Python torch.nn.ReLU() Examples
The following are 30 code examples for showing how to use torch.nn.ReLU(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
torch.nn
, or try the search function
.
Example 1
Project: hgraph2graph Author: wengong-jin File: encoder.py License: MIT License | 9 votes |
def __init__(self, rnn_type, input_size, node_fdim, hidden_size, depth, dropout): super(MPNEncoder, self).__init__() self.hidden_size = hidden_size self.input_size = input_size self.depth = depth self.W_o = nn.Sequential( nn.Linear(node_fdim + hidden_size, hidden_size), nn.ReLU(), nn.Dropout(dropout) ) if rnn_type == 'GRU': self.rnn = GRU(input_size, hidden_size, depth) elif rnn_type == 'LSTM': self.rnn = LSTM(input_size, hidden_size, depth) else: raise ValueError('unsupported rnn cell type ' + rnn_type)
Example 2
Project: cat-bbs Author: aleju File: model.py License: MIT License | 7 votes |
def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(MyResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # note the increasing dilation self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilation=1) self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4) # these layers will not be used self.avgpool = nn.AvgPool2d(7) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
Example 3
Project: DDPAE-video-prediction Author: jthsieh File: decoder.py License: MIT License | 7 votes |
def __init__(self, input_size, n_channels, ngf, n_layers, activation='tanh'): super(ImageDecoder, self).__init__() ngf = ngf * (2 ** (n_layers - 2)) layers = [nn.ConvTranspose2d(input_size, ngf, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True)] for i in range(1, n_layers - 1): layers += [nn.ConvTranspose2d(ngf, ngf // 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf // 2), nn.ReLU(True)] ngf = ngf // 2 layers += [nn.ConvTranspose2d(ngf, n_channels, 4, 2, 1, bias=False)] if activation == 'tanh': layers += [nn.Tanh()] elif activation == 'sigmoid': layers += [nn.Sigmoid()] else: raise NotImplementedError self.main = nn.Sequential(*layers)
Example 4
Project: Collaborative-Learning-for-Weakly-Supervised-Object-Detection Author: Sunarker File: resnet_v1.py License: MIT License | 6 votes |
def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) # maxpool different from pytorch-resnet, to match tf-faster-rcnn self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) # use stride 1 for the last conv4 layer (same as tf-faster-rcnn) self.layer4 = self._make_layer(block, 512, layers[3], stride=1) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
Example 5
Project: hgraph2graph Author: wengong-jin File: encoder.py License: MIT License | 6 votes |
def __init__(self, rnn_type, input_size, node_fdim, hidden_size, depth, dropout): super(MPNEncoder, self).__init__() self.hidden_size = hidden_size self.input_size = input_size self.depth = depth self.W_o = nn.Sequential( nn.Linear(node_fdim + hidden_size, hidden_size), nn.ReLU(), nn.Dropout(dropout) ) if rnn_type == 'GRU': self.rnn = GRU(input_size, hidden_size, depth) elif rnn_type == 'LSTM': self.rnn = LSTM(input_size, hidden_size, depth) else: raise ValueError('unsupported rnn cell type ' + rnn_type)
Example 6
Project: mmdetection Author: open-mmlab File: fovea_head.py License: Apache License 2.0 | 6 votes |
def __init__(self, in_channels, out_channels, kernel_size=3, deformable_groups=4): super(FeatureAlign, self).__init__() offset_channels = kernel_size * kernel_size * 2 self.conv_offset = nn.Conv2d( 4, deformable_groups * offset_channels, 1, bias=False) self.conv_adaption = DeformConv( in_channels, out_channels, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, deformable_groups=deformable_groups) self.relu = nn.ReLU(inplace=True)
Example 7
Project: mmdetection Author: open-mmlab File: guided_anchor_head.py License: Apache License 2.0 | 6 votes |
def __init__(self, in_channels, out_channels, kernel_size=3, deformable_groups=4): super(FeatureAdaption, self).__init__() offset_channels = kernel_size * kernel_size * 2 self.conv_offset = nn.Conv2d( 2, deformable_groups * offset_channels, 1, bias=False) self.conv_adaption = DeformConv( in_channels, out_channels, kernel_size=kernel_size, padding=(kernel_size - 1) // 2, deformable_groups=deformable_groups) self.relu = nn.ReLU(inplace=True)
Example 8
Project: mmdetection Author: open-mmlab File: hrnet.py License: Apache License 2.0 | 6 votes |
def __init__(self, num_branches, blocks, num_blocks, in_channels, num_channels, multiscale_output=True, with_cp=False, conv_cfg=None, norm_cfg=dict(type='BN')): super(HRModule, self).__init__() self._check_branches(num_branches, num_blocks, in_channels, num_channels) self.in_channels = in_channels self.num_branches = num_branches self.multiscale_output = multiscale_output self.norm_cfg = norm_cfg self.conv_cfg = conv_cfg self.with_cp = with_cp self.branches = self._make_branches(num_branches, blocks, num_blocks, num_channels) self.fuse_layers = self._make_fuse_layers() self.relu = nn.ReLU(inplace=False)
Example 9
Project: neural-fingerprinting Author: StephanZheng File: vgg.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def _make_layers(self, cfg): layers = [] in_channels = 3 for x in cfg: if x == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1), nn.BatchNorm2d(x), nn.ReLU(inplace=True)] in_channels = x layers += [nn.AvgPool2d(kernel_size=1, stride=1)] return nn.Sequential(*layers) # net = VGG('VGG11') # x = torch.randn(2,3,32,32) # print(net(Variable(x)).size())
Example 10
Project: neural-fingerprinting Author: StephanZheng File: googlenet.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self): super(GoogLeNet, self).__init__() self.pre_layers = nn.Sequential( nn.Conv2d(3, 192, kernel_size=3, padding=1), nn.BatchNorm2d(192), nn.ReLU(True), ) self.a3 = Inception(192, 64, 96, 128, 16, 32, 32) self.b3 = Inception(256, 128, 128, 192, 32, 96, 64) self.maxpool = nn.MaxPool2d(3, stride=2, padding=1) self.a4 = Inception(480, 192, 96, 208, 16, 48, 64) self.b4 = Inception(512, 160, 112, 224, 24, 64, 64) self.c4 = Inception(512, 128, 128, 256, 24, 64, 64) self.d4 = Inception(512, 112, 144, 288, 32, 64, 64) self.e4 = Inception(528, 256, 160, 320, 32, 128, 128) self.a5 = Inception(832, 256, 160, 320, 32, 128, 128) self.b5 = Inception(832, 384, 192, 384, 48, 128, 128) self.avgpool = nn.AvgPool2d(8, stride=1) self.linear = nn.Linear(1024, 10)
Example 11
Project: neural-fingerprinting Author: StephanZheng File: vgg.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def _make_layers(self, cfg): layers = [] in_channels = 3 for x in cfg: if x == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1), nn.BatchNorm2d(x), nn.ReLU(inplace=True)] in_channels = x layers += [nn.AvgPool2d(kernel_size=1, stride=1)] return nn.Sequential(*layers) # net = VGG('VGG11') # x = torch.randn(2,3,32,32) # print(net(Variable(x)).size())
Example 12
Project: neural-fingerprinting Author: StephanZheng File: vgg.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def _make_layers(self, cfg): layers = [] in_channels = 3 for x in cfg: if x == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1), nn.BatchNorm2d(x), nn.ReLU(inplace=True)] in_channels = x layers += [nn.AvgPool2d(kernel_size=1, stride=1)] return nn.Sequential(*layers) # net = VGG('VGG11') # x = torch.randn(2,3,32,32) # print(net(Variable(x)).size())
Example 13
Project: neural-fingerprinting Author: StephanZheng File: googlenet.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self): super(GoogLeNet, self).__init__() self.pre_layers = nn.Sequential( nn.Conv2d(3, 192, kernel_size=3, padding=1), nn.BatchNorm2d(192), nn.ReLU(True), ) self.a3 = Inception(192, 64, 96, 128, 16, 32, 32) self.b3 = Inception(256, 128, 128, 192, 32, 96, 64) self.maxpool = nn.MaxPool2d(3, stride=2, padding=1) self.a4 = Inception(480, 192, 96, 208, 16, 48, 64) self.b4 = Inception(512, 160, 112, 224, 24, 64, 64) self.c4 = Inception(512, 128, 128, 256, 24, 64, 64) self.d4 = Inception(512, 112, 144, 288, 32, 64, 64) self.e4 = Inception(528, 256, 160, 320, 32, 128, 128) self.a5 = Inception(832, 256, 160, 320, 32, 128, 128) self.b5 = Inception(832, 384, 192, 384, 48, 128, 128) self.avgpool = nn.AvgPool2d(8, stride=1) self.linear = nn.Linear(1024, 10)
Example 14
Project: models Author: kipoi File: model.py License: MIT License | 6 votes |
def __init__( self ): super(CNN, self).__init__() self.elmo_feature_extractor = nn.Sequential( nn.Conv2d( 1024, 32, kernel_size=(7,1), padding=(3,0) ), nn.ReLU(), nn.Dropout( 0.25 ), ) n_final_in = 32 self.dssp3_classifier = nn.Sequential( nn.Conv2d( n_final_in, 3, kernel_size=(7,1), padding=(3,0)) ) self.dssp8_classifier = nn.Sequential( nn.Conv2d( n_final_in, 8, kernel_size=(7,1), padding=(3,0)) ) self.diso_classifier = nn.Sequential( nn.Conv2d( n_final_in, 2, kernel_size=(7,1), padding=(3,0)) )
Example 15
Project: VSE-C Author: ExplorerFreda File: model.py License: MIT License | 6 votes |
def __init__(self, vocab_size, word_dim, embed_size, use_abs=False, glove_path='data/glove.pkl'): super(EncoderTextCNN, self).__init__() self.use_abs = use_abs self.embed_size = embed_size # word embedding self.embed = nn.Embedding(vocab_size, word_dim-300, padding_idx=0) # 0 for <pad> _, embed_weight = pickle.load(open(glove_path, 'rb')) self.glove = Variable(torch.cuda.FloatTensor(embed_weight), requires_grad=False) channel_num = embed_size // 4 self.conv2 = nn.Conv1d(word_dim, channel_num, 2) self.conv3 = nn.Conv1d(word_dim, channel_num, 3) self.conv4 = nn.Conv1d(word_dim, channel_num, 4) self.conv5 = nn.Conv1d(word_dim, channel_num, 5) self.drop = nn.Dropout(p=0.5) self.relu = nn.ReLU() # self.mlp = nn.Linear(embed_size, embed_size) self.init_weights()
Example 16
Project: VSE-C Author: ExplorerFreda File: model.py License: MIT License | 6 votes |
def __init__(self, vocab_size, word_dim, embed_size, use_abs=False, glove_path='data/glove.pkl'): super(EncoderTextDeepCNN, self).__init__() self.use_abs = use_abs self.embed_size = embed_size # word embedding self.embed = nn.Embedding(vocab_size, word_dim-300, padding_idx=0) _, embed_weight = pickle.load(open(glove_path, 'rb')) self.glove = Variable(torch.cuda.FloatTensor(embed_weight), requires_grad=False) channel_num = embed_size self.conv1 = nn.Conv1d(word_dim, embed_size, 2, stride=2) # [batch_size, dim, 30] self.conv2 = nn.Conv1d(embed_size, embed_size, 4, stride=2) # [batch_size, dim, 14] self.conv3 = nn.Conv1d(embed_size, embed_size, 5, stride=2) # [batch_size, dim, 5] self.conv4 = nn.Conv1d(embed_size, channel_num, 5) self.drop = nn.Dropout(p=0.5) self.relu = nn.ReLU() # self.mlp = nn.Linear(embed_size, embed_size) self.init_weights()
Example 17
Project: deep-learning-note Author: wdxtub File: 22_vgg.py License: MIT License | 6 votes |
def vgg(conv_arch, fc_features, fc_hidden_units=4096): net = nn.Sequential() # 卷积层部分 for i, (num_convs, in_channels, out_channels) in enumerate(conv_arch): # 每经过一个 vgg_block 宽高减半 net.add_module('vgg_block_' + str(i+1), vgg_block(num_convs, in_channels, out_channels)) # 全连接部分 net.add_module('fc', nn.Sequential( utils.FlattenLayer(), nn.Linear(fc_features, fc_hidden_units), nn.ReLU(), nn.Dropout(0.5), nn.Linear(fc_hidden_units, fc_hidden_units), nn.ReLU(), nn.Dropout(0.5), nn.Linear(fc_hidden_units, 10) )) return net
Example 18
Project: neural-pipeline Author: toodef File: albunet.py License: MIT License | 6 votes |
def __init__(self, block, layers, in_channels=3): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
Example 19
Project: PolarSeg Author: edwardzhou130 File: BEV_Unet.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, in_ch, out_ch,group_conv,dilation=1): super(double_conv, self).__init__() if group_conv: self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, 3, padding=1,groups = min(out_ch,in_ch)), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, padding=1,groups = out_ch), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) else: self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, 3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) )
Example 20
Project: PolarSeg Author: edwardzhou130 File: BEV_Unet.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, in_ch, out_ch,group_conv,dilation=1): super(double_conv_circular, self).__init__() if group_conv: self.conv1 = nn.Sequential( nn.Conv2d(in_ch, out_ch, 3, padding=(1,0),groups = min(out_ch,in_ch)), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) self.conv2 = nn.Sequential( nn.Conv2d(out_ch, out_ch, 3, padding=(1,0),groups = out_ch), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) else: self.conv1 = nn.Sequential( nn.Conv2d(in_ch, out_ch, 3, padding=(1,0)), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) self.conv2 = nn.Sequential( nn.Conv2d(out_ch, out_ch, 3, padding=(1,0)), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) )
Example 21
Project: cat-bbs Author: aleju File: model.py License: MIT License | 5 votes |
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride
Example 22
Project: Collaborative-Learning-for-Weakly-Supervised-Object-Detection Author: Sunarker File: resnet_v1.py License: MIT License | 5 votes |
def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride
Example 23
Project: Collaborative-Learning-for-Weakly-Supervised-Object-Detection Author: Sunarker File: resnet_v1.py License: MIT License | 5 votes |
def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False) # change self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, # change padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride
Example 24
Project: hgraph2graph Author: wengong-jin File: hgnn.py License: MIT License | 5 votes |
def __init__(self, args): super(HierVGNN, self).__init__() self.latent_size = args.latent_size self.encoder = HierMPNEncoder(args.vocab, args.atom_vocab, args.rnn_type, args.embed_size, args.hidden_size, args.depthT, args.depthG, args.dropout) self.decoder = HierMPNDecoder(args.vocab, args.atom_vocab, args.rnn_type, args.embed_size, args.hidden_size, args.hidden_size, args.diterT, args.diterG, args.dropout, attention=True) self.encoder.tie_embedding(self.decoder.hmpn) self.T_mean = nn.Linear(args.hidden_size, args.latent_size) self.T_var = nn.Linear(args.hidden_size, args.latent_size) self.G_mean = nn.Linear(args.hidden_size, args.latent_size) self.G_var = nn.Linear(args.hidden_size, args.latent_size) self.W_tree = nn.Sequential( nn.Linear(args.hidden_size + args.latent_size, args.hidden_size), nn.ReLU() ) self.W_graph = nn.Sequential( nn.Linear(args.hidden_size + args.latent_size, args.hidden_size), nn.ReLU() )
Example 25
Project: hgraph2graph Author: wengong-jin File: hgnn.py License: MIT License | 5 votes |
def __init__(self, args): super(HierCondVGNN, self).__init__(args) self.W_tree = nn.Sequential( nn.Linear(args.hidden_size + args.latent_size + args.cond_size, args.hidden_size), nn.ReLU() ) self.W_graph = nn.Sequential( nn.Linear(args.hidden_size + args.latent_size + args.cond_size, args.hidden_size), nn.ReLU() ) self.U_tree = nn.Sequential( nn.Linear(args.hidden_size + args.cond_size, args.hidden_size), nn.ReLU() ) self.U_graph = nn.Sequential( nn.Linear(args.hidden_size + args.cond_size, args.hidden_size), nn.ReLU() )
Example 26
Project: hgraph2graph Author: wengong-jin File: encoder.py License: MIT License | 5 votes |
def __init__(self, vocab, avocab, rnn_type, embed_size, hidden_size, depthT, depthG, dropout): super(HierMPNEncoder, self).__init__() self.vocab = vocab self.hidden_size = hidden_size self.dropout = dropout self.atom_size = atom_size = avocab.size() self.bond_size = bond_size = len(MolGraph.BOND_LIST) + MolGraph.MAX_POS self.E_c = nn.Sequential( nn.Embedding(vocab.size()[0], embed_size), nn.Dropout(dropout) ) self.E_i = nn.Sequential( nn.Embedding(vocab.size()[1], embed_size), nn.Dropout(dropout) ) self.W_c = nn.Sequential( nn.Linear(embed_size + hidden_size, hidden_size), nn.ReLU(), nn.Dropout(dropout) ) self.W_i = nn.Sequential( nn.Linear(embed_size + hidden_size, hidden_size), nn.ReLU(), nn.Dropout(dropout) ) self.E_a = torch.eye(atom_size).cuda() self.E_b = torch.eye( len(MolGraph.BOND_LIST) ).cuda() self.E_apos = torch.eye( MolGraph.MAX_POS ).cuda() self.E_pos = torch.eye( MolGraph.MAX_POS ).cuda() self.W_root = nn.Sequential( nn.Linear(hidden_size * 2, hidden_size), nn.Tanh() #root activation is tanh ) self.tree_encoder = MPNEncoder(rnn_type, hidden_size + MolGraph.MAX_POS, hidden_size, hidden_size, depthT, dropout) self.inter_encoder = MPNEncoder(rnn_type, hidden_size + MolGraph.MAX_POS, hidden_size, hidden_size, depthT, dropout) self.graph_encoder = MPNEncoder(rnn_type, atom_size + bond_size, atom_size, hidden_size, depthG, dropout)
Example 27
Project: hgraph2graph Author: wengong-jin File: hgnn.py License: MIT License | 5 votes |
def __init__(self, args): super(HierCondVGNN, self).__init__(args) self.W_tree = nn.Sequential( nn.Linear(args.hidden_size + args.latent_size + args.cond_size, args.hidden_size), nn.ReLU() ) self.W_graph = nn.Sequential( nn.Linear(args.hidden_size + args.latent_size + args.cond_size, args.hidden_size), nn.ReLU() ) self.U_tree = nn.Sequential( nn.Linear(args.hidden_size + args.cond_size, args.hidden_size), nn.ReLU() ) self.U_graph = nn.Sequential( nn.Linear(args.hidden_size + args.cond_size, args.hidden_size), nn.ReLU() )
Example 28
Project: hgraph2graph Author: wengong-jin File: encoder.py License: MIT License | 5 votes |
def __init__(self, vocab, avocab, rnn_type, embed_size, hidden_size, depthT, depthG, dropout): super(HierMPNEncoder, self).__init__() self.vocab = vocab self.hidden_size = hidden_size self.dropout = dropout self.atom_size = atom_size = avocab.size() self.bond_size = bond_size = len(MolGraph.BOND_LIST) + MolGraph.MAX_POS self.E_c = nn.Sequential( nn.Embedding(vocab.size()[0], embed_size), nn.Dropout(dropout) ) self.E_i = nn.Sequential( nn.Embedding(vocab.size()[1], embed_size), nn.Dropout(dropout) ) self.W_c = nn.Sequential( nn.Linear(embed_size + hidden_size, hidden_size), nn.ReLU(), nn.Dropout(dropout) ) self.W_i = nn.Sequential( nn.Linear(embed_size + hidden_size, hidden_size), nn.ReLU(), nn.Dropout(dropout) ) self.E_a = torch.eye(atom_size).cuda() self.E_b = torch.eye( len(MolGraph.BOND_LIST) ).cuda() self.E_apos = torch.eye( MolGraph.MAX_POS ).cuda() self.E_pos = torch.eye( MolGraph.MAX_POS ).cuda() self.W_root = nn.Sequential( nn.Linear(hidden_size * 2, hidden_size), nn.Tanh() #root activation is tanh ) self.tree_encoder = MPNEncoder(rnn_type, hidden_size + MolGraph.MAX_POS, hidden_size, hidden_size, depthT, dropout) self.inter_encoder = MPNEncoder(rnn_type, hidden_size + MolGraph.MAX_POS, hidden_size, hidden_size, depthT, dropout) self.graph_encoder = MPNEncoder(rnn_type, atom_size + bond_size, atom_size, hidden_size, depthG, dropout)
Example 29
Project: mmdetection Author: open-mmlab File: gfl_head.py License: Apache License 2.0 | 5 votes |
def _init_layers(self): """Initialize layers of the head.""" self.relu = nn.ReLU(inplace=True) self.cls_convs = nn.ModuleList() self.reg_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels self.cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) self.reg_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg)) assert self.num_anchors == 1, 'anchor free version' self.gfl_cls = nn.Conv2d( self.feat_channels, self.cls_out_channels, 3, padding=1) self.gfl_reg = nn.Conv2d( self.feat_channels, 4 * (self.reg_max + 1), 3, padding=1) self.scales = nn.ModuleList( [Scale(1.0) for _ in self.anchor_generator.strides])
Example 30
Project: mmdetection Author: open-mmlab File: guided_anchor_head.py License: Apache License 2.0 | 5 votes |
def _init_layers(self): self.relu = nn.ReLU(inplace=True) self.conv_loc = nn.Conv2d(self.in_channels, 1, 1) self.conv_shape = nn.Conv2d(self.in_channels, self.num_anchors * 2, 1) self.feature_adaption = FeatureAdaption( self.in_channels, self.feat_channels, kernel_size=3, deformable_groups=self.deformable_groups) self.conv_cls = MaskedConv2d(self.feat_channels, self.num_anchors * self.cls_out_channels, 1) self.conv_reg = MaskedConv2d(self.feat_channels, self.num_anchors * 4, 1)