Python torch.nn() Examples
The following are 30
code examples of torch.nn().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch
, or try the search function
.
Example #1
Source File: model.py From cat-bbs with MIT License | 9 votes |
def __init__(self): super(Model2, self).__init__() # fine tuning the ResNet helped significantly with the accuracy base_model = MyResNet(BasicBlock, [2, 2, 2, 2]) base_model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) # code needed to deactivate fine tuning of resnet #for param in base_model.parameters(): # param.requires_grad = False self.base_model = base_model self.drop0 = nn.Dropout2d(0.05) self.conv1 = nn.Conv2d(512, 256, 3, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(256) self.drop1 = nn.Dropout2d(0.05) self.conv2 = nn.Conv2d(256, 128, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(128) self.drop2 = nn.Dropout2d(0.05) self.conv3 = nn.Conv2d(128, 1+9, 3, padding=1, bias=False)
Example #2
Source File: model.py From cat-bbs with MIT License | 8 votes |
def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(MyResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # note the increasing dilation self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilation=1) self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4) # these layers will not be used self.avgpool = nn.AvgPool2d(7) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
Example #3
Source File: resnet_v1.py From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License | 7 votes |
def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) # maxpool different from pytorch-resnet, to match tf-faster-rcnn self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) # use stride 1 for the last conv4 layer (same as tf-faster-rcnn) self.layer4 = self._make_layer(block, 512, layers[3], stride=1) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
Example #4
Source File: model2.py From controllable-text-attribute-transfer with Apache License 2.0 | 6 votes |
def __init__(self, input_size, hidden_size, correlation_func=1, do_similarity=False): super(AttentionScore, self).__init__() self.correlation_func = correlation_func self.hidden_size = hidden_size if correlation_func == 2 or correlation_func == 3: self.linear = nn.Linear(input_size, hidden_size, bias=False) if do_similarity: self.diagonal = Parameter(torch.ones(1, 1, 1) / (hidden_size ** 0.5), requires_grad=False) else: self.diagonal = Parameter(torch.ones(1, 1, hidden_size), requires_grad=True) if correlation_func == 4: self.linear = nn.Linear(input_size, input_size, bias=False) if correlation_func == 5: self.linear = nn.Linear(input_size, hidden_size, bias=False)
Example #5
Source File: network.py From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License | 6 votes |
def _init_modules(self): self._init_head_tail() # rpn self.rpn_net = nn.Conv2d(self._net_conv_channels, cfg.RPN_CHANNELS, [3, 3], padding=1) self.rpn_cls_score_net = nn.Conv2d(cfg.RPN_CHANNELS, self._num_anchors * 2, [1, 1]) self.rpn_bbox_pred_net = nn.Conv2d(cfg.RPN_CHANNELS, self._num_anchors * 4, [1, 1]) self.cls_score_net_fast = nn.Linear(self._fc7_channels, self._num_classes+1) self.bbox_pred_net_fast = nn.Linear(self._fc7_channels, (self._num_classes+1) * 4) self.cls_score_net = nn.Linear(self._fc7_channels, self._num_classes) # between class self.bbox_pred_net = nn.Linear(self._fc7_channels, self._num_classes) # between boxes self.init_weights()
Example #6
Source File: model2.py From controllable-text-attribute-transfer with Apache License 2.0 | 6 votes |
def make_model(d_vocab, N, d_model, d_ff=1024, h=4, dropout=0.1): """Helper: Construct a model from hyperparameters.""" c = copy.deepcopy attn = MultiHeadedAttention(h, d_model) ff = PositionwiseFeedForward(d_model, d_ff, dropout) position = PositionalEncoding(d_model, dropout) model = EncoderDecoder( Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N), Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N), nn.GRU(d_model, d_model, 1), nn.Sequential(Embeddings(d_model, d_vocab), c(position)), nn.Sequential(Embeddings(d_model, d_vocab), c(position)), Generator(d_model, d_vocab), d_model ) # This was important from their code. # Initialize parameters with Glorot / fan_avg. for p in model.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) return model
Example #7
Source File: resnet_v1.py From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License | 6 votes |
def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers)
Example #8
Source File: model.py From controllable-text-attribute-transfer with Apache License 2.0 | 6 votes |
def make_model(d_vocab, N, d_model, latent_size, d_ff=1024, h=4, dropout=0.1): """Helper: Construct a model from hyperparameters.""" c = copy.deepcopy attn = MultiHeadedAttention(h, d_model) ff = PositionwiseFeedForward(d_model, d_ff, dropout) position = PositionalEncoding(d_model, dropout) share_embedding = Embeddings(d_model, d_vocab) model = EncoderDecoder( Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N), Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N), # nn.Sequential(Embeddings(d_model, d_vocab), c(position)), # nn.Sequential(Embeddings(d_model, d_vocab), c(position)), nn.Sequential(share_embedding, c(position)), nn.Sequential(share_embedding, c(position)), Generator(d_model, d_vocab), c(position), d_model, latent_size, ) # This was important from their code. # Initialize parameters with Glorot / fan_avg. for p in model.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) return model
Example #9
Source File: model.py From cat-bbs with MIT License | 6 votes |
def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(3, 16, 3, padding=1) self.bn1 = nn.BatchNorm2d(16) self.conv2 = nn.Conv2d(16, 32, 3, padding=1) self.bn2 = nn.BatchNorm2d(32) self.conv3 = nn.Conv2d(32, 64, 3, padding=1) self.bn3 = nn.BatchNorm2d(64) self.conv4 = nn.Conv2d(64, 128, 3, padding=1) self.bn4 = nn.BatchNorm2d(128) self.conv5 = nn.Conv2d(128, 128, 3, dilation=2, padding=2) self.bn5 = nn.BatchNorm2d(128) self.conv6 = nn.Conv2d(128, 128, 3, dilation=4, padding=4) self.bn6 = nn.BatchNorm2d(128) self.conv7 = nn.Conv2d(128, 1+9, 3, padding=1)
Example #10
Source File: model2.py From controllable-text-attribute-transfer with Apache License 2.0 | 6 votes |
def make_model(d_vocab, N, d_model, d_ff=1024, h=4, dropout=0.1): """Helper: Construct a model from hyperparameters.""" c = copy.deepcopy attn = MultiHeadedAttention(h, d_model) ff = PositionwiseFeedForward(d_model, d_ff, dropout) position = PositionalEncoding(d_model, dropout) model = EncoderDecoder( Encoder(EncoderLayer(d_model, c(attn), c(ff), dropout), N), Decoder(DecoderLayer(d_model, c(attn), c(attn), c(ff), dropout), N), nn.GRU(d_model, d_model, 1), nn.Sequential(Embeddings(d_model, d_vocab), c(position)), nn.Sequential(Embeddings(d_model, d_vocab), c(position)), Generator(d_model, d_vocab), d_model ) # This was important from their code. # Initialize parameters with Glorot / fan_avg. for p in model.parameters(): if p.dim() > 1: nn.init.xavier_uniform_(p) return model
Example #11
Source File: model.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def __init__(self, d_model, vocab): super(Generator, self).__init__() self.proj = nn.Linear(d_model, vocab)
Example #12
Source File: model2.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def clones(module, N): """Produce N identical layers.""" return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
Example #13
Source File: model.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def __init__(self, latent_size, output_size): super().__init__() self.fc1 = nn.Linear(latent_size, 100) self.relu1 = nn.LeakyReLU(0.2, ) self.fc2 = nn.Linear(100, 50) self.relu2 = nn.LeakyReLU(0.2) self.fc3 = nn.Linear(50, output_size) self.sigmoid = nn.Sigmoid()
Example #14
Source File: model.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def __init__(self, size, dropout): super(SublayerConnection, self).__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout)
Example #15
Source File: model.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps
Example #16
Source File: model.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def __init__(self, d_model, dropout, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = nn.Dropout(p=dropout) # Compute the positional encodings once in log space. pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe)
Example #17
Source File: model.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout)
Example #18
Source File: model.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def __init__(self, d_model, vocab): super(Generator, self).__init__() self.proj = nn.Linear(d_model, vocab)
Example #19
Source File: model2.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def clones(module, N): """Produce N identical layers.""" return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
Example #20
Source File: model.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def __init__(self, latent_size, output_size): super().__init__() self.fc1 = nn.Linear(latent_size, 100) self.relu1 = nn.LeakyReLU(0.2, ) self.fc2 = nn.Linear(100, 50) self.relu2 = nn.LeakyReLU(0.2) self.fc3 = nn.Linear(50, output_size) self.sigmoid = nn.Sigmoid()
Example #21
Source File: model.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def __init__(self, encoder, decoder, src_embed, tgt_embed, generator, position_layer, model_size, latent_size): super(EncoderDecoder, self).__init__() self.encoder = encoder self.decoder = decoder self.src_embed = src_embed self.tgt_embed = tgt_embed self.generator = generator self.position_layer = position_layer self.model_size = model_size self.latent_size = latent_size self.sigmoid = nn.Sigmoid() # self.memory2latent = nn.Linear(self.model_size, self.latent_size) # self.latent2memory = nn.Linear(self.latent_size, self.model_size)
Example #22
Source File: model2.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps
Example #23
Source File: model.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def __init__(self, d_model, vocab): super(Embeddings, self).__init__() self.lut = nn.Embedding(vocab, d_model) self.d_model = d_model
Example #24
Source File: model.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def __init__(self, size, dropout): super(SublayerConnection, self).__init__() self.norm = LayerNorm(size) self.dropout = nn.Dropout(dropout)
Example #25
Source File: model.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def __init__(self, features, eps=1e-6): super(LayerNorm, self).__init__() self.a_2 = nn.Parameter(torch.ones(features)) self.b_2 = nn.Parameter(torch.zeros(features)) self.eps = eps
Example #26
Source File: model2.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def __init__(self, encoder, decoder, gru, src_embed, tgt_embed, generator, input_size): super(EncoderDecoder, self).__init__() self.encoder = encoder self.decoder = decoder self.gru = gru self.src_embed = src_embed self.tgt_embed = tgt_embed self.generator = generator self.linear = nn.Linear(input_size * 2, input_size) self.attention = AttentionScore(input_size, input_size) self.gru_decoder = nn.GRU(input_size * 2, input_size, 1)
Example #27
Source File: model.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout)
Example #28
Source File: model.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def __init__(self, h, d_model, dropout=0.1): """Take in model size and number of heads.""" super(MultiHeadedAttention, self).__init__() assert d_model % h == 0 # We assume d_v always equals d_k self.d_k = d_model // h self.h = h self.linears = clones(nn.Linear(d_model, d_model), 4) self.attn = None self.dropout = nn.Dropout(p=dropout)
Example #29
Source File: model.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def clones(module, N): """Produce N identical layers.""" return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
Example #30
Source File: model2.py From controllable-text-attribute-transfer with Apache License 2.0 | 5 votes |
def __init__(self, latent_size, output_size): super().__init__() self.fc1 = nn.Linear(latent_size, 100) self.relu1 = nn.LeakyReLU(0.2, ) self.fc2 = nn.Linear(100, 50) self.relu2 = nn.LeakyReLU(0.2) self.fc3 = nn.Linear(50, output_size) self.sigmoid = nn.Sigmoid()