Python torch.nn.BatchNorm2d() Examples
The following are 30 code examples for showing how to use torch.nn.BatchNorm2d(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
torch.nn
, or try the search function
.
Example 1
Project: cat-bbs Author: aleju File: model.py License: MIT License | 8 votes |
def __init__(self): super(Model2, self).__init__() # fine tuning the ResNet helped significantly with the accuracy base_model = MyResNet(BasicBlock, [2, 2, 2, 2]) base_model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) # code needed to deactivate fine tuning of resnet #for param in base_model.parameters(): # param.requires_grad = False self.base_model = base_model self.drop0 = nn.Dropout2d(0.05) self.conv1 = nn.Conv2d(512, 256, 3, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(256) self.drop1 = nn.Dropout2d(0.05) self.conv2 = nn.Conv2d(256, 128, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(128) self.drop2 = nn.Dropout2d(0.05) self.conv3 = nn.Conv2d(128, 1+9, 3, padding=1, bias=False)
Example 2
Project: cat-bbs Author: aleju File: model.py License: MIT License | 7 votes |
def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(MyResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # note the increasing dilation self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilation=1) self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4) # these layers will not be used self.avgpool = nn.AvgPool2d(7) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
Example 3
Project: DDPAE-video-prediction Author: jthsieh File: decoder.py License: MIT License | 7 votes |
def __init__(self, input_size, n_channels, ngf, n_layers, activation='tanh'): super(ImageDecoder, self).__init__() ngf = ngf * (2 ** (n_layers - 2)) layers = [nn.ConvTranspose2d(input_size, ngf, 4, 1, 0, bias=False), nn.BatchNorm2d(ngf), nn.ReLU(True)] for i in range(1, n_layers - 1): layers += [nn.ConvTranspose2d(ngf, ngf // 2, 4, 2, 1, bias=False), nn.BatchNorm2d(ngf // 2), nn.ReLU(True)] ngf = ngf // 2 layers += [nn.ConvTranspose2d(ngf, n_channels, 4, 2, 1, bias=False)] if activation == 'tanh': layers += [nn.Tanh()] elif activation == 'sigmoid': layers += [nn.Sigmoid()] else: raise NotImplementedError self.main = nn.Sequential(*layers)
Example 4
Project: cat-bbs Author: aleju File: model.py License: MIT License | 6 votes |
def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(3, 16, 3, padding=1) self.bn1 = nn.BatchNorm2d(16) self.conv2 = nn.Conv2d(16, 32, 3, padding=1) self.bn2 = nn.BatchNorm2d(32) self.conv3 = nn.Conv2d(32, 64, 3, padding=1) self.bn3 = nn.BatchNorm2d(64) self.conv4 = nn.Conv2d(64, 128, 3, padding=1) self.bn4 = nn.BatchNorm2d(128) self.conv5 = nn.Conv2d(128, 128, 3, dilation=2, padding=2) self.bn5 = nn.BatchNorm2d(128) self.conv6 = nn.Conv2d(128, 128, 3, dilation=4, padding=4) self.bn6 = nn.BatchNorm2d(128) self.conv7 = nn.Conv2d(128, 1+9, 3, padding=1)
Example 5
Project: cat-bbs Author: aleju File: model.py License: MIT License | 6 votes |
def _make_layer(self, block, planes, blocks, stride=1, dilation=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, 1, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): # here with dilation layers.append(block(self.inplanes, planes, dilation=dilation)) return nn.Sequential(*layers)
Example 6
Project: Collaborative-Learning-for-Weakly-Supervised-Object-Detection Author: Sunarker File: resnet_v1.py License: MIT License | 6 votes |
def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) # maxpool different from pytorch-resnet, to match tf-faster-rcnn self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) # use stride 1 for the last conv4 layer (same as tf-faster-rcnn) self.layer4 = self._make_layer(block, 512, layers[3], stride=1) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
Example 7
Project: Collaborative-Learning-for-Weakly-Supervised-Object-Detection Author: Sunarker File: resnet_v1.py License: MIT License | 6 votes |
def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers)
Example 8
Project: mmdetection Author: open-mmlab File: res_layer.py License: Apache License 2.0 | 6 votes |
def init_weights(self, pretrained=None): """Initialize the weights in the module. Args: pretrained (str, optional): Path to pre-trained weights. Defaults to None. """ if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, strict=False, logger=logger) elif pretrained is None: for m in self.modules(): if isinstance(m, nn.Conv2d): kaiming_init(m) elif isinstance(m, nn.BatchNorm2d): constant_init(m, 1) else: raise TypeError('pretrained must be a str or None')
Example 9
Project: neural-fingerprinting Author: StephanZheng File: model.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self): super(CW2_Net, self).__init__() self.conv1 = nn.Conv2d(3, 32, 3) self.bnm1 = nn.BatchNorm2d(32, momentum=0.1) self.conv2 = nn.Conv2d(32, 64, 3) self.bnm2 = nn.BatchNorm2d(64, momentum=0.1) self.conv3 = nn.Conv2d(64, 128, 3) self.bnm3 = nn.BatchNorm2d(128, momentum=0.1) self.conv4 = nn.Conv2d(128, 128, 3) self.bnm4 = nn.BatchNorm2d(128, momentum=0.1) self.fc1 = nn.Linear(3200, 256) #self.dropout1 = nn.Dropout(p=0.35, inplace=False) self.bnm5 = nn.BatchNorm1d(256, momentum=0.1) self.fc2 = nn.Linear(256, 256) self.bnm6 = nn.BatchNorm1d(256, momentum=0.1) self.fc3 = nn.Linear(256, 10) #self.dropout2 = nn.Dropout(p=0.35, inplace=False) #self.dropout3 = nn.Dropout(p=0.35, inplace=False)
Example 10
Project: neural-fingerprinting Author: StephanZheng File: resnext.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, in_planes, cardinality=32, bottleneck_width=4, stride=1): super(Block, self).__init__() group_width = cardinality * bottleneck_width self.conv1 = nn.Conv2d(in_planes, group_width, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(group_width) self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False) self.bn2 = nn.BatchNorm2d(group_width) self.conv3 = nn.Conv2d(group_width, self.expansion*group_width, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion*group_width) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*group_width: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*group_width, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*group_width) )
Example 11
Project: neural-fingerprinting Author: StephanZheng File: dpn.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): super(Bottleneck, self).__init__() self.out_planes = out_planes self.dense_depth = dense_depth self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) self.bn2 = nn.BatchNorm2d(in_planes) self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes+dense_depth) self.shortcut = nn.Sequential() if first_layer: self.shortcut = nn.Sequential( nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes+dense_depth) )
Example 12
Project: neural-fingerprinting Author: StephanZheng File: senet.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes) ) # SE layers self.fc1 = nn.Conv2d(planes, planes//16, kernel_size=1) # Use nn.Conv2d instead of nn.Linear self.fc2 = nn.Conv2d(planes//16, planes, kernel_size=1)
Example 13
Project: neural-fingerprinting Author: StephanZheng File: vgg.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def _make_layers(self, cfg): layers = [] in_channels = 3 for x in cfg: if x == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1), nn.BatchNorm2d(x), nn.ReLU(inplace=True)] in_channels = x layers += [nn.AvgPool2d(kernel_size=1, stride=1)] return nn.Sequential(*layers) # net = VGG('VGG11') # x = torch.randn(2,3,32,32) # print(net(Variable(x)).size())
Example 14
Project: neural-fingerprinting Author: StephanZheng File: googlenet.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self): super(GoogLeNet, self).__init__() self.pre_layers = nn.Sequential( nn.Conv2d(3, 192, kernel_size=3, padding=1), nn.BatchNorm2d(192), nn.ReLU(True), ) self.a3 = Inception(192, 64, 96, 128, 16, 32, 32) self.b3 = Inception(256, 128, 128, 192, 32, 96, 64) self.maxpool = nn.MaxPool2d(3, stride=2, padding=1) self.a4 = Inception(480, 192, 96, 208, 16, 48, 64) self.b4 = Inception(512, 160, 112, 224, 24, 64, 64) self.c4 = Inception(512, 128, 128, 256, 24, 64, 64) self.d4 = Inception(512, 112, 144, 288, 32, 64, 64) self.e4 = Inception(528, 256, 160, 320, 32, 128, 128) self.a5 = Inception(832, 256, 160, 320, 32, 128, 128) self.b5 = Inception(832, 384, 192, 384, 48, 128, 128) self.avgpool = nn.AvgPool2d(8, stride=1) self.linear = nn.Linear(1024, 10)
Example 15
Project: neural-fingerprinting Author: StephanZheng File: shufflenet.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, in_planes, out_planes, stride, groups): super(Bottleneck, self).__init__() self.stride = stride mid_planes = out_planes/4 g = 1 if in_planes==24 else groups self.conv1 = nn.Conv2d(in_planes, mid_planes, kernel_size=1, groups=g, bias=False) self.bn1 = nn.BatchNorm2d(mid_planes) self.shuffle1 = ShuffleBlock(groups=g) self.conv2 = nn.Conv2d(mid_planes, mid_planes, kernel_size=3, stride=stride, padding=1, groups=mid_planes, bias=False) self.bn2 = nn.BatchNorm2d(mid_planes) self.conv3 = nn.Conv2d(mid_planes, out_planes, kernel_size=1, groups=groups, bias=False) self.bn3 = nn.BatchNorm2d(out_planes) self.shortcut = nn.Sequential() if stride == 2: self.shortcut = nn.Sequential(nn.AvgPool2d(3, stride=2, padding=1))
Example 16
Project: neural-fingerprinting Author: StephanZheng File: model.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self): super(CW2_Net, self).__init__() self.conv1 = nn.Conv2d(3, 32, 3) self.bnm1 = nn.BatchNorm2d(32, momentum=0.1) self.conv2 = nn.Conv2d(32, 64, 3) self.bnm2 = nn.BatchNorm2d(64, momentum=0.1) self.conv3 = nn.Conv2d(64, 128, 3) self.bnm3 = nn.BatchNorm2d(128, momentum=0.1) self.conv4 = nn.Conv2d(128, 128, 3) self.bnm4 = nn.BatchNorm2d(128, momentum=0.1) self.fc1 = nn.Linear(3200, 256) #self.dropout1 = nn.Dropout(p=0.35, inplace=False) self.bnm5 = nn.BatchNorm1d(256, momentum=0.1) self.fc2 = nn.Linear(256, 256) self.bnm6 = nn.BatchNorm1d(256, momentum=0.1) self.fc3 = nn.Linear(256, 10) #self.dropout2 = nn.Dropout(p=0.35, inplace=False) #self.dropout3 = nn.Dropout(p=0.35, inplace=False)
Example 17
Project: neural-fingerprinting Author: StephanZheng File: resnext.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, in_planes, cardinality=32, bottleneck_width=4, stride=1): super(Block, self).__init__() group_width = cardinality * bottleneck_width self.conv1 = nn.Conv2d(in_planes, group_width, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(group_width) self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False) self.bn2 = nn.BatchNorm2d(group_width) self.conv3 = nn.Conv2d(group_width, self.expansion*group_width, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion*group_width) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*group_width: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*group_width, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*group_width) )
Example 18
Project: neural-fingerprinting Author: StephanZheng File: dpn.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): super(Bottleneck, self).__init__() self.out_planes = out_planes self.dense_depth = dense_depth self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) self.bn2 = nn.BatchNorm2d(in_planes) self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes+dense_depth) self.shortcut = nn.Sequential() if first_layer: self.shortcut = nn.Sequential( nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes+dense_depth) )
Example 19
Project: neural-fingerprinting Author: StephanZheng File: senet.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes) ) # SE layers self.fc1 = nn.Conv2d(planes, planes//16, kernel_size=1) # Use nn.Conv2d instead of nn.Linear self.fc2 = nn.Conv2d(planes//16, planes, kernel_size=1)
Example 20
Project: neural-fingerprinting Author: StephanZheng File: vgg.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def _make_layers(self, cfg): layers = [] in_channels = 3 for x in cfg: if x == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1), nn.BatchNorm2d(x), nn.ReLU(inplace=True)] in_channels = x layers += [nn.AvgPool2d(kernel_size=1, stride=1)] return nn.Sequential(*layers) # net = VGG('VGG11') # x = torch.randn(2,3,32,32) # print(net(Variable(x)).size())
Example 21
Project: neural-fingerprinting Author: StephanZheng File: googlenet.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self): super(GoogLeNet, self).__init__() self.pre_layers = nn.Sequential( nn.Conv2d(3, 192, kernel_size=3, padding=1), nn.BatchNorm2d(192), nn.ReLU(True), ) self.a3 = Inception(192, 64, 96, 128, 16, 32, 32) self.b3 = Inception(256, 128, 128, 192, 32, 96, 64) self.maxpool = nn.MaxPool2d(3, stride=2, padding=1) self.a4 = Inception(480, 192, 96, 208, 16, 48, 64) self.b4 = Inception(512, 160, 112, 224, 24, 64, 64) self.c4 = Inception(512, 128, 128, 256, 24, 64, 64) self.d4 = Inception(512, 112, 144, 288, 32, 64, 64) self.e4 = Inception(528, 256, 160, 320, 32, 128, 128) self.a5 = Inception(832, 256, 160, 320, 32, 128, 128) self.b5 = Inception(832, 384, 192, 384, 48, 128, 128) self.avgpool = nn.AvgPool2d(8, stride=1) self.linear = nn.Linear(1024, 10)
Example 22
Project: neural-fingerprinting Author: StephanZheng File: shufflenet.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, in_planes, out_planes, stride, groups): super(Bottleneck, self).__init__() self.stride = stride mid_planes = out_planes/4 g = 1 if in_planes==24 else groups self.conv1 = nn.Conv2d(in_planes, mid_planes, kernel_size=1, groups=g, bias=False) self.bn1 = nn.BatchNorm2d(mid_planes) self.shuffle1 = ShuffleBlock(groups=g) self.conv2 = nn.Conv2d(mid_planes, mid_planes, kernel_size=3, stride=stride, padding=1, groups=mid_planes, bias=False) self.bn2 = nn.BatchNorm2d(mid_planes) self.conv3 = nn.Conv2d(mid_planes, out_planes, kernel_size=1, groups=groups, bias=False) self.bn3 = nn.BatchNorm2d(out_planes) self.shortcut = nn.Sequential() if stride == 2: self.shortcut = nn.Sequential(nn.AvgPool2d(3, stride=2, padding=1))
Example 23
Project: neural-fingerprinting Author: StephanZheng File: resnext.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, in_planes, cardinality=32, bottleneck_width=4, stride=1): super(Block, self).__init__() group_width = cardinality * bottleneck_width self.conv1 = nn.Conv2d(in_planes, group_width, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(group_width) self.conv2 = nn.Conv2d(group_width, group_width, kernel_size=3, stride=stride, padding=1, groups=cardinality, bias=False) self.bn2 = nn.BatchNorm2d(group_width) self.conv3 = nn.Conv2d(group_width, self.expansion*group_width, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(self.expansion*group_width) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*group_width: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*group_width, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*group_width) )
Example 24
Project: neural-fingerprinting Author: StephanZheng File: dpn.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, last_planes, in_planes, out_planes, dense_depth, stride, first_layer): super(Bottleneck, self).__init__() self.out_planes = out_planes self.dense_depth = dense_depth self.conv1 = nn.Conv2d(last_planes, in_planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(in_planes) self.conv2 = nn.Conv2d(in_planes, in_planes, kernel_size=3, stride=stride, padding=1, groups=32, bias=False) self.bn2 = nn.BatchNorm2d(in_planes) self.conv3 = nn.Conv2d(in_planes, out_planes+dense_depth, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_planes+dense_depth) self.shortcut = nn.Sequential() if first_layer: self.shortcut = nn.Sequential( nn.Conv2d(last_planes, out_planes+dense_depth, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_planes+dense_depth) )
Example 25
Project: neural-fingerprinting Author: StephanZheng File: senet.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes) ) # SE layers self.fc1 = nn.Conv2d(planes, planes//16, kernel_size=1) # Use nn.Conv2d instead of nn.Linear self.fc2 = nn.Conv2d(planes//16, planes, kernel_size=1)
Example 26
Project: neural-fingerprinting Author: StephanZheng File: vgg.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def _make_layers(self, cfg): layers = [] in_channels = 3 for x in cfg: if x == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1), nn.BatchNorm2d(x), nn.ReLU(inplace=True)] in_channels = x layers += [nn.AvgPool2d(kernel_size=1, stride=1)] return nn.Sequential(*layers) # net = VGG('VGG11') # x = torch.randn(2,3,32,32) # print(net(Variable(x)).size())
Example 27
Project: neural-fingerprinting Author: StephanZheng File: googlenet.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self): super(GoogLeNet, self).__init__() self.pre_layers = nn.Sequential( nn.Conv2d(3, 192, kernel_size=3, padding=1), nn.BatchNorm2d(192), nn.ReLU(True), ) self.a3 = Inception(192, 64, 96, 128, 16, 32, 32) self.b3 = Inception(256, 128, 128, 192, 32, 96, 64) self.maxpool = nn.MaxPool2d(3, stride=2, padding=1) self.a4 = Inception(480, 192, 96, 208, 16, 48, 64) self.b4 = Inception(512, 160, 112, 224, 24, 64, 64) self.c4 = Inception(512, 128, 128, 256, 24, 64, 64) self.d4 = Inception(512, 112, 144, 288, 32, 64, 64) self.e4 = Inception(528, 256, 160, 320, 32, 128, 128) self.a5 = Inception(832, 256, 160, 320, 32, 128, 128) self.b5 = Inception(832, 384, 192, 384, 48, 128, 128) self.avgpool = nn.AvgPool2d(8, stride=1) self.linear = nn.Linear(1024, 10)
Example 28
Project: neural-fingerprinting Author: StephanZheng File: shufflenet.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__(self, in_planes, out_planes, stride, groups): super(Bottleneck, self).__init__() self.stride = stride mid_planes = out_planes/4 g = 1 if in_planes==24 else groups self.conv1 = nn.Conv2d(in_planes, mid_planes, kernel_size=1, groups=g, bias=False) self.bn1 = nn.BatchNorm2d(mid_planes) self.shuffle1 = ShuffleBlock(groups=g) self.conv2 = nn.Conv2d(mid_planes, mid_planes, kernel_size=3, stride=stride, padding=1, groups=mid_planes, bias=False) self.bn2 = nn.BatchNorm2d(mid_planes) self.conv3 = nn.Conv2d(mid_planes, out_planes, kernel_size=1, groups=groups, bias=False) self.bn3 = nn.BatchNorm2d(out_planes) self.shortcut = nn.Sequential() if stride == 2: self.shortcut = nn.Sequential(nn.AvgPool2d(3, stride=2, padding=1))
Example 29
Project: cat-bbs Author: aleju File: model.py License: MIT License | 5 votes |
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride
Example 30
Project: Collaborative-Learning-for-Weakly-Supervised-Object-Detection Author: Sunarker File: resnet_v1.py License: MIT License | 5 votes |
def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride