_dir, x) for x in listdir(n_dir) if utils.is_image_file(x)] # intitialize image transformations and variables self.input_transform = T.Compose([ T.RandomVerticalFlip(0.5 if flips else 0.0), T.RandomHorizontalFlip(0.5 if flips else 0.0), T.RandomCrop(crop_size) ]) self.crop_transform = T.RandomCrop(crop_size // upscale_factor) self.upscale_factor = upscale_factor self.cropped = cropped self.rotations = rotations
Example 25
Project: DGP Author: cyvius96 File: image_folder.py License: MIT License | 6 votes |
def __init__(self, path, classes, stage='train'): self.data = [] for i, c in enumerate(classes): cls_path = osp.join(path, c) images = os.listdir(cls_path) for image in images: self.data.append((osp.join(cls_path, image), i)) normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) if stage == 'train': self.transforms = transforms.Compose([transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize]) if stage == 'test': self.transforms = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize])
Example 26
Project: ResNet50-Pytorch-Face-Recognition Author: KaihuaTang File: data.py License: MIT License | 6 votes |
def __init__(self, root_path="CACD2000/", label_path="data/label.npy", name_path="data/name.npy", train_mode = "train"): """ Initialize some variables Load labels & names define transform """ self.root_path = root_path self.image_labels = np.load(label_path) self.image_names = np.load(name_path) self.train_mode = train_mode self.transform = { 'train': transforms.Compose([ transforms.Resize(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), # transforms.Normalize([0.656,0.487,0.411], [1., 1., 1.]) ]), 'val': transforms.Compose([ transforms.Resize(224), transforms.ToTensor(), # transforms.Normalize([0.656,0.487,0.411], [1., 1., 1.]) ]), }
Example 27
Project: VSE-C Author: ExplorerFreda File: data.py License: MIT License | 5 votes |
def get_transform(data_name, split_name, opt): normalizer = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) t_list = [] if split_name == 'train': t_list = [transforms.RandomSizedCrop(opt.crop_size), transforms.RandomHorizontalFlip()] elif split_name == 'val': t_list = [transforms.Scale(256), transforms.CenterCrop(224)] elif split_name == 'test': t_list = [transforms.Scale(256), transforms.CenterCrop(224)] t_end = [transforms.ToTensor(), normalizer] transform = transforms.Compose(t_list + t_end) return transform
Example 28
Project: dogTorch Author: ehsanik File: sun_dataset.py License: MIT License | 5 votes |
def __init__(self, args, train=True): self.root_dir = args.data root_dir = self.root_dir if train: self.data_set_list = os.path.join(root_dir, args.trainset_image_list) else: self.data_set_list = os.path.join(root_dir, args.testset_image_list) self.categ_dict = get_class_names( os.path.join(root_dir, 'ClassName.txt')) self.data_set_list = parse_file(self.data_set_list, self.categ_dict) self.args = args self.read_features = args.read_features self.features_dir = args.features_dir if train: self.transform = transforms.Compose([ transforms.RandomSizedCrop(args.image_size), transforms.RandomHorizontalFlip(), transforms.Scale((args.image_size, args.image_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) else: self.transform = transforms.Compose([ transforms.Scale((args.image_size, args.image_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])
Example 29
Project: transferlearning Author: jindongwang File: dataset.py License: MIT License | 5 votes |
def loader(path, batch_size=16, num_workers=1, pin_memory=True): normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) return data.DataLoader( datasets.ImageFolder(path, transforms.Compose([ transforms.Resize(256), transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])), batch_size=batch_size, shuffle=True, num_workers=num_workers, pin_memory=pin_memory)
Example 30
Project: transferlearning Author: jindongwang File: data_loader.py License: MIT License | 5 votes |
def load_training(root_path, dir, batch_size, kwargs): transform = transforms.Compose( [transforms.Resize([256, 256]), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor()]) data = datasets.ImageFolder(root=root_path + dir, transform=transform) train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True, **kwargs) return train_loader