Python torchvision.transforms.Compose() Examples
The following are 30 code examples for showing how to use torchvision.transforms.Compose(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
torchvision.transforms
, or try the search function
.
Example 1
Project: transferlearning Author: jindongwang File: data_loader.py License: MIT License | 9 votes |
def load_data(root_path, dir, batch_size, phase): transform_dict = { 'src': transforms.Compose( [transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'tar': transforms.Compose( [transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = datasets.ImageFolder(root=root_path + dir, transform=transform_dict[phase]) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return data_loader
Example 2
Project: DeepLab_v3_plus Author: songdejia File: dataset.py License: MIT License | 7 votes |
def transform_for_train(fixed_scale = 512, rotate_prob = 15): """ Options: 1.RandomCrop 2.CenterCrop 3.RandomHorizontalFlip 4.Normalize 5.ToTensor 6.FixedResize 7.RandomRotate """ transform_list = [] #transform_list.append(FixedResize(size = (fixed_scale, fixed_scale))) transform_list.append(RandomSized(fixed_scale)) transform_list.append(RandomRotate(rotate_prob)) transform_list.append(RandomHorizontalFlip()) #transform_list.append(Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))) transform_list.append(Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))) transform_list.append(ToTensor()) return transforms.Compose(transform_list)
Example 3
Project: dogTorch Author: ehsanik File: nyu_walkable_surface_dataset.py License: MIT License | 7 votes |
def __init__(self, args, train=True): self.root_dir = args.data if train: self.data_set_list = train_set_list elif args.use_test_for_val: self.data_set_list = test_set_list else: self.data_set_list = val_set_list self.data_set_list = ['%06d.png' % (x) for x in self.data_set_list] self.args = args self.read_features = args.read_features self.features_dir = args.features_dir self.transform = transforms.Compose([ transforms.Scale((args.image_size, args.image_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) self.transform_segmentation = transforms.Compose([ transforms.Scale((args.segmentation_size, args.segmentation_size)), transforms.ToTensor(), ])
Example 4
Project: transferlearning Author: jindongwang File: data_loader.py License: MIT License | 7 votes |
def load_training(root_path, dir, batch_size, kwargs): transform = transforms.Compose( [transforms.Resize([256, 256]), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor()]) data = datasets.ImageFolder(root=root_path + dir, transform=transform) train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True, **kwargs) return train_loader
Example 5
Project: iAI Author: aimuch File: model.py License: MIT License | 7 votes |
def __init__(self): self.batch_size = 64 self.test_batch_size = 100 self.learning_rate = 0.01 self.sgd_momentum = 0.9 self.log_interval = 100 # Fetch MNIST data set. self.train_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.batch_size, shuffle=True) self.test_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.test_batch_size, shuffle=True) self.network = Net() # Train the network for several epochs, validating after each epoch.
Example 6
Project: DDPAE-video-prediction Author: jthsieh File: get_data_loader.py License: MIT License | 6 votes |
def get_data_loader(opt): if opt.dset_name == 'moving_mnist': transform = transforms.Compose([vtransforms.ToTensor()]) dset = MovingMNIST(opt.dset_path, opt.is_train, opt.n_frames_input, opt.n_frames_output, opt.num_objects, transform) elif opt.dset_name == 'bouncing_balls': transform = transforms.Compose([vtransforms.Scale(opt.image_size), vtransforms.ToTensor()]) dset = BouncingBalls(opt.dset_path, opt.is_train, opt.n_frames_input, opt.n_frames_output, opt.image_size[0], transform) else: raise NotImplementedError dloader = data.DataLoader(dset, batch_size=opt.batch_size, shuffle=opt.is_train, num_workers=opt.n_workers, pin_memory=True) return dloader
Example 7
Project: transferlearning Author: jindongwang File: data_load.py License: MIT License | 6 votes |
def load_data(data_folder, batch_size, phase='train', train_val_split=True, train_ratio=.8): transform_dict = { 'train': transforms.Compose( [transforms.Resize(256), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'test': transforms.Compose( [transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = datasets.ImageFolder(root=data_folder, transform=transform_dict[phase]) if phase == 'train': if train_val_split: train_size = int(train_ratio * len(data)) test_size = len(data) - train_size data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4) val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=4) return [train_loader, val_loader] else: train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4) return train_loader else: test_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=4) return test_loader ## Below are for ImageCLEF datasets
Example 8
Project: transferlearning Author: jindongwang File: data_load.py License: MIT License | 6 votes |
def load_imageclef_train(root_path, domain, batch_size, phase): transform_dict = { 'src': transforms.Compose( [transforms.Resize((256, 256)), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'tar': transforms.Compose( [transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = ImageCLEF(root_dir=root_path, domain=domain, transform=transform_dict[phase]) train_size = int(0.8 * len(data)) test_size = len(data) - train_size data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return train_loader, val_loader
Example 9
Project: transferlearning Author: jindongwang File: data_load.py License: MIT License | 6 votes |
def load_imageclef_test(root_path, domain, batch_size, phase): transform_dict = { 'src': transforms.Compose( [transforms.Resize((256,256)), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'tar': transforms.Compose( [transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = ImageCLEF(root_dir=root_path, domain=domain, transform=transform_dict[phase]) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return data_loader
Example 10
Project: transferlearning Author: jindongwang File: data_loader.py License: MIT License | 6 votes |
def load_data(data_folder, batch_size, train, kwargs): transform = { 'train': transforms.Compose( [transforms.Resize([256, 256]), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]), 'test': transforms.Compose( [transforms.Resize([224, 224]), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) } data = datasets.ImageFolder(root = data_folder, transform=transform['train' if train else 'test']) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, **kwargs, drop_last = True if train else False) return data_loader
Example 11
Project: transferlearning Author: jindongwang File: data_loader.py License: MIT License | 6 votes |
def load_train(root_path, dir, batch_size, phase): transform_dict = { 'src': transforms.Compose( [transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'tar': transforms.Compose( [transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = datasets.ImageFolder(root=root_path + dir, transform=transform_dict[phase]) train_size = int(0.8 * len(data)) test_size = len(data) - train_size data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return train_loader, val_loader
Example 12
Project: L3C-PyTorch Author: fab-jul File: multiscale_trainer.py License: GNU General Public License v3.0 | 6 votes |
def _get_ds_val(self, images_spec, crop=False, truncate=False): img_to_tensor_t = [images_loader.IndexImagesDataset.to_tensor_uint8_transform()] if crop: img_to_tensor_t.insert(0, transforms.CenterCrop(crop)) img_to_tensor_t = transforms.Compose(img_to_tensor_t) fixed_first = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'fixedimg.jpg') if not os.path.isfile(fixed_first): print(f'INFO: No file found at {fixed_first}') fixed_first = None ds = images_loader.IndexImagesDataset( images=images_loader.ImagesCached( images_spec, self.config_dl.image_cache_pkl, min_size=self.config_dl.val_glob_min_size), to_tensor_transform=img_to_tensor_t, fixed_first=fixed_first) # fix a first image to have consistency in tensor board if truncate: ds = pe.TruncatedDataset(ds, num_elemens=truncate) return ds
Example 13
Project: steppy-toolkit Author: minerva-ml File: segmentation.py License: MIT License | 6 votes |
def __init__(self, train_mode, loader_params, dataset_params, augmentation_params): super().__init__(train_mode, loader_params, dataset_params, augmentation_params) self.image_transform = transforms.Compose([transforms.Grayscale(num_output_channels=3), transforms.ToTensor(), transforms.Normalize(mean=self.dataset_params.MEAN, std=self.dataset_params.STD), ]) self.mask_transform = transforms.Compose([transforms.Lambda(to_array), transforms.Lambda(to_tensor), ]) self.image_augment_train = ImgAug(self.augmentation_params['image_augment_train']) self.image_augment_with_target_train = ImgAug(self.augmentation_params['image_augment_with_target_train']) self.image_augment_inference = ImgAug(self.augmentation_params['image_augment_inference']) self.image_augment_with_target_inference = ImgAug( self.augmentation_params['image_augment_with_target_inference']) if self.dataset_params.target_format == 'png': self.dataset = ImageSegmentationPngDataset elif self.dataset_params.target_format == 'json': self.dataset = ImageSegmentationJsonDataset else: raise Exception('files must be png or json')
Example 14
Project: steppy-toolkit Author: minerva-ml File: segmentation.py License: MIT License | 6 votes |
def __init__(self, train_mode, loader_params, dataset_params, augmentation_params): super().__init__(train_mode, loader_params, dataset_params, augmentation_params) self.image_transform = transforms.Compose([transforms.Resize((self.dataset_params.h, self.dataset_params.w)), transforms.Grayscale(num_output_channels=3), transforms.ToTensor(), transforms.Normalize(mean=self.dataset_params.MEAN, std=self.dataset_params.STD), ]) self.mask_transform = transforms.Compose([transforms.Resize((self.dataset_params.h, self.dataset_params.w), interpolation=0), transforms.Lambda(to_array), transforms.Lambda(to_tensor), ]) self.image_augment_train = ImgAug(self.augmentation_params['image_augment_train']) self.image_augment_with_target_train = ImgAug(self.augmentation_params['image_augment_with_target_train']) if self.dataset_params.target_format == 'png': self.dataset = ImageSegmentationPngDataset elif self.dataset_params.target_format == 'json': self.dataset = ImageSegmentationJsonDataset else: raise Exception('files must be png or json')
Example 15
Project: steppy-toolkit Author: minerva-ml File: segmentation.py License: MIT License | 6 votes |
def __init__(self, loader_params, dataset_params, augmentation_params): super().__init__(loader_params, dataset_params, augmentation_params) self.image_transform = transforms.Compose([transforms.Resize((self.dataset_params.h, self.dataset_params.w)), transforms.Grayscale(num_output_channels=3), transforms.ToTensor(), transforms.Normalize(mean=self.dataset_params.MEAN, std=self.dataset_params.STD), ]) self.mask_transform = transforms.Compose([transforms.Resize((self.dataset_params.h, self.dataset_params.w), interpolation=0), transforms.Lambda(to_array), transforms.Lambda(to_tensor), ]) self.dataset = ImageSegmentationTTADataset
Example 16
Project: pytorch-multigpu Author: dnddnjs File: train.py License: MIT License | 6 votes |
def main(): best_acc = 0 device = 'cuda' if torch.cuda.is_available() else 'cpu' print('==> Preparing data..') transforms_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]) dataset_train = CIFAR10(root='../data', train=True, download=True, transform=transforms_train) train_loader = DataLoader(dataset_train, batch_size=args.batch_size, shuffle=True, num_workers=args.num_worker) # there are 10 classes so the dataset name is cifar-10 classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') print('==> Making model..') net = pyramidnet() net = nn.DataParallel(net) net = net.to(device) num_params = sum(p.numel() for p in net.parameters() if p.requires_grad) print('The number of parameters of model is', num_params) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=args.lr) # optimizer = optim.SGD(net.parameters(), lr=args.lr, # momentum=0.9, weight_decay=1e-4) train(net, criterion, optimizer, train_loader, device)
Example 17
Project: iAI Author: aimuch File: model.py License: MIT License | 6 votes |
def __init__(self): self.batch_size = 64 self.test_batch_size = 100 self.learning_rate = 0.0025 self.sgd_momentum = 0.9 self.log_interval = 100 # Fetch MNIST data set. self.train_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.batch_size, shuffle=True) self.test_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.test_batch_size, shuffle=True) self.network = Net() # Train the network for one or more epochs, validating after each epoch.
Example 18
Project: iAI Author: aimuch File: model.py License: MIT License | 6 votes |
def __init__(self): self.batch_size = 64 self.test_batch_size = 100 self.learning_rate = 0.0025 self.sgd_momentum = 0.9 self.log_interval = 100 # Fetch MNIST data set. self.train_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.batch_size, shuffle=True) self.test_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.test_batch_size, shuffle=True) self.network = Net() # Train the network for one or more epochs, validating after each epoch.
Example 19
Project: dfw Author: oval-group File: loaders.py License: MIT License | 6 votes |
def loaders_mnist(dataset, batch_size=64, cuda=0, train_size=50000, val_size=10000, test_size=10000, test_batch_size=1000, **kwargs): assert dataset == 'mnist' root = '{}/{}'.format(os.environ['VISION_DATA'], dataset) # Data loading code normalize = transforms.Normalize(mean=(0.1307,), std=(0.3081,)) transform = transforms.Compose([transforms.ToTensor(), normalize]) # define two datasets in order to have different transforms # on training and validation dataset_train = datasets.MNIST(root=root, train=True, transform=transform) dataset_val = datasets.MNIST(root=root, train=True, transform=transform) dataset_test = datasets.MNIST(root=root, train=False, transform=transform) return create_loaders(dataset_train, dataset_val, dataset_test, train_size, val_size, test_size, batch_size=batch_size, test_batch_size=test_batch_size, cuda=cuda, num_workers=0)
Example 20
Project: Visualizing-CNNs-for-monocular-depth-estimation Author: JunjH File: loaddata.py License: MIT License | 6 votes |
def getTestingData(batch_size=64): __imagenet_stats = {'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225]} # scale = random.uniform(1, 1.5) transformed_testing = depthDataset(csv_file='./data/nyu2_test.csv', transform=transforms.Compose([ Scale(240), CenterCrop([304, 228], [152, 114]), ToTensor(is_test=True), Normalize(__imagenet_stats['mean'], __imagenet_stats['std']) ])) dataloader_testing = DataLoader(transformed_testing, batch_size, shuffle=False, num_workers=4, pin_memory=False) return dataloader_testing
Example 21
Project: robosat Author: mapbox File: serve.py License: MIT License | 6 votes |
def segment(self, image): # don't track tensors with autograd during prediction with torch.no_grad(): mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] transform = Compose([ConvertImageMode(mode="RGB"), ImageToTensor(), Normalize(mean=mean, std=std)]) image = transform(image) batch = image.unsqueeze(0).to(self.device) output = self.net(batch) output = output.cpu().data.numpy() output = output.squeeze(0) mask = output.argmax(axis=0).astype(np.uint8) mask = Image.fromarray(mask, mode="P") palette = make_palette(*self.dataset["common"]["colors"]) mask.putpalette(palette) return mask
Example 22
Project: VSE-C Author: ExplorerFreda File: data.py License: MIT License | 5 votes |
def get_transform(data_name, split_name, opt): normalizer = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) t_list = [] if split_name == 'train': t_list = [transforms.RandomSizedCrop(opt.crop_size), transforms.RandomHorizontalFlip()] elif split_name == 'val': t_list = [transforms.Scale(256), transforms.CenterCrop(224)] elif split_name == 'test': t_list = [transforms.Scale(256), transforms.CenterCrop(224)] t_end = [transforms.ToTensor(), normalizer] transform = transforms.Compose(t_list + t_end) return transform
Example 23
Project: VSE-C Author: ExplorerFreda File: saliency_visualization.py License: MIT License | 5 votes |
def build_image_transforms(self): self.image_transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])
Example 24
Project: DeepLab_v3_plus Author: songdejia File: dataset.py License: MIT License | 5 votes |
def transform_for_demo(fixed_scale = 512, rotate_prob = 15): transform_list = [] transform_list.append(FixedResize(size = (fixed_scale, fixed_scale))) transform_list.append(Normalize(mean=(0.0, 0.0, 0.0), std=(1.0, 1.0, 1.0))) transform_list.append(ToTensor()) return transforms.Compose(transform_list)
Example 25
Project: DeepLab_v3_plus Author: songdejia File: dataset.py License: MIT License | 5 votes |
def transform_for_test(fixed_scale = 512): transform_list = [] transform_list.append(FixedResize(size = (fixed_scale, fixed_scale))) transform_list.append(Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225))) transform_list.append(ToTensor()) return transforms.Compose(transform_list)
Example 26
Project: Pytorch-Project-Template Author: moemen95 File: celebA.py License: MIT License | 5 votes |
def __init__(self, config): self.config = config if config.data_mode == "imgs": transform = v_transforms.Compose( [v_transforms.ToTensor(), v_transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))]) dataset = v_datasets.ImageFolder(self.config.data_folder, transform=transform) self.dataset_len = len(dataset) self.num_iterations = (self.dataset_len + config.batch_size - 1) // config.batch_size self.loader = DataLoader(dataset, batch_size=config.batch_size, shuffle=True, num_workers=config.data_loader_workers, pin_memory=config.pin_memory) elif config.data_mode == "numpy": raise NotImplementedError("This mode is not implemented YET") else: raise Exception("Please specify in the json a specified mode in data_mode")
Example 27
Project: dogTorch Author: ehsanik File: dog_multi_image_dataset.py License: MIT License | 5 votes |
def __init__(self, args, train=True): root_dir = args.data if train: json_file = os.path.join(root_dir, 'train.json') elif args.use_test_for_val: json_file = os.path.join(root_dir, 'test.json') else: json_file = os.path.join(root_dir, 'val.json') self.num_classes = args.num_classes self.sequence_length = args.sequence_length self.experiment_type = args.experiment_type self.regression = args.regression self.read_features = args.read_features self.frames_metadata, self.idx_to_fid, self.centroids = _read_labels( json_file, args.imus, args.sequence_length) self.root_dir = root_dir self.features_dir = args.features_dir self.transform = transforms.Compose([ transforms.Scale((args.image_size, args.image_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])
Example 28
Project: dogTorch Author: ehsanik File: sun_dataset.py License: MIT License | 5 votes |
def __init__(self, args, train=True): self.root_dir = args.data root_dir = self.root_dir if train: self.data_set_list = os.path.join(root_dir, args.trainset_image_list) else: self.data_set_list = os.path.join(root_dir, args.testset_image_list) self.categ_dict = get_class_names( os.path.join(root_dir, 'ClassName.txt')) self.data_set_list = parse_file(self.data_set_list, self.categ_dict) self.args = args self.read_features = args.read_features self.features_dir = args.features_dir if train: self.transform = transforms.Compose([ transforms.RandomSizedCrop(args.image_size), transforms.RandomHorizontalFlip(), transforms.Scale((args.image_size, args.image_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) else: self.transform = transforms.Compose([ transforms.Scale((args.image_size, args.image_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])
Example 29
Project: dogTorch Author: ehsanik File: dog_clip_regression_dataset.py License: MIT License | 5 votes |
def __init__(self, args, train=True): root_dir = args.data if train or args.read_feature_and_image: json_file = os.path.join(root_dir, 'train.json') elif args.use_test_for_val: json_file = os.path.join(root_dir, 'test.json') else: json_file = os.path.join(root_dir, 'val.json') self.num_classes = args.num_classes self.sequence_length = args.sequence_length self.experiment_type = args.experiment_type self.regression = args.regression self.args = args self.read_features = args.read_features self.frames_metadata, self.idx_to_fid, self.centroids = _read_labels( json_file, args.imus, args.sequence_length) self.root_dir = root_dir self.features_dir = args.features_dir self.transform = transforms.Compose([ transforms.Scale((args.image_size, args.image_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])
Example 30
Project: transferlearning Author: jindongwang File: digit_data_loader.py License: MIT License | 5 votes |
def load_data(domain, root_dir, batch_size): src_train_img, src_train_label, src_test_img, src_test_label = load_dataset(domain['src'], root_dir) tar_train_img, tar_train_label, tar_test_img, tar_test_label = load_dataset(domain['tar'], root_dir) transform = transforms.Compose([ transforms.Resize(32), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) data_src_train, data_src_test = GetDataset(src_train_img, src_train_label, transform), GetDataset(src_test_img, src_test_label, transform) data_tar_train, data_tar_test = GetDataset(tar_train_img, tar_train_label, transform), GetDataset(tar_test_img, tar_test_label, transform) dataloaders = {} dataloaders['src'] = torch.utils.data.DataLoader(data_src_train, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) dataloaders['val'] = torch.utils.data.DataLoader(data_src_test, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) dataloaders['tar'] = torch.utils.data.DataLoader(data_tar_train, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return dataloaders