Python matplotlib.pyplot.plot() Examples

The following are 40 code examples for showing how to use matplotlib.pyplot.plot(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.

You may want to check out the right sidebar which shows the related API usage.

You may also want to check out all available functions/classes of the module matplotlib.pyplot , or try the search function .

Example 1
Project: indras_net   Author: gcallah   File: display_methods.py    License: GNU General Public License v3.0 6 votes vote down vote up
def create_scats(self, varieties):
        self.scats = pd.DataFrame(columns=["x", "y", "color", "marker", "var"])
        for i, var in enumerate(varieties):
            self.legend.append(var)
            (x_array, y_array) = self.get_arrays(varieties, var)
            if len(x_array) <= 0:  # no data to graph!
                '''
                I am creating a single "position" for an agent that cannot
                be seen. This seems to fix the issue of colors being
                missmatched in the occasion that a group has no agents.
                '''
                x_array = [-1]
                y_array = [-1]
            elif len(x_array) != len(y_array):
                logging.debug("Array length mismatch in scatter plot")
                return
            color = get_color(varieties[var], i)
            marker = get_marker(varieties[var], i)
            scat = pd.DataFrame({"x": pd.Series(x_array),
                                 "y": pd.Series(y_array),
                                 "color": color,
                                 "marker": marker,
                                 "var": var})
            self.scats = self.scats.append(scat, ignore_index=True,
                                           sort=False) 
Example 2
Project: EDeN   Author: fabriziocosta   File: __init__.py    License: MIT License 6 votes vote down vote up
def plot_roc_curve(y_true, y_score, size=None):
    """plot_roc_curve."""
    false_positive_rate, true_positive_rate, thresholds = roc_curve(
        y_true, y_score)
    if size is not None:
        plt.figure(figsize=(size, size))
        plt.axis('equal')
    plt.plot(false_positive_rate, true_positive_rate, lw=2, color='navy')
    plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
    plt.xlabel('False positive rate')
    plt.ylabel('True positive rate')
    plt.ylim([-0.05, 1.05])
    plt.xlim([-0.05, 1.05])
    plt.grid()
    plt.title('Receiver operating characteristic AUC={0:0.2f}'.format(
        roc_auc_score(y_true, y_score))) 
Example 3
Project: Stock-Price-Prediction   Author: dhingratul   File: helper.py    License: MIT License 6 votes vote down vote up
def plot_mul(Y_hat, Y, pred_len):
    """
    PLots the predicted data versus true data

    Input: Predicted data, True Data, Length of prediction
    Output: return plot

    Note: Run from timeSeriesPredict.py
    """
    fig = plt.figure(facecolor='white')
    ax = fig.add_subplot(111)
    ax.plot(Y, label='Y')
    # Print the predictions in its respective series-length
    for i, j in enumerate(Y_hat):
        shift = [None for p in range(i * pred_len)]
        plt.plot(shift + j, label='Y_hat')
        plt.legend()
    plt.show() 
Example 4
Project: mmdetection   Author: open-mmlab   File: recall.py    License: Apache License 2.0 6 votes vote down vote up
def plot_num_recall(recalls, proposal_nums):
    """Plot Proposal_num-Recalls curve.

    Args:
        recalls(ndarray or list): shape (k,)
        proposal_nums(ndarray or list): same shape as `recalls`
    """
    if isinstance(proposal_nums, np.ndarray):
        _proposal_nums = proposal_nums.tolist()
    else:
        _proposal_nums = proposal_nums
    if isinstance(recalls, np.ndarray):
        _recalls = recalls.tolist()
    else:
        _recalls = recalls

    import matplotlib.pyplot as plt
    f = plt.figure()
    plt.plot([0] + _proposal_nums, [0] + _recalls)
    plt.xlabel('Proposal num')
    plt.ylabel('Recall')
    plt.axis([0, proposal_nums.max(), 0, 1])
    f.show() 
Example 5
Project: mmdetection   Author: open-mmlab   File: recall.py    License: Apache License 2.0 6 votes vote down vote up
def plot_iou_recall(recalls, iou_thrs):
    """Plot IoU-Recalls curve.

    Args:
        recalls(ndarray or list): shape (k,)
        iou_thrs(ndarray or list): same shape as `recalls`
    """
    if isinstance(iou_thrs, np.ndarray):
        _iou_thrs = iou_thrs.tolist()
    else:
        _iou_thrs = iou_thrs
    if isinstance(recalls, np.ndarray):
        _recalls = recalls.tolist()
    else:
        _recalls = recalls

    import matplotlib.pyplot as plt
    f = plt.figure()
    plt.plot(_iou_thrs + [1.0], _recalls + [0.])
    plt.xlabel('IoU')
    plt.ylabel('Recall')
    plt.axis([iou_thrs.min(), 1, 0, 1])
    f.show() 
Example 6
Project: neural-fingerprinting   Author: StephanZheng   File: util.py    License: BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def compute_roc(y_true, y_pred, plot=False):
    """
    TODO
    :param y_true: ground truth
    :param y_pred: predictions
    :param plot:
    :return:
    """
    fpr, tpr, _ = roc_curve(y_true, y_pred)
    auc_score = auc(fpr, tpr)
    if plot:
        plt.figure(figsize=(7, 6))
        plt.plot(fpr, tpr, color='blue',
                 label='ROC (AUC = %0.4f)' % auc_score)
        plt.legend(loc='lower right')
        plt.title("ROC Curve")
        plt.xlabel("FPR")
        plt.ylabel("TPR")
        plt.show()

    return fpr, tpr, auc_score 
Example 7
Project: neural-fingerprinting   Author: StephanZheng   File: util.py    License: BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def compute_roc_rfeinman(probs_neg, probs_pos, plot=False):
    """
    TODO
    :param probs_neg:
    :param probs_pos:
    :param plot:
    :return:
    """
    probs = np.concatenate((probs_neg, probs_pos))
    labels = np.concatenate((np.zeros_like(probs_neg), np.ones_like(probs_pos)))
    fpr, tpr, _ = roc_curve(labels, probs)
    auc_score = auc(fpr, tpr)
    if plot:
        plt.figure(figsize=(7, 6))
        plt.plot(fpr, tpr, color='blue',
                 label='ROC (AUC = %0.4f)' % auc_score)
        plt.legend(loc='lower right')
        plt.title("ROC Curve")
        plt.xlabel("FPR")
        plt.ylabel("TPR")
        plt.show()

    return fpr, tpr, auc_score 
Example 8
Project: deep-learning-note   Author: wdxtub   File: simulate_sin.py    License: MIT License 6 votes vote down vote up
def run_eval(sess, test_X, test_y):
    ds = tf.data.Dataset.from_tensor_slices((test_X, test_y))
    ds = ds.batch(1)
    X, y = ds.make_one_shot_iterator().get_next()

    with tf.variable_scope("model", reuse=True):
        prediction, _, _ = lstm_model(X, [0.0], False)
        predictions = []
        labels = []
        for i in range(TESTING_EXAMPLES):
            p, l = sess.run([prediction, y])
            predictions.append(p)
            labels.append(l)

    predictions = np.array(predictions).squeeze()
    labels = np.array(labels).squeeze()
    rmse = np.sqrt(((predictions-labels) ** 2).mean(axis=0))
    print("Mean Square Error is: %f" % rmse)

    plt.figure()
    plt.plot(predictions, label='predictions')
    plt.plot(labels, label='real_sin')
    plt.legend()
    plt.show() 
Example 9
Project: Sound-Recognition-Tutorial   Author: JasonZhang156   File: data_augmentation.py    License: Apache License 2.0 6 votes vote down vote up
def demo_plot():
    audio = './data/esc10/audio/Dog/1-30226-A.ogg'
    y, sr = librosa.load(audio, sr=44100)
    y_ps = librosa.effects.pitch_shift(y, sr, n_steps=6)   # n_steps控制音调变化尺度
    y_ts = librosa.effects.time_stretch(y, rate=1.2)   # rate控制时间维度的变换尺度
    plt.subplot(311)
    plt.plot(y)
    plt.title('Original waveform')
    plt.axis([0, 200000, -0.4, 0.4])
    # plt.axis([88000, 94000, -0.4, 0.4])
    plt.subplot(312)
    plt.plot(y_ts)
    plt.title('Time Stretch transformed waveform')
    plt.axis([0, 200000, -0.4, 0.4])
    plt.subplot(313)
    plt.plot(y_ps)
    plt.title('Pitch Shift transformed waveform')
    plt.axis([0, 200000, -0.4, 0.4])
    # plt.axis([88000, 94000, -0.4, 0.4])
    plt.tight_layout()
    plt.show() 
Example 10
Project: neural-combinatorial-optimization-rl-tensorflow   Author: MichelDeudon   File: dataset.py    License: MIT License 6 votes vote down vote up
def visualize_2D_trip(self,trip,tw_open,tw_close):
        plt.figure(figsize=(30,30))
        rcParams.update({'font.size': 22})
        # Plot cities
        colors = ['red'] # Depot is first city
        for i in range(len(tw_open)-1):
            colors.append('blue')
        plt.scatter(trip[:,0], trip[:,1], color=colors, s=200)
        # Plot tour
        tour=np.array(list(range(len(trip))) + [0])
        X = trip[tour, 0]
        Y = trip[tour, 1]
        plt.plot(X, Y,"--", markersize=100)
        # Annotate cities with TW
        tw_open = np.rint(tw_open)
        tw_close = np.rint(tw_close)
        time_window = np.concatenate((tw_open,tw_close),axis=1)
        for tw, (x, y) in zip(time_window,(zip(X,Y))):
            plt.annotate(tw,xy=(x, y))  
        plt.xlim(0,60)
        plt.ylim(0,60)
        plt.show()


    # Heatmap of permutations (x=cities; y=steps) 
Example 11
Project: neural-combinatorial-optimization-rl-tensorflow   Author: MichelDeudon   File: dataset.py    License: MIT License 6 votes vote down vote up
def visualize_sampling(self,permutations):
        max_length = len(permutations[0])
        grid = np.zeros([max_length,max_length]) # initialize heatmap grid to 0
        transposed_permutations = np.transpose(permutations)
        for t, cities_t in enumerate(transposed_permutations): # step t, cities chosen at step t
            city_indices, counts = np.unique(cities_t,return_counts=True,axis=0)
            for u,v in zip(city_indices, counts):
                grid[t][u]+=v # update grid with counts from the batch of permutations
        # plot heatmap
        fig = plt.figure()
        rcParams.update({'font.size': 22})
        ax = fig.add_subplot(1,1,1)
        ax.set_aspect('equal')
        plt.imshow(grid, interpolation='nearest', cmap='gray')
        plt.colorbar()
        plt.title('Sampled permutations')
        plt.ylabel('Time t')
        plt.xlabel('City i')
        plt.show()

    # Heatmap of attention (x=cities; y=steps) 
Example 12
Project: neural-combinatorial-optimization-rl-tensorflow   Author: MichelDeudon   File: dataset.py    License: MIT License 6 votes vote down vote up
def visualize_2D_trip(self, trip):
        plt.figure(figsize=(30,30))
        rcParams.update({'font.size': 22})

        # Plot cities
        plt.scatter(trip[:,0], trip[:,1], s=200)

        # Plot tour
        tour=np.array(list(range(len(trip))) + [0])
        X = trip[tour, 0]
        Y = trip[tour, 1]
        plt.plot(X, Y,"--", markersize=100)

        # Annotate cities with order
        labels = range(len(trip))
        for i, (x, y) in zip(labels,(zip(X,Y))):
            plt.annotate(i,xy=(x, y))  

        plt.xlim(0,100)
        plt.ylim(0,100)
        plt.show()


    # Heatmap of permutations (x=cities; y=steps) 
Example 13
Project: neural-combinatorial-optimization-rl-tensorflow   Author: MichelDeudon   File: dataset.py    License: MIT License 6 votes vote down vote up
def visualize_sampling(self, permutations):
        max_length = len(permutations[0])
        grid = np.zeros([max_length,max_length]) # initialize heatmap grid to 0

        transposed_permutations = np.transpose(permutations)
        for t, cities_t in enumerate(transposed_permutations): # step t, cities chosen at step t
            city_indices, counts = np.unique(cities_t,return_counts=True,axis=0)
            for u,v in zip(city_indices, counts):
                grid[t][u]+=v # update grid with counts from the batch of permutations

        # plot heatmap
        fig = plt.figure()
        rcParams.update({'font.size': 22})
        ax = fig.add_subplot(1,1,1)
        ax.set_aspect('equal')
        plt.imshow(grid, interpolation='nearest', cmap='gray')
        plt.colorbar()
        plt.title('Sampled permutations')
        plt.ylabel('Time t')
        plt.xlabel('City i')
        plt.show() 
Example 14
Project: fullrmc   Author: bachiraoun   File: plotFigures.py    License: GNU Affero General Public License v3.0 6 votes vote down vote up
def plot(PDF, figName, imgpath, show=False, save=True):
    # plot
    output = PDF.get_constraint_value()
    plt.plot(PDF.experimentalDistances,PDF.experimentalPDF, 'ro', label="experimental", markersize=7.5, markevery=1 )
    plt.plot(PDF.shellsCenter, output["pdf"], 'k', linewidth=3.0,  markevery=25, label="total" )

    styleIndex = 0
    for key in output:
        val = output[key]
        if key in ("pdf_total", "pdf"):
            continue
        elif "inter" in key:
            plt.plot(PDF.shellsCenter, val, STYLE[styleIndex], markevery=5, label=key.split('rdf_inter_')[1] )
            styleIndex+=1
    plt.legend(frameon=False, ncol=1)
    # set labels
    plt.title("$\\chi^{2}=%.6f$"%PDF.squaredDeviations, size=20)
    plt.xlabel("$r (\AA)$", size=20)
    plt.ylabel("$g(r)$", size=20)
    # show plot
    if save: plt.savefig(figName)
    if show: plt.show()
    plt.close() 
Example 15
Project: keras-anomaly-detection   Author: chen0040   File: plot_utils.py    License: MIT License 6 votes vote down vote up
def visualize_anomaly(y_true, reconstruction_error, threshold):
    error_df = pd.DataFrame({'reconstruction_error': reconstruction_error,
                             'true_class': y_true})
    print(error_df.describe())

    groups = error_df.groupby('true_class')
    fig, ax = plt.subplots()

    for name, group in groups:
        ax.plot(group.index, group.reconstruction_error, marker='o', ms=3.5, linestyle='',
                label="Fraud" if name == 1 else "Normal")

    ax.hlines(threshold, ax.get_xlim()[0], ax.get_xlim()[1], colors="r", zorder=100, label='Threshold')
    ax.legend()
    plt.title("Reconstruction error for different classes")
    plt.ylabel("Reconstruction error")
    plt.xlabel("Data point index")
    plt.show() 
Example 16
Project: DOTA_models   Author: ringringyi   File: plot_lfads.py    License: Apache License 2.0 6 votes vote down vote up
def plot_time_series(vals_bxtxn, bidx=None, n_to_plot=np.inf, scale=1.0,
                     color='r', title=None):

  if bidx is None:
    vals_txn = np.mean(vals_bxtxn, axis=0)
  else:
    vals_txn = vals_bxtxn[bidx,:,:]

  T, N = vals_txn.shape
  if n_to_plot > N:
    n_to_plot = N

  plt.plot(vals_txn[:,0:n_to_plot] + scale*np.array(range(n_to_plot)),
           color=color, lw=1.0)
  plt.axis('tight')
  if title:
    plt.title(title) 
Example 17
Project: pruning_yolov3   Author: zbyuan   File: utils.py    License: GNU General Public License v3.0 6 votes vote down vote up
def plot_wh_methods():  # from utils.utils import *; plot_wh_methods()
    # Compares the two methods for width-height anchor multiplication
    # https://github.com/ultralytics/yolov3/issues/168
    x = np.arange(-4.0, 4.0, .1)
    ya = np.exp(x)
    yb = torch.sigmoid(torch.from_numpy(x)).numpy() * 2

    fig = plt.figure(figsize=(6, 3), dpi=150)
    plt.plot(x, ya, '.-', label='yolo method')
    plt.plot(x, yb ** 2, '.-', label='^2 power method')
    plt.plot(x, yb ** 2.5, '.-', label='^2.5 power method')
    plt.xlim(left=-4, right=4)
    plt.ylim(bottom=0, top=6)
    plt.xlabel('input')
    plt.ylabel('output')
    plt.legend()
    fig.tight_layout()
    fig.savefig('comparison.png', dpi=200) 
Example 18
Project: pruning_yolov3   Author: zbyuan   File: utils.py    License: GNU General Public License v3.0 6 votes vote down vote up
def plot_images(imgs, targets, paths=None, fname='images.jpg'):
    # Plots training images overlaid with targets
    imgs = imgs.cpu().numpy()
    targets = targets.cpu().numpy()
    # targets = targets[targets[:, 1] == 21]  # plot only one class

    fig = plt.figure(figsize=(10, 10))
    bs, _, h, w = imgs.shape  # batch size, _, height, width
    bs = min(bs, 16)  # limit plot to 16 images
    ns = np.ceil(bs ** 0.5)  # number of subplots

    for i in range(bs):
        boxes = xywh2xyxy(targets[targets[:, 0] == i, 2:6]).T
        boxes[[0, 2]] *= w
        boxes[[1, 3]] *= h
        plt.subplot(ns, ns, i + 1).imshow(imgs[i].transpose(1, 2, 0))
        plt.plot(boxes[[0, 2, 2, 0, 0]], boxes[[1, 1, 3, 3, 1]], '.-')
        plt.axis('off')
        if paths is not None:
            s = Path(paths[i]).name
            plt.title(s[:min(len(s), 40)], fontdict={'size': 8})  # limit to 40 characters
    fig.tight_layout()
    fig.savefig(fname, dpi=200)
    plt.close() 
Example 19
Project: pruning_yolov3   Author: zbyuan   File: utils.py    License: GNU General Public License v3.0 6 votes vote down vote up
def plot_evolution_results(hyp):  # from utils.utils import *; plot_evolution_results(hyp)
    # Plot hyperparameter evolution results in evolve.txt
    x = np.loadtxt('evolve.txt', ndmin=2)
    f = fitness(x)
    weights = (f - f.min()) ** 2  # for weighted results
    fig = plt.figure(figsize=(12, 10))
    matplotlib.rc('font', **{'size': 8})
    for i, (k, v) in enumerate(hyp.items()):
        y = x[:, i + 5]
        # mu = (y * weights).sum() / weights.sum()  # best weighted result
        mu = y[f.argmax()]  # best single result
        plt.subplot(4, 5, i + 1)
        plt.plot(mu, f.max(), 'o', markersize=10)
        plt.plot(y, f, '.')
        plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9})  # limit to 40 characters
        print('%15s: %.3g' % (k, mu))
    fig.tight_layout()
    plt.savefig('evolve.png', dpi=200) 
Example 20
Project: pruning_yolov3   Author: zbyuan   File: utils.py    License: GNU General Public License v3.0 6 votes vote down vote up
def plot_results(start=0, stop=0):  # from utils.utils import *; plot_results()
    # Plot training results files 'results*.txt'
    fig, ax = plt.subplots(2, 5, figsize=(14, 7))
    ax = ax.ravel()
    s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall',
         'val GIoU', 'val Objectness', 'val Classification', 'mAP', 'F1']
    for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
        results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
        n = results.shape[1]  # number of rows
        x = range(start, min(stop, n) if stop else n)
        for i in range(10):
            y = results[i, x]
            if i in [0, 1, 2, 5, 6, 7]:
                y[y == 0] = np.nan  # dont show zero loss values
            ax[i].plot(x, y, marker='.', label=f.replace('.txt', ''))
            ax[i].set_title(s[i])
            if i in [5, 6, 7]:  # share train and val loss y axes
                ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])

    fig.tight_layout()
    ax[1].legend()
    fig.savefig('results.png', dpi=200) 
Example 21
Project: pruning_yolov3   Author: zbyuan   File: utils.py    License: GNU General Public License v3.0 6 votes vote down vote up
def plot_results_overlay(start=0, stop=0):  # from utils.utils import *; plot_results_overlay()
    # Plot training results files 'results*.txt', overlaying train and val losses
    s = ['train', 'train', 'train', 'Precision', 'mAP', 'val', 'val', 'val', 'Recall', 'F1']  # legends
    t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1']  # titles
    for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
        results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
        n = results.shape[1]  # number of rows
        x = range(start, min(stop, n) if stop else n)
        fig, ax = plt.subplots(1, 5, figsize=(14, 3.5))
        ax = ax.ravel()
        for i in range(5):
            for j in [i, i + 5]:
                y = results[j, x]
                if i in [0, 1, 2]:
                    y[y == 0] = np.nan  # dont show zero loss values
                ax[i].plot(x, y, marker='.', label=s[j])
            ax[i].set_title(t[i])
            ax[i].legend()
            ax[i].set_ylabel(f) if i == 0 else None  # add filename
        fig.tight_layout()
        fig.savefig(f.replace('.txt', '.png'), dpi=200) 
Example 22
Project: cs294-112_hws   Author: xuwd11   File: plot_3.py    License: MIT License 6 votes vote down vote up
def plot_3(data):
    x = data.Iteration.unique()
    y_mean = data.groupby('Iteration').mean()
    y_std = data.groupby('Iteration').std()
    
    sns.set(style="darkgrid", font_scale=1.5)
    value = 'AverageReturn'
    plt.plot(x, y_mean[value], label=data['Condition'].unique()[0] + '_train');
    plt.fill_between(x, y_mean[value] - y_std[value], y_mean[value] + y_std[value], alpha=0.2);
    value = 'ValAverageReturn'
    plt.plot(x, y_mean[value], label=data['Condition'].unique()[0] + '_test');
    plt.fill_between(x, y_mean[value] - y_std[value], y_mean[value] + y_std[value], alpha=0.2);
    
    plt.xlabel('Iteration')
    plt.ylabel('AverageReturn')
    plt.legend(loc='best') 
Example 23
Project: Cheapest-Flights-bot   Author: PhoenixDD   File: Flight Analysis.py    License: MIT License 6 votes vote down vote up
def task_3_IQR(flight_data):
    plot=plt.boxplot(flight_data['Price'],patch_artist=True)
    for median in plot['medians']:
        median.set(color='#fc0004', linewidth=2)
    for flier in plot['fliers']:
        flier.set(marker='+', color='#e7298a')
    for whisker in plot['whiskers']:
        whisker.set(color='#7570b3', linewidth=2)
    for cap in plot['caps']:
        cap.set(color='#7570b3', linewidth=2)
    for box in plot['boxes']:
        box.set(color='#7570b3', linewidth=2)
        box.set(facecolor='#1b9e77')
    plt.matplotlib.pyplot.savefig('task_3_iqr.png')
    clean_data=[]
    for index,row in flight_data.loc[flight_data['Price'].isin(plot['fliers'][0].get_ydata())].iterrows():
        clean_data.append([row['Price'],row['Date_of_Flight']])
    return pd.DataFrame(clean_data, columns=['Price', 'Date_of_Flight']) 
Example 24
Project: TOPFARM   Author: DTUWindEnergy   File: tlib.py    License: GNU Affero General Public License v3.0 6 votes vote down vote up
def dist_from_segment(P1, P2, P3):
    """ Calculate the distance of a point P3 from a segment defined by [P1,P2]

    :param P1: ndarray([2]) or [2]
    :param P2: ndarray([2]) or [2]
    :param P3: ndarray([2]) or [2]

    :return dist: float
    """
    l2P2P1 = l2_dist(P2,P1)
    if l2P2P1 == 0:
        return dist(P1,P3)
    x1, y1 = P1
    x2, y2 = P2
    x3, y3 = P3
    u = ((x3-x1)*(x2-x1) + (y3-y1)*(y2-y1)) / l2P2P1
    x = x1 + u*(x2-x1)
    y = y1 + u*(y2-y1)
    if u > 1.0:
        x, y = P2
    if u < 0.0:
        x, y = P1
    #plot([x3, x],[y3, y],'k--')
    return dist([x,y], P3) 
Example 25
Project: indras_net   Author: gcallah   File: display_methods.py    License: GNU General Public License v3.0 5 votes vote down vote up
def show(self):
        """
        Display the plot.
        """
        if not self.headless:
            plt.show()
        else:
            file = io.BytesIO()
            plt.savefig(file, format="png")
            return file 
Example 26
Project: indras_net   Author: gcallah   File: display_methods.py    License: GNU General Public License v3.0 5 votes vote down vote up
def show(self):
        """
        Display the plot.
        """
        if not self.headless:
            plt.show()
        else:
            file = io.BytesIO()
            plt.savefig(file, format="png")
            return file 
Example 27
Project: simulated-annealing-tsp   Author: chncyhn   File: anneal.py    License: MIT License 5 votes vote down vote up
def plot_learning(self):
        """
        Plot the fitness through iterations.
        """
        plt.plot([i for i in range(len(self.fitness_list))], self.fitness_list)
        plt.ylabel("Fitness")
        plt.xlabel("Iteration")
        plt.show() 
Example 28
Project: pepper-robot-programming   Author: maverickjoy   File: asthama_search.py    License: MIT License 5 votes vote down vote up
def _initialisePlot(self):

        plt.rc('grid', linestyle=":", color='black')
        plt.rcParams['axes.facecolor'] = 'black'
        plt.rcParams['axes.edgecolor'] = 'white'
        plt.rcParams['grid.alpha'] = 1
        plt.rcParams['grid.color'] = "green"
        plt.grid(True)
        plt.xlim(self.PLOTXMIN, self.PLOTXMAX)
        plt.ylim(self.PLOTYMIN, self.PLOTYMAX)
        self.graph, = plt.plot([], [], 'o')

        return 
Example 29
Project: pepper-robot-programming   Author: maverickjoy   File: asthama_search.py    License: MIT License 5 votes vote down vote up
def run(self):
        self._printLogs("Waiting for the robot to be in wake up position", "OKBLUE")

        self.motion_service.wakeUp()
        self.posture_service.goToPosture("StandInit", 0.1)

        self.create_callbacks()
        # self.startDLServer()
        self._addTopic()

        # graphplots
        self._initialisePlot()
        ani = animation.FuncAnimation(self.fig, self._animate, blit=False, interval=500 ,repeat=False)


        # loop on, wait for events until manual interruption
        try:
            # while True:
            #     time.sleep(1)
            # starting graph plot
            plt.show() # blocking call hence no need for while(True)

        except KeyboardInterrupt:
            self._printLogs("Interrupted by user, shutting down", "FAIL")
            self._cleanUp()

            self._printLogs("Waiting for the robot to be in rest position", "FAIL")
            # self.motion_service.rest()
            sys.exit(0)

        return 
Example 30
Project: pedestrian-haar-based-detector   Author: felipecorrea   File: detect.py    License: GNU General Public License v2.0 5 votes vote down vote up
def generate_histogram(img):
	hist,bins = np.histogram(img.flatten(),256,[0,256])
	
	#cumulative distribution function calculation
	cdf = hist.cumsum()
	
	plt.plot(cdf_normalized, color = 'b')
	plt.hist(img.flatten(),256,[0,256], color = 'r')
	plt.xlim([0,256])
	plt.legend(('cdf','histogram'), loc = 'upper left')
	plt.show()
	
	return hist 
Example 31
Project: pedestrian-haar-based-detector   Author: felipecorrea   File: histcomparison.py    License: GNU General Public License v2.0 5 votes vote down vote up
def generate_histogram(img):
	hist,bins = np.histogram(img.flatten(),256,[0,256])
	
	#cumulative distribution function calculation
	cdf = hist.cumsum()
	cdf_normalized = cdf *hist.max()/ cdf.max() # this line not necessary.	
	plt.plot(cdf_normalized, color = 'b')
	plt.hist(img.flatten(),256,[0,256], color = 'r')
	plt.xlim([0,256])
	plt.legend(('cdf','histograma'), loc = 'upper left')
	plt.show()
	
	return hist 
Example 32
Project: EDeN   Author: fabriziocosta   File: __init__.py    License: MIT License 5 votes vote down vote up
def heatmap(values, xlabel, ylabel, xticklabels, yticklabels, cmap=None,
            vmin=None, vmax=None, ax=None, fmt="%0.2f"):
    """heatmap."""
    if ax is None:
        ax = plt.gca()
    # plot the mean cross-validation scores
    img = ax.pcolor(values, cmap=cmap, vmin=vmin, vmax=vmax)
    img.update_scalarmappable()
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    ax.set_xticks(np.arange(len(xticklabels)) + .5)
    ax.set_yticks(np.arange(len(yticklabels)) + .5)
    ax.set_xticklabels(xticklabels)
    ax.set_yticklabels(yticklabels)
    ax.set_aspect(1)

    for p, color, value in zip(img.get_paths(),
                               img.get_facecolors(),
                               img.get_array()):
        x, y = p.vertices[:-2, :].mean(0)
        if np.mean(color[:3]) > 0.5:
            c = 'k'
        else:
            c = 'w'
        ax.text(x, y, fmt % value, color=c, ha="center", va="center")
    return img 
Example 33
Project: EDeN   Author: fabriziocosta   File: __init__.py    License: MIT License 5 votes vote down vote up
def plot_precision_recall_curve(y_true, y_score, size=None):
    """plot_precision_recall_curve."""
    precision, recall, thresholds = precision_recall_curve(y_true, y_score)
    if size is not None:
        plt.figure(figsize=(size, size))
        plt.axis('equal')
    plt.plot(recall, precision, lw=2, color='navy')
    plt.xlabel('Recall')
    plt.ylabel('Precision')
    plt.ylim([-0.05, 1.05])
    plt.xlim([-0.05, 1.05])
    plt.grid()
    plt.title('Precision-Recall AUC={0:0.2f}'.format(average_precision_score(
        y_true, y_score))) 
Example 34
Project: fenics-topopt   Author: zfergus   File: triangulate.py    License: MIT License 5 votes vote down vote up
def plot_mesh(V, F, plot_f=False):
    plt.scatter(V[:, 0], V[:, 1])
    if not plot_f:
        return
    for i in range(F.shape[0]):
        vf = V[F[i, :], :]
        plt.plot(vf[:, 0], vf[:, 1]) 
Example 35
Project: mmdetection   Author: open-mmlab   File: analyze_logs.py    License: Apache License 2.0 5 votes vote down vote up
def add_plot_parser(subparsers):
    parser_plt = subparsers.add_parser(
        'plot_curve', help='parser for plotting curves')
    parser_plt.add_argument(
        'json_logs',
        type=str,
        nargs='+',
        help='path of train log in json format')
    parser_plt.add_argument(
        '--keys',
        type=str,
        nargs='+',
        default=['bbox_mAP'],
        help='the metric that you want to plot')
    parser_plt.add_argument('--title', type=str, help='title of figure')
    parser_plt.add_argument(
        '--legend',
        type=str,
        nargs='+',
        default=None,
        help='legend of each plot')
    parser_plt.add_argument(
        '--backend', type=str, default=None, help='backend of plt')
    parser_plt.add_argument(
        '--style', type=str, default='dark', help='style of plt')
    parser_plt.add_argument('--out', type=str, default=None) 
Example 36
Project: mmdetection   Author: open-mmlab   File: analyze_logs.py    License: Apache License 2.0 5 votes vote down vote up
def parse_args():
    parser = argparse.ArgumentParser(description='Analyze Json Log')
    # currently only support plot curve and calculate average train time
    subparsers = parser.add_subparsers(dest='task', help='task parser')
    add_plot_parser(subparsers)
    add_time_parser(subparsers)
    args = parser.parse_args()
    return args 
Example 37
Project: neural-fingerprinting   Author: StephanZheng   File: utils.py    License: BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def pair_visual(original, adversarial, figure=None):
    """
    This function displays two images: the original and the adversarial sample
    :param original: the original input
    :param adversarial: the input after perterbations have been applied
    :param figure: if we've already displayed images, use the same plot
    :return: the matplot figure to reuse for future samples
    """
    import matplotlib.pyplot as plt

    # Squeeze the image to remove single-dimensional entries from array shape
    original = np.squeeze(original)
    adversarial = np.squeeze(adversarial)

    # Ensure our inputs are of proper shape
    assert(len(original.shape) == 2 or len(original.shape) == 3)

    # To avoid creating figures per input sample, reuse the sample plot
    if figure is None:
        plt.ion()
        figure = plt.figure()
        figure.canvas.set_window_title('Cleverhans: Pair Visualization')

    # Add the images to the plot
    perterbations = adversarial - original
    for index, image in enumerate((original, perterbations, adversarial)):
        figure.add_subplot(1, 3, index + 1)
        plt.axis('off')

        # If the image is 2D, then we have 1 color channel
        if len(image.shape) == 2:
            plt.imshow(image, cmap='gray')
        else:
            plt.imshow(image)

        # Give the plot some time to update
        plt.pause(0.01)

    # Draw the plot and return
    plt.show()
    return figure 
Example 38
Project: neural-fingerprinting   Author: StephanZheng   File: utils.py    License: BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def grid_visual(data):
    """
    This function displays a grid of images to show full misclassification
    :param data: grid data of the form;
        [nb_classes : nb_classes : img_rows : img_cols : nb_channels]
    :return: if necessary, the matplot figure to reuse
    """
    import matplotlib.pyplot as plt

    # Ensure interactive mode is disabled and initialize our graph
    plt.ioff()
    figure = plt.figure()
    figure.canvas.set_window_title('Cleverhans: Grid Visualization')

    # Add the images to the plot
    num_cols = data.shape[0]
    num_rows = data.shape[1]
    num_channels = data.shape[4]
    current_row = 0
    for y in xrange(num_rows):
        for x in xrange(num_cols):
            figure.add_subplot(num_rows, num_cols, (x + 1) + (y * num_cols))
            plt.axis('off')

            if num_channels == 1:
                plt.imshow(data[x, y, :, :, 0], cmap='gray')
            else:
                plt.imshow(data[x, y, :, :, :])

    # Draw the plot and return
    plt.show()
    return figure 
Example 39
Project: tensorflow-DeepFM   Author: ChenglongChen   File: main.py    License: MIT License 5 votes vote down vote up
def _plot_fig(train_results, valid_results, model_name):
    colors = ["red", "blue", "green"]
    xs = np.arange(1, train_results.shape[1]+1)
    plt.figure()
    legends = []
    for i in range(train_results.shape[0]):
        plt.plot(xs, train_results[i], color=colors[i], linestyle="solid", marker="o")
        plt.plot(xs, valid_results[i], color=colors[i], linestyle="dashed", marker="o")
        legends.append("train-%d"%(i+1))
        legends.append("valid-%d"%(i+1))
    plt.xlabel("Epoch")
    plt.ylabel("Normalized Gini")
    plt.title("%s"%model_name)
    plt.legend(legends)
    plt.savefig("./fig/%s.png"%model_name)
    plt.close()


# load data 
Example 40
Project: Random-Erasing   Author: zhunzhong07   File: logger.py    License: Apache License 2.0 5 votes vote down vote up
def plot_overlap(logger, names=None):
    names = logger.names if names == None else names
    numbers = logger.numbers
    for _, name in enumerate(names):
        x = np.arange(len(numbers[name]))
        if name in ['Train Acc.', 'Valid Acc.']:
            plt.plot(x, 100-np.asarray(numbers[name], dtype='float'))
        else:
            plt.plot(x, np.asarray(numbers[name]))
    return [logger.title + '(' + name + ')' for name in names]