Python torchvision.transforms.Normalize() Examples
The following are 30 code examples for showing how to use torchvision.transforms.Normalize(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
torchvision.transforms
, or try the search function
.
Example 1
Project: transferlearning Author: jindongwang File: data_loader.py License: MIT License | 9 votes |
def load_data(root_path, dir, batch_size, phase): transform_dict = { 'src': transforms.Compose( [transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'tar': transforms.Compose( [transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = datasets.ImageFolder(root=root_path + dir, transform=transform_dict[phase]) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return data_loader
Example 2
Project: dogTorch Author: ehsanik File: nyu_walkable_surface_dataset.py License: MIT License | 7 votes |
def __init__(self, args, train=True): self.root_dir = args.data if train: self.data_set_list = train_set_list elif args.use_test_for_val: self.data_set_list = test_set_list else: self.data_set_list = val_set_list self.data_set_list = ['%06d.png' % (x) for x in self.data_set_list] self.args = args self.read_features = args.read_features self.features_dir = args.features_dir self.transform = transforms.Compose([ transforms.Scale((args.image_size, args.image_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) self.transform_segmentation = transforms.Compose([ transforms.Scale((args.segmentation_size, args.segmentation_size)), transforms.ToTensor(), ])
Example 3
Project: iAI Author: aimuch File: model.py License: MIT License | 7 votes |
def __init__(self): self.batch_size = 64 self.test_batch_size = 100 self.learning_rate = 0.01 self.sgd_momentum = 0.9 self.log_interval = 100 # Fetch MNIST data set. self.train_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.batch_size, shuffle=True) self.test_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.test_batch_size, shuffle=True) self.network = Net() # Train the network for several epochs, validating after each epoch.
Example 4
Project: transferlearning Author: jindongwang File: data_load.py License: MIT License | 6 votes |
def load_data(data_folder, batch_size, phase='train', train_val_split=True, train_ratio=.8): transform_dict = { 'train': transforms.Compose( [transforms.Resize(256), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'test': transforms.Compose( [transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = datasets.ImageFolder(root=data_folder, transform=transform_dict[phase]) if phase == 'train': if train_val_split: train_size = int(train_ratio * len(data)) test_size = len(data) - train_size data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4) val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=4) return [train_loader, val_loader] else: train_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4) return train_loader else: test_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=4) return test_loader ## Below are for ImageCLEF datasets
Example 5
Project: transferlearning Author: jindongwang File: data_load.py License: MIT License | 6 votes |
def load_imageclef_train(root_path, domain, batch_size, phase): transform_dict = { 'src': transforms.Compose( [transforms.Resize((256, 256)), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'tar': transforms.Compose( [transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = ImageCLEF(root_dir=root_path, domain=domain, transform=transform_dict[phase]) train_size = int(0.8 * len(data)) test_size = len(data) - train_size data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return train_loader, val_loader
Example 6
Project: transferlearning Author: jindongwang File: data_load.py License: MIT License | 6 votes |
def load_imageclef_test(root_path, domain, batch_size, phase): transform_dict = { 'src': transforms.Compose( [transforms.Resize((256,256)), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'tar': transforms.Compose( [transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = ImageCLEF(root_dir=root_path, domain=domain, transform=transform_dict[phase]) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return data_loader
Example 7
Project: transferlearning Author: jindongwang File: data_loader.py License: MIT License | 6 votes |
def load_data(data_folder, batch_size, train, kwargs): transform = { 'train': transforms.Compose( [transforms.Resize([256, 256]), transforms.RandomCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]), 'test': transforms.Compose( [transforms.Resize([224, 224]), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) } data = datasets.ImageFolder(root = data_folder, transform=transform['train' if train else 'test']) data_loader = torch.utils.data.DataLoader(data, batch_size=batch_size, shuffle=True, **kwargs, drop_last = True if train else False) return data_loader
Example 8
Project: transferlearning Author: jindongwang File: data_loader.py License: MIT License | 6 votes |
def load_train(root_path, dir, batch_size, phase): transform_dict = { 'src': transforms.Compose( [transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]), 'tar': transforms.Compose( [transforms.Resize(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])} data = datasets.ImageFolder(root=root_path + dir, transform=transform_dict[phase]) train_size = int(0.8 * len(data)) test_size = len(data) - train_size data_train, data_val = torch.utils.data.random_split(data, [train_size, test_size]) train_loader = torch.utils.data.DataLoader(data_train, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) val_loader = torch.utils.data.DataLoader(data_val, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return train_loader, val_loader
Example 9
Project: steppy-toolkit Author: minerva-ml File: segmentation.py License: MIT License | 6 votes |
def __init__(self, train_mode, loader_params, dataset_params, augmentation_params): super().__init__(train_mode, loader_params, dataset_params, augmentation_params) self.image_transform = transforms.Compose([transforms.Grayscale(num_output_channels=3), transforms.ToTensor(), transforms.Normalize(mean=self.dataset_params.MEAN, std=self.dataset_params.STD), ]) self.mask_transform = transforms.Compose([transforms.Lambda(to_array), transforms.Lambda(to_tensor), ]) self.image_augment_train = ImgAug(self.augmentation_params['image_augment_train']) self.image_augment_with_target_train = ImgAug(self.augmentation_params['image_augment_with_target_train']) self.image_augment_inference = ImgAug(self.augmentation_params['image_augment_inference']) self.image_augment_with_target_inference = ImgAug( self.augmentation_params['image_augment_with_target_inference']) if self.dataset_params.target_format == 'png': self.dataset = ImageSegmentationPngDataset elif self.dataset_params.target_format == 'json': self.dataset = ImageSegmentationJsonDataset else: raise Exception('files must be png or json')
Example 10
Project: steppy-toolkit Author: minerva-ml File: segmentation.py License: MIT License | 6 votes |
def __init__(self, train_mode, loader_params, dataset_params, augmentation_params): super().__init__(train_mode, loader_params, dataset_params, augmentation_params) self.image_transform = transforms.Compose([transforms.Resize((self.dataset_params.h, self.dataset_params.w)), transforms.Grayscale(num_output_channels=3), transforms.ToTensor(), transforms.Normalize(mean=self.dataset_params.MEAN, std=self.dataset_params.STD), ]) self.mask_transform = transforms.Compose([transforms.Resize((self.dataset_params.h, self.dataset_params.w), interpolation=0), transforms.Lambda(to_array), transforms.Lambda(to_tensor), ]) self.image_augment_train = ImgAug(self.augmentation_params['image_augment_train']) self.image_augment_with_target_train = ImgAug(self.augmentation_params['image_augment_with_target_train']) if self.dataset_params.target_format == 'png': self.dataset = ImageSegmentationPngDataset elif self.dataset_params.target_format == 'json': self.dataset = ImageSegmentationJsonDataset else: raise Exception('files must be png or json')
Example 11
Project: steppy-toolkit Author: minerva-ml File: segmentation.py License: MIT License | 6 votes |
def __init__(self, loader_params, dataset_params, augmentation_params): super().__init__(loader_params, dataset_params, augmentation_params) self.image_transform = transforms.Compose([transforms.Resize((self.dataset_params.h, self.dataset_params.w)), transforms.Grayscale(num_output_channels=3), transforms.ToTensor(), transforms.Normalize(mean=self.dataset_params.MEAN, std=self.dataset_params.STD), ]) self.mask_transform = transforms.Compose([transforms.Resize((self.dataset_params.h, self.dataset_params.w), interpolation=0), transforms.Lambda(to_array), transforms.Lambda(to_tensor), ]) self.dataset = ImageSegmentationTTADataset
Example 12
Project: pytorch-multigpu Author: dnddnjs File: train.py License: MIT License | 6 votes |
def main(): best_acc = 0 device = 'cuda' if torch.cuda.is_available() else 'cpu' print('==> Preparing data..') transforms_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))]) dataset_train = CIFAR10(root='../data', train=True, download=True, transform=transforms_train) train_loader = DataLoader(dataset_train, batch_size=args.batch_size, shuffle=True, num_workers=args.num_worker) # there are 10 classes so the dataset name is cifar-10 classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') print('==> Making model..') net = pyramidnet() net = nn.DataParallel(net) net = net.to(device) num_params = sum(p.numel() for p in net.parameters() if p.requires_grad) print('The number of parameters of model is', num_params) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=args.lr) # optimizer = optim.SGD(net.parameters(), lr=args.lr, # momentum=0.9, weight_decay=1e-4) train(net, criterion, optimizer, train_loader, device)
Example 13
Project: iAI Author: aimuch File: model.py License: MIT License | 6 votes |
def __init__(self): self.batch_size = 64 self.test_batch_size = 100 self.learning_rate = 0.0025 self.sgd_momentum = 0.9 self.log_interval = 100 # Fetch MNIST data set. self.train_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.batch_size, shuffle=True) self.test_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.test_batch_size, shuffle=True) self.network = Net() # Train the network for one or more epochs, validating after each epoch.
Example 14
Project: iAI Author: aimuch File: model.py License: MIT License | 6 votes |
def __init__(self): self.batch_size = 64 self.test_batch_size = 100 self.learning_rate = 0.0025 self.sgd_momentum = 0.9 self.log_interval = 100 # Fetch MNIST data set. self.train_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.batch_size, shuffle=True) self.test_loader = torch.utils.data.DataLoader( datasets.MNIST('/tmp/mnist/data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=self.test_batch_size, shuffle=True) self.network = Net() # Train the network for one or more epochs, validating after each epoch.
Example 15
Project: dfw Author: oval-group File: loaders.py License: MIT License | 6 votes |
def loaders_mnist(dataset, batch_size=64, cuda=0, train_size=50000, val_size=10000, test_size=10000, test_batch_size=1000, **kwargs): assert dataset == 'mnist' root = '{}/{}'.format(os.environ['VISION_DATA'], dataset) # Data loading code normalize = transforms.Normalize(mean=(0.1307,), std=(0.3081,)) transform = transforms.Compose([transforms.ToTensor(), normalize]) # define two datasets in order to have different transforms # on training and validation dataset_train = datasets.MNIST(root=root, train=True, transform=transform) dataset_val = datasets.MNIST(root=root, train=True, transform=transform) dataset_test = datasets.MNIST(root=root, train=False, transform=transform) return create_loaders(dataset_train, dataset_val, dataset_test, train_size, val_size, test_size, batch_size=batch_size, test_batch_size=test_batch_size, cuda=cuda, num_workers=0)
Example 16
Project: robosat Author: mapbox File: serve.py License: MIT License | 6 votes |
def segment(self, image): # don't track tensors with autograd during prediction with torch.no_grad(): mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] transform = Compose([ConvertImageMode(mode="RGB"), ImageToTensor(), Normalize(mean=mean, std=std)]) image = transform(image) batch = image.unsqueeze(0).to(self.device) output = self.net(batch) output = output.cpu().data.numpy() output = output.squeeze(0) mask = output.argmax(axis=0).astype(np.uint8) mask = Image.fromarray(mask, mode="P") palette = make_palette(*self.dataset["common"]["colors"]) mask.putpalette(palette) return mask
Example 17
Project: pytorch-atda Author: corenel File: usps.py License: MIT License | 6 votes |
def get_usps(train, get_dataset=False, batch_size=cfg.batch_size): """Get USPS dataset loader.""" # image pre-processing pre_process = transforms.Compose([transforms.ToTensor(), transforms.Normalize( mean=cfg.dataset_mean, std=cfg.dataset_std)]) # dataset and data loader usps_dataset = USPS(root=cfg.data_root, train=train, transform=pre_process, download=True) if get_dataset: return usps_dataset else: usps_data_loader = torch.utils.data.DataLoader( dataset=usps_dataset, batch_size=batch_size, shuffle=True) return usps_data_loader
Example 18
Project: pytorch-atda Author: corenel File: mnist_m.py License: MIT License | 6 votes |
def get_mnist_m(train, get_dataset=False, batch_size=cfg.batch_size): """Get MNIST-M dataset loader.""" # image pre-processing pre_process = transforms.Compose([transforms.ToTensor(), transforms.Normalize( mean=cfg.dataset_mean, std=cfg.dataset_std)]) # dataset and data loader mnist_m_dataset = MNIST_M(root=cfg.data_root, train=train, transform=pre_process, download=True) if get_dataset: return mnist_m_dataset else: mnist_m_data_loader = torch.utils.data.DataLoader( dataset=mnist_m_dataset, batch_size=batch_size, shuffle=True) return mnist_m_data_loader
Example 19
Project: pytorch-atda Author: corenel File: svhn.py License: MIT License | 6 votes |
def get_svhn(train, get_dataset=False, batch_size=cfg.batch_size): """Get SVHN dataset loader.""" # image pre-processing pre_process = transforms.Compose([transforms.ToTensor(), transforms.Normalize( mean=cfg.dataset_mean, std=cfg.dataset_std)]) # dataset and data loader svhn_dataset = datasets.SVHN(root=cfg.data_root, split='train' if train else 'test', transform=pre_process, download=True) if get_dataset: return svhn_dataset else: svhn_data_loader = torch.utils.data.DataLoader( dataset=svhn_dataset, batch_size=batch_size, shuffle=True) return svhn_data_loader
Example 20
Project: pytorch-atda Author: corenel File: mnist.py License: MIT License | 6 votes |
def get_mnist(train, get_dataset=False, batch_size=cfg.batch_size): """Get MNIST dataset loader.""" # image pre-processing convert_to_3_channels = transforms.Lambda( lambda x: torch.cat([x, x, x], 0)) pre_process = transforms.Compose([transforms.ToTensor(), transforms.Normalize( mean=cfg.dataset_mean, std=cfg.dataset_std), convert_to_3_channels]) # dataset and data loader mnist_dataset = datasets.MNIST(root=cfg.data_root, train=train, transform=pre_process, download=True) if get_dataset: return mnist_dataset else: mnist_data_loader = torch.utils.data.DataLoader( dataset=mnist_dataset, batch_size=batch_size, shuffle=True) return mnist_data_loader
Example 21
Project: sgd-influence Author: sato9hara File: outlier.py License: MIT License | 6 votes |
def cifar10(): transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) trainset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_train, seed=0) valset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_test, seed=0) testset = MyCIFAR10.CIFAR10(root='./data', train=False, download=True, transform=transform_test, seed=0) net_func = MyNet.CifarAE return net_func, trainset, valset, testset
Example 22
Project: sgd-influence Author: sato9hara File: train.py License: MIT License | 6 votes |
def cifar10(): transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) trainset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_train, seed=0) valset = MyCIFAR10.CIFAR10(root='./data', train=True, download=True, transform=transform_test, seed=0) testset = MyCIFAR10.CIFAR10(root='./data', train=False, download=True, transform=transform_test, seed=0) net_func = MyNet.CifarNet return net_func, trainset, valset, testset
Example 23
Project: cycada_release Author: jhoffman File: data_loader.py License: BSD 2-Clause "Simplified" License | 6 votes |
def get_transform(params, image_size, num_channels): # Transforms for PIL Images: Gray <-> RGB Gray2RGB = transforms.Lambda(lambda x: x.convert('RGB')) RGB2Gray = transforms.Lambda(lambda x: x.convert('L')) transform = [] # Does size request match original size? if not image_size == params.image_size: transform.append(transforms.Resize(image_size)) # Does number of channels requested match original? if not num_channels == params.num_channels: if num_channels == 1: transform.append(RGB2Gray) elif num_channels == 3: transform.append(Gray2RGB) else: print('NumChannels should be 1 or 3', num_channels) raise Exception transform += [transforms.ToTensor(), transforms.Normalize((params.mean,), (params.std,))] return transforms.Compose(transform)
Example 24
Project: VSE-C Author: ExplorerFreda File: data.py License: MIT License | 5 votes |
def get_transform(data_name, split_name, opt): normalizer = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) t_list = [] if split_name == 'train': t_list = [transforms.RandomSizedCrop(opt.crop_size), transforms.RandomHorizontalFlip()] elif split_name == 'val': t_list = [transforms.Scale(256), transforms.CenterCrop(224)] elif split_name == 'test': t_list = [transforms.Scale(256), transforms.CenterCrop(224)] t_end = [transforms.ToTensor(), normalizer] transform = transforms.Compose(t_list + t_end) return transform
Example 25
Project: VSE-C Author: ExplorerFreda File: saliency_visualization.py License: MIT License | 5 votes |
def build_image_transforms(self): self.image_transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ])
Example 26
Project: Pytorch-Project-Template Author: moemen95 File: celebA.py License: MIT License | 5 votes |
def __init__(self, config): self.config = config if config.data_mode == "imgs": transform = v_transforms.Compose( [v_transforms.ToTensor(), v_transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))]) dataset = v_datasets.ImageFolder(self.config.data_folder, transform=transform) self.dataset_len = len(dataset) self.num_iterations = (self.dataset_len + config.batch_size - 1) // config.batch_size self.loader = DataLoader(dataset, batch_size=config.batch_size, shuffle=True, num_workers=config.data_loader_workers, pin_memory=config.pin_memory) elif config.data_mode == "numpy": raise NotImplementedError("This mode is not implemented YET") else: raise Exception("Please specify in the json a specified mode in data_mode")
Example 27
Project: dogTorch Author: ehsanik File: dog_multi_image_dataset.py License: MIT License | 5 votes |
def __init__(self, args, train=True): root_dir = args.data if train: json_file = os.path.join(root_dir, 'train.json') elif args.use_test_for_val: json_file = os.path.join(root_dir, 'test.json') else: json_file = os.path.join(root_dir, 'val.json') self.num_classes = args.num_classes self.sequence_length = args.sequence_length self.experiment_type = args.experiment_type self.regression = args.regression self.read_features = args.read_features self.frames_metadata, self.idx_to_fid, self.centroids = _read_labels( json_file, args.imus, args.sequence_length) self.root_dir = root_dir self.features_dir = args.features_dir self.transform = transforms.Compose([ transforms.Scale((args.image_size, args.image_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])
Example 28
Project: dogTorch Author: ehsanik File: sun_dataset.py License: MIT License | 5 votes |
def __init__(self, args, train=True): self.root_dir = args.data root_dir = self.root_dir if train: self.data_set_list = os.path.join(root_dir, args.trainset_image_list) else: self.data_set_list = os.path.join(root_dir, args.testset_image_list) self.categ_dict = get_class_names( os.path.join(root_dir, 'ClassName.txt')) self.data_set_list = parse_file(self.data_set_list, self.categ_dict) self.args = args self.read_features = args.read_features self.features_dir = args.features_dir if train: self.transform = transforms.Compose([ transforms.RandomSizedCrop(args.image_size), transforms.RandomHorizontalFlip(), transforms.Scale((args.image_size, args.image_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) else: self.transform = transforms.Compose([ transforms.Scale((args.image_size, args.image_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])
Example 29
Project: dogTorch Author: ehsanik File: dog_clip_regression_dataset.py License: MIT License | 5 votes |
def __init__(self, args, train=True): root_dir = args.data if train or args.read_feature_and_image: json_file = os.path.join(root_dir, 'train.json') elif args.use_test_for_val: json_file = os.path.join(root_dir, 'test.json') else: json_file = os.path.join(root_dir, 'val.json') self.num_classes = args.num_classes self.sequence_length = args.sequence_length self.experiment_type = args.experiment_type self.regression = args.regression self.args = args self.read_features = args.read_features self.frames_metadata, self.idx_to_fid, self.centroids = _read_labels( json_file, args.imus, args.sequence_length) self.root_dir = root_dir self.features_dir = args.features_dir self.transform = transforms.Compose([ transforms.Scale((args.image_size, args.image_size)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ])
Example 30
Project: transferlearning Author: jindongwang File: digit_data_loader.py License: MIT License | 5 votes |
def load_data(domain, root_dir, batch_size): src_train_img, src_train_label, src_test_img, src_test_label = load_dataset(domain['src'], root_dir) tar_train_img, tar_train_label, tar_test_img, tar_test_label = load_dataset(domain['tar'], root_dir) transform = transforms.Compose([ transforms.Resize(32), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) data_src_train, data_src_test = GetDataset(src_train_img, src_train_label, transform), GetDataset(src_test_img, src_test_label, transform) data_tar_train, data_tar_test = GetDataset(tar_train_img, tar_train_label, transform), GetDataset(tar_test_img, tar_test_label, transform) dataloaders = {} dataloaders['src'] = torch.utils.data.DataLoader(data_src_train, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) dataloaders['val'] = torch.utils.data.DataLoader(data_src_test, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) dataloaders['tar'] = torch.utils.data.DataLoader(data_tar_train, batch_size=batch_size, shuffle=True, drop_last=False, num_workers=4) return dataloaders