Python numpy.concatenate() Examples
The following are 30
code examples of numpy.concatenate().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.

Example #1
Source File: convert_story.py From gated-graph-transformer-network with MIT License | 6 votes |
def convert(story): # import pdb; pdb.set_trace() sentence_arr, graphs, query_arr, answer_arr = story node_id_w = graphs[2].shape[2] edge_type_w = graphs[3].shape[3] all_node_strengths = [np.zeros([1])] all_node_ids = [np.zeros([1,node_id_w])] for num_new_nodes, new_node_strengths, new_node_ids, _ in zip(*graphs): last_strengths = all_node_strengths[-1] last_ids = all_node_ids[-1] cur_strengths = np.concatenate([last_strengths, new_node_strengths], 0) cur_ids = np.concatenate([last_ids, new_node_ids], 0) all_node_strengths.append(cur_strengths) all_node_ids.append(cur_ids) all_edges = graphs[3] full_n_nodes = all_edges.shape[1] all_node_strengths = np.stack([np.pad(x, ((0, full_n_nodes-x.shape[0])), 'constant') for x in all_node_strengths[1:]]) all_node_ids = np.stack([np.pad(x, ((0, full_n_nodes-x.shape[0]), (0, 0)), 'constant') for x in all_node_ids[1:]]) all_node_states = np.zeros([len(all_node_strengths), full_n_nodes,0]) return tuple(x[np.newaxis,...] for x in (all_node_strengths, all_node_ids, all_node_states, all_edges))
Example #2
Source File: encoding_images.py From face-attendance-machine with Apache License 2.0 | 6 votes |
def load_encodings(): """ 加载保存的历史人脸向量,以及name向量,并返回 :return: """ known_face_encodings = np.load(KNOWN_FACE_ENCODINGS) known_face_names = np.load(KNOWN_FACE_NANE) if not os.path.exists(KNOWN_FACE_NANE) or not os.path.exists(KNOWN_FACE_ENCODINGS): encoding_images(data_path) aa = [file for file in os.listdir(data_path) if os.path.isfile(os.path.join(data_path, file)) and file.endswith("npy")] # ("known_face_encodings_") or file.startswith("known_face_name_")) for data in aa: if data.startswith('known_face_encodings_'): tmp_face_encodings = np.load(os.path.join(data_path,data)) known_face_encodings = np.concatenate((known_face_encodings, tmp_face_encodings), axis=0) print("load ", data) elif data.startswith('known_face_name_'): tmp_face_name = np.load(os.path.join(data_path, data)) known_face_names = np.concatenate((known_face_names, tmp_face_name), axis=0) print("load ", data) else: print('skip to load original ', data) return known_face_encodings,known_face_names
Example #3
Source File: group_sampler.py From mmdetection with Apache License 2.0 | 6 votes |
def __iter__(self): indices = [] for i, size in enumerate(self.group_sizes): if size == 0: continue indice = np.where(self.flag == i)[0] assert len(indice) == size np.random.shuffle(indice) num_extra = int(np.ceil(size / self.samples_per_gpu) ) * self.samples_per_gpu - len(indice) indice = np.concatenate( [indice, np.random.choice(indice, num_extra)]) indices.append(indice) indices = np.concatenate(indices) indices = [ indices[i * self.samples_per_gpu:(i + 1) * self.samples_per_gpu] for i in np.random.permutation( range(len(indices) // self.samples_per_gpu)) ] indices = np.concatenate(indices) indices = indices.astype(np.int64).tolist() assert len(indices) == self.num_samples return iter(indices)
Example #4
Source File: util.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def train_lr_rfeinman(densities_pos, densities_neg, uncerts_pos, uncerts_neg): """ TODO :param densities_pos: :param densities_neg: :param uncerts_pos: :param uncerts_neg: :return: """ values_neg = np.concatenate( (densities_neg.reshape((1, -1)), uncerts_neg.reshape((1, -1))), axis=0).transpose([1, 0]) values_pos = np.concatenate( (densities_pos.reshape((1, -1)), uncerts_pos.reshape((1, -1))), axis=0).transpose([1, 0]) values = np.concatenate((values_neg, values_pos)) labels = np.concatenate( (np.zeros_like(densities_neg), np.ones_like(densities_pos))) lr = LogisticRegressionCV(n_jobs=-1).fit(values, labels) return values, labels, lr
Example #5
Source File: util.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def compute_roc_rfeinman(probs_neg, probs_pos, plot=False): """ TODO :param probs_neg: :param probs_pos: :param plot: :return: """ probs = np.concatenate((probs_neg, probs_pos)) labels = np.concatenate((np.zeros_like(probs_neg), np.ones_like(probs_pos))) fpr, tpr, _ = roc_curve(labels, probs) auc_score = auc(fpr, tpr) if plot: plt.figure(figsize=(7, 6)) plt.plot(fpr, tpr, color='blue', label='ROC (AUC = %0.4f)' % auc_score) plt.legend(loc='lower right') plt.title("ROC Curve") plt.xlabel("FPR") plt.ylabel("TPR") plt.show() return fpr, tpr, auc_score
Example #6
Source File: util.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def block_split(X, Y): """ Split the data into 80% for training and 20% for testing in a block size of 100. :param X: :param Y: :return: """ print("Isolated split 80%, 20% for training and testing") num_samples = X.shape[0] partition = int(num_samples/3) X_adv, Y_adv = X[:partition], Y[:partition] X_norm, Y_norm = X[partition:2*partition], Y[partition:2*partition] X_noisy, Y_noisy = X[2*partition:], Y[2*partition:] num_train = int(partition * 0.008) * 100 X_train = np.concatenate((X_adv[:num_train], X_norm[:num_train], X_noisy[:num_train])) Y_train = np.concatenate((Y_adv[:num_train], Y_norm[:num_train], Y_noisy[:num_train])) X_test = np.concatenate((X_adv[num_train:], X_norm[num_train:], X_noisy[num_train:])) Y_test = np.concatenate((Y_adv[num_train:], Y_norm[num_train:], Y_noisy[num_train:])) return X_train, Y_train, X_test, Y_test
Example #7
Source File: dataloader_m.py From models with MIT License | 6 votes |
def _prepro_cpg(self, states, dists): """Preprocess the state and distance of neighboring CpG sites.""" prepro_states = [] prepro_dists = [] for state, dist in zip(states, dists): nan = state == dat.CPG_NAN if np.any(nan): state[nan] = np.random.binomial(1, state[~nan].mean(), nan.sum()) dist[nan] = self.cpg_max_dist dist = np.minimum(dist, self.cpg_max_dist) / self.cpg_max_dist prepro_states.append(np.expand_dims(state, 1)) prepro_dists.append(np.expand_dims(dist, 1)) prepro_states = np.concatenate(prepro_states, axis=1) prepro_dists = np.concatenate(prepro_dists, axis=1) if self.cpg_wlen: center = prepro_states.shape[2] // 2 delta = self.cpg_wlen // 2 tmp = slice(center - delta, center + delta) prepro_states = prepro_states[:, :, tmp] prepro_dists = prepro_dists[:, :, tmp] return (prepro_states, prepro_dists)
Example #8
Source File: model_architecture.py From models with MIT License | 6 votes |
def forward(self, input): # array has shape (N, 4, 1, 1000) # return the sequence + its RC concatenated # create inverted indices invert_dims = [1,3] input_bkup = input for idim in invert_dims: idxs = [i for i in range(input.size(idim)-1, -1, -1)] idxs_var = Variable(torch.LongTensor(idxs)) if input.is_cuda: idxs_var =idxs_var.cuda() input = input.index_select(idim, idxs_var) # input = torch.cat([input_bkup, input], dim=0) # # Using numpy: #input = edit_tensor_in_numpy(input, lambda x: np.concatenate([x, x[:,::-1, : ,::-1]],axis=0)) return input
Example #9
Source File: model.py From models with MIT License | 6 votes |
def predict_on_batch(self, inputs): if inputs.shape == (2,): inputs = inputs[np.newaxis, :] # Encode max_len = len(max(inputs, key=len)) one_hot_ref = self.encode(inputs[:,0]) one_hot_alt = self.encode(inputs[:,1]) # Construct dummy library indicator indicator = np.zeros((inputs.shape[0],2)) indicator[:,1] = 1 # Compute fold change for all three frames fc_changes = [] for shift in range(3): if shift > 0: shifter = np.zeros((one_hot_ref.shape[0],1,4)) one_hot_ref = np.concatenate([one_hot_ref, shifter], axis=1) one_hot_alt = np.concatenate([one_hot_alt, shifter], axis=1) pred_ref = self.model.predict_on_batch([one_hot_ref, indicator]).reshape(-1) pred_variant = self.model.predict_on_batch([one_hot_alt, indicator]).reshape(-1) fc_changes.append(np.log2(pred_variant/pred_ref)) # Return return {"mrl_fold_change":fc_changes[0], "shift_1":fc_changes[1], "shift_2":fc_changes[2]}
Example #10
Source File: gla_gpu.py From Deep_VoiceChanger with MIT License | 6 votes |
def auto_inverse(self, whole_spectrum): whole_spectrum = np.copy(whole_spectrum).astype(complex) whole_spectrum[whole_spectrum < 1] = 1 overwrap = self.buffer_size * 2 height = whole_spectrum.shape[0] parallel_dif = (height-overwrap) // self.parallel if height < self.parallel*overwrap: raise Exception('voice length is too small to use gpu, or parallel number is too big') spec = [self.inverse(whole_spectrum[range(i, i+parallel_dif*self.parallel, parallel_dif), :]) for i in tqdm.tqdm(range(parallel_dif+overwrap))] spec = spec[overwrap:] spec = np.concatenate(spec, axis=1) spec = spec.reshape(-1, self.wave_len) #Below code don't consider wave_len and wave_dif, I'll fix. wave = np.fft.ifft(spec, axis=1).real pad = np.zeros((wave.shape[0], 2), dtype=float) wave = np.concatenate([wave, pad], axis=1) dst = np.zeros((wave.shape[0]+3)*self.wave_dif, dtype=float) for i in range(4): w = wave[range(i, wave.shape[0], 4),:] w = w.reshape(-1) dst[i*self.wave_dif:i*self.wave_dif+len(w)] += w return dst*0.5
Example #11
Source File: utils.py From sklearn-audio-transfer-learning with ISC License | 6 votes |
def wavefile_to_waveform(wav_file, features_type): data, sr = sf.read(wav_file) if features_type == 'vggish': tmp_name = str(int(np.random.rand(1)*1000000)) + '.wav' sf.write(tmp_name, data, sr, subtype='PCM_16') sr, wav_data = wavfile.read(tmp_name) os.remove(tmp_name) # sr, wav_data = wavfile.read(wav_file) # as done in VGGish Audioset assert wav_data.dtype == np.int16, 'Bad sample type: %r' % wav_data.dtype data = wav_data / 32768.0 # Convert to [-1.0, +1.0] # at least one second of samples, if not repead-pad src_repeat = data while (src_repeat.shape[0] < sr): src_repeat = np.concatenate((src_repeat, data), axis=0) data = src_repeat[:sr] return data, sr
Example #12
Source File: scl.py From libTLDA with MIT License | 5 votes |
def predict(self, Z): """ Make predictions on new dataset. Parameters ---------- Z : array new data set (M samples by D features) Returns ------- preds : array label predictions (M samples by 1) """ # Data shape M, D = Z.shape # If classifier is trained, check for same dimensionality if self.is_trained: if not self.train_data_dim == D: raise ValueError('''Test data is of different dimensionality than training data.''') # Check for augmentation if not self.train_data_dim == D: Z = np.concatenate((np.dot(Z, self.C), Z), axis=1) # Call scikit's predict function preds = self.clf.predict(Z) # For quadratic loss function, correct predictions if self.loss == 'quadratic': preds = (np.sign(preds)+1)/2. # Return predictions array return preds
Example #13
Source File: NLP.py From Financial-NLP with Apache License 2.0 | 5 votes |
def safe_nlp_vector(self, words): """ Parameters ---------- words : list of str/str wordbag Returns ---------- ndarray(float) the corresponding vectors of words in wordbag. a vector contains the similarities calculated by word2vec and wordnet. """ if isinstance(words, string_types): synonym=self.synonym_label(words) similarity=self.similarity_label(words) else: synonym=np.empty((len(self.Label_index),len(words))) similarity=np.empty((len(self.Label_index),len(words))) for i in range(len(words)): try: synonym[:,i]=self.synonym_label(words[i]) except: synonym[:,i]=np.zeros((len(self.Label_index),1))[:,0] try: similarity[:,i]=self.similarity_label(words[i])[:,0] except: similarity[:,i]=np.zeros((len(self.Label_index),1))[:,0] vector=np.concatenate((similarity, synonym)) return vector
Example #14
Source File: NLP.py From Financial-NLP with Apache License 2.0 | 5 votes |
def nlp_vector(self, words): if isinstance(words, string_types): synonym=self.synonym_label(words) similarity=self.similarity_label(words) else: synonym=self.synonym_label(words) similarity=np.empty((len(self.Label_index),len(words))) for i in range(len(words)): try: similarity[:,i]=self.similarity_label(words[i])[:,0] except: similarity[:,i]=np.zeros((len(self.Label_index),1))[:,0] vector=np.concatenate((similarity, synonym)) return vector
Example #15
Source File: graph.py From EDeN with MIT License | 5 votes |
def _compute_neighborhood_graph_weight(self, root, graph): # list all nodes at increasing distances # at each distance # compute the arithmetic mean weight on nodes # compute the geometric mean weight on edges # compute the product of the two # make a list of the neighborhood_graph_weight at every distance neighborhood_graph_weight_list = [] w = graph.nodes[root][self.key_weight] node_weight_list = np.array([w], dtype=np.float64) node_average = node_weight_list[0] edge_weight_list = np.array([1], dtype=np.float64) edge_average = edge_weight_list[0] # for all distances root_dist_dict = graph.nodes[root]['remote_neighbours'] for dist in root_dist_dict.keys(): # extract array of weights at given dist weight_array_at_d = np.array([graph.nodes[v][self.key_weight] for v in root_dist_dict[dist]], dtype=np.float64) if dist % 2 == 0: # nodes node_weight_list = np.concatenate( (node_weight_list, weight_array_at_d)) node_average = np.mean(node_weight_list) else: # edges edge_weight_list = np.concatenate( (edge_weight_list, weight_array_at_d)) edge_average = stats.gmean(edge_weight_list) weight = node_average * edge_average neighborhood_graph_weight_list.append(weight) graph.nodes[root]['neigh_graph_weight'] = \ neighborhood_graph_weight_list
Example #16
Source File: test_utils_vertcoord.py From aospy with Apache License 2.0 | 5 votes |
def setUp(self): self.p_in_hpa = np.array([1000, 925, 850, 775, 700, 600, 500, 400, 300, 200, 150, 100, 70, 50, 30, 20, 10], dtype=np.float64) self.p_in_pa = self.p_in_hpa*1e2 self.p_top = 0 self.p_bot = 1.1e5 self.p_edges = 0.5*(self.p_in_pa[1:] + 0.5*self.p_in_pa[:-1]) self.phalf = np.concatenate(([self.p_bot], self.p_edges, [self.p_top]))
Example #17
Source File: voc_eval.py From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License | 5 votes |
def voc_ap(rec, prec, use_07_metric=False): """ ap = voc_ap(rec, prec, [use_07_metric]) Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11 point method (default:False). """ if use_07_metric: # 11 point metric ap = 0. for t in np.arange(0., 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11. else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], rec, [1.])) mpre = np.concatenate(([0.], prec, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap
Example #18
Source File: input_helpers.py From deep-siamese-text-similarity with MIT License | 5 votes |
def getDataSets(self, training_paths, max_document_length, percent_dev, batch_size, is_char_based): if is_char_based: x1_text, x2_text, y=self.getTsvDataCharBased(training_paths) else: x1_text, x2_text, y=self.getTsvData(training_paths) # Build vocabulary print("Building vocabulary") vocab_processor = MyVocabularyProcessor(max_document_length,min_frequency=0,is_char_based=is_char_based) vocab_processor.fit_transform(np.concatenate((x2_text,x1_text),axis=0)) print("Length of loaded vocabulary ={}".format( len(vocab_processor.vocabulary_))) i1=0 train_set=[] dev_set=[] sum_no_of_batches = 0 x1 = np.asarray(list(vocab_processor.transform(x1_text))) x2 = np.asarray(list(vocab_processor.transform(x2_text))) # Randomly shuffle data np.random.seed(131) shuffle_indices = np.random.permutation(np.arange(len(y))) x1_shuffled = x1[shuffle_indices] x2_shuffled = x2[shuffle_indices] y_shuffled = y[shuffle_indices] dev_idx = -1*len(y_shuffled)*percent_dev//100 del x1 del x2 # Split train/test set self.dumpValidation(x1_text,x2_text,y,shuffle_indices,dev_idx,0) # TODO: This is very crude, should use cross-validation x1_train, x1_dev = x1_shuffled[:dev_idx], x1_shuffled[dev_idx:] x2_train, x2_dev = x2_shuffled[:dev_idx], x2_shuffled[dev_idx:] y_train, y_dev = y_shuffled[:dev_idx], y_shuffled[dev_idx:] print("Train/Dev split for {}: {:d}/{:d}".format(training_paths, len(y_train), len(y_dev))) sum_no_of_batches = sum_no_of_batches+(len(y_train)//batch_size) train_set=(x1_train,x2_train,y_train) dev_set=(x1_dev,x2_dev,y_dev) gc.collect() return train_set,dev_set,vocab_processor,sum_no_of_batches
Example #19
Source File: metrics.py From DDPAE-video-prediction with MIT License | 5 votes |
def get_scores(self): # Save positions if self.save_path != '': positions = np.array([np.concatenate(self.pred_positions, axis=0), np.concatenate(self.gt_positions, axis=0)]) np.save(os.path.join(self.save_path), positions) masks = np.concatenate(self.masks, axis=0) cosine = np.concatenate(self.cosine_similarities, axis=0) rel_error = np.concatenate(self.relative_errors, axis=0) numel = np.sum(masks == 1, axis=(0,2)) rel_error = np.sum(rel_error * masks, axis=(0,2)) / numel cosine = np.sum(cosine * masks, axis=(0,2)) / numel return {'relative_errors': rel_error, 'cosine_similarities': cosine}
Example #20
Source File: test.py From DDPAE-video-prediction with MIT License | 5 votes |
def save_images(prediction, gt, latent, save_dir, step): pose, components = latent['pose'].data.cpu(), latent['components'].data.cpu() batch_size, n_frames_total = prediction.shape[:2] n_components = components.shape[2] for i in range(batch_size): filename = '{:05d}.png'.format(step) y = gt[i, ...] rows = [y] if n_components > 1: for j in range(n_components): p = pose[i, :, j, :] comp = components[i, :, j, ...] if pose.size(-1) == 3: comp = utils.draw_components(comp, p) rows.append(utils.to_numpy(comp)) x = prediction[i, ...] rows.append(x) # Make a grid of 4 x n_frames_total images image = np.concatenate(rows, axis=2).squeeze(1) image = np.concatenate([image[i] for i in range(n_frames_total)], axis=1) image = (image * 255).astype(np.uint8) # Save image Image.fromarray(image).save(os.path.join(save_dir, filename)) step += 1 return step
Example #21
Source File: tools_fri_doa_plane.py From FRIDA with MIT License | 5 votes |
def Rmtx_ri(coef_ri, K, D, L): coef_ri = np.squeeze(coef_ri) coef_r = coef_ri[:K + 1] coef_i = coef_ri[K + 1:] R_r = linalg.toeplitz(np.concatenate((np.array([coef_r[-1]]), np.zeros(L - K - 1))), np.concatenate((coef_r[::-1], np.zeros(L - K - 1))) ) R_i = linalg.toeplitz(np.concatenate((np.array([coef_i[-1]]), np.zeros(L - K - 1))), np.concatenate((coef_i[::-1], np.zeros(L - K - 1))) ) return np.dot(np.vstack((np.hstack((R_r, -R_i)), np.hstack((R_i, R_r)))), D)
Example #22
Source File: tools_fri_doa_plane.py From FRIDA with MIT License | 5 votes |
def compute_b(G_lst, GtG_lst, beta_lst, Rc0, num_bands, a_ri): """ compute the uniform sinusoidal samples b from the updated annihilating filter coeffiients. :param GtG_lst: list of G^H G for different subbands :param beta_lst: list of beta-s for different subbands :param Rc0: right-dual matrix, here it is the convolution matrix associated with c :param num_bands: number of bands :param L: size of b: L by 1 :param a_ri: a 2D numpy array. each column corresponds to the measurements within a subband :return: """ b_lst = [] a_Gb_lst = [] for loop in range(num_bands): GtG_loop = GtG_lst[loop] beta_loop = beta_lst[loop] b_loop = beta_loop - \ linalg.solve(GtG_loop, np.dot(Rc0.T, linalg.solve(np.dot(Rc0, linalg.solve(GtG_loop, Rc0.T)), np.dot(Rc0, beta_loop))) ) b_lst.append(b_loop) a_Gb_lst.append(a_ri[:, loop] - np.dot(G_lst[loop], b_loop)) return np.column_stack(b_lst), linalg.norm(np.concatenate(a_Gb_lst))
Example #23
Source File: __init__.py From BiblioPixelAnimations with MIT License | 5 votes |
def make_bd(self): "Make a set of 'shaped' random #'s for particle brightness deltas (bd)" self.bd = concatenate(( # These values will dim the particles random.normal( self.bd_mean - self.bd_mu, self.bd_sigma, 16).astype(int), # These values will brighten the particles random.normal( self.bd_mean + self.bd_mu, self.bd_sigma, 16).astype(int)), axis=0)
Example #24
Source File: ggtnn_train.py From gated-graph-transformer-network with MIT License | 5 votes |
def assemble_correct_graphs(story_fns): correct_strengths, correct_ids, correct_edges = [], [], [] for sfn in story_fns: with gzip.open(sfn,'rb') as f: cvtd_story, _, _, _ = pickle.load(f) strengths, ids, _, edges = convert_story.convert(cvtd_story) correct_strengths.append(strengths) correct_ids.append(ids) correct_edges.append(edges) return tuple(np.concatenate(l,0) for l in (correct_strengths, correct_ids, correct_edges))
Example #25
Source File: connected.py From Traffic_sign_detection_YOLO with MIT License | 5 votes |
def recollect(self, val): w = val['weights'] b = val['biases'] if w is None: self.w = val; return if self.inp_idx is not None: w = np.take(w, self.inp_idx, 0) keep_b = np.take(b, self.keep) keep_w = np.take(w, self.keep, 1) train_b = b[self.train:] train_w = w[:, self.train:] self.w['biases'] = np.concatenate( (keep_b, train_b), axis = 0) self.w['weights'] = np.concatenate( (keep_w, train_w), axis = 1)
Example #26
Source File: data.py From Traffic_sign_detection_YOLO with MIT License | 5 votes |
def shuffle(self): batch = self.FLAGS.batch data = self.parse() size = len(data) print('Dataset of {} instance(s)'.format(size)) if batch > size: self.FLAGS.batch = batch = size batch_per_epoch = int(size / batch) for i in range(self.FLAGS.epoch): shuffle_idx = perm(np.arange(size)) for b in range(batch_per_epoch): # yield these x_batch = list() feed_batch = dict() for j in range(b*batch, b*batch+batch): train_instance = data[shuffle_idx[j]] try: inp, new_feed = self._batch(train_instance) except ZeroDivisionError: print("This image's width or height are zeros: ", train_instance[0]) print('train_instance:', train_instance) print('Please remove or fix it then try again.') raise if inp is None: continue x_batch += [np.expand_dims(inp, 0)] for key in new_feed: new = new_feed[key] old_feed = feed_batch.get(key, np.zeros((0,) + new.shape)) feed_batch[key] = np.concatenate([ old_feed, [new] ]) x_batch = np.concatenate(x_batch, 0) yield x_batch, feed_batch print('Finish {} epoch(es)'.format(i + 1))
Example #27
Source File: dataset_tool.py From disentangling_conditional_gans with MIT License | 5 votes |
def create_cifar10(tfrecord_dir, cifar10_dir): print('Loading CIFAR-10 from "%s"' % cifar10_dir) import pickle images = [] labels = [] for batch in range(1, 6): with open(os.path.join(cifar10_dir, 'data_batch_%d' % batch), 'rb') as file: data = pickle.load(file, encoding='latin1') images.append(data['data'].reshape(-1, 3, 32, 32)) labels.append(data['labels']) images = np.concatenate(images) labels = np.concatenate(labels) assert images.shape == (50000, 3, 32, 32) and images.dtype == np.uint8 assert labels.shape == (50000,) and labels.dtype == np.int32 assert np.min(images) == 0 and np.max(images) == 255 assert np.min(labels) == 0 and np.max(labels) == 9 onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32) onehot[np.arange(labels.size), labels] = 1.0 with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr: order = tfr.choose_shuffled_order() for idx in range(order.size): tfr.add_image(images[order[idx]]) tfr.add_labels(onehot[order]) #----------------------------------------------------------------------------
Example #28
Source File: dataset_tool.py From disentangling_conditional_gans with MIT License | 5 votes |
def create_svhn(tfrecord_dir, svhn_dir): print('Loading SVHN from "%s"' % svhn_dir) import pickle images = [] labels = [] for batch in range(1, 4): with open(os.path.join(svhn_dir, 'train_%d.pkl' % batch), 'rb') as file: data = pickle.load(file, encoding='latin1') images.append(data[0]) labels.append(data[1]) images = np.concatenate(images) labels = np.concatenate(labels) assert images.shape == (73257, 3, 32, 32) and images.dtype == np.uint8 assert labels.shape == (73257,) and labels.dtype == np.uint8 assert np.min(images) == 0 and np.max(images) == 255 assert np.min(labels) == 0 and np.max(labels) == 9 onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32) onehot[np.arange(labels.size), labels] = 1.0 with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr: order = tfr.choose_shuffled_order() for idx in range(order.size): tfr.add_image(images[order[idx]]) tfr.add_labels(onehot[order]) #----------------------------------------------------------------------------
Example #29
Source File: dataset_wrappers.py From mmdetection with Apache License 2.0 | 5 votes |
def __init__(self, datasets): super(ConcatDataset, self).__init__(datasets) self.CLASSES = datasets[0].CLASSES if hasattr(datasets[0], 'flag'): flags = [] for i in range(0, len(datasets)): flags.append(datasets[i].flag) self.flag = np.concatenate(flags)
Example #30
Source File: iou_balanced_neg_sampler.py From mmdetection with Apache License 2.0 | 5 votes |
def sample_via_interval(self, max_overlaps, full_set, num_expected): """Sample according to the iou interval. Args: max_overlaps (torch.Tensor): IoU between bounding boxes and ground truth boxes. full_set (set(int)): A full set of indices of boxes。 num_expected (int): Number of expected samples。 Returns: np.ndarray: Indices of samples """ max_iou = max_overlaps.max() iou_interval = (max_iou - self.floor_thr) / self.num_bins per_num_expected = int(num_expected / self.num_bins) sampled_inds = [] for i in range(self.num_bins): start_iou = self.floor_thr + i * iou_interval end_iou = self.floor_thr + (i + 1) * iou_interval tmp_set = set( np.where( np.logical_and(max_overlaps >= start_iou, max_overlaps < end_iou))[0]) tmp_inds = list(tmp_set & full_set) if len(tmp_inds) > per_num_expected: tmp_sampled_set = self.random_choice(tmp_inds, per_num_expected) else: tmp_sampled_set = np.array(tmp_inds, dtype=np.int) sampled_inds.append(tmp_sampled_set) sampled_inds = np.concatenate(sampled_inds) if len(sampled_inds) < num_expected: num_extra = num_expected - len(sampled_inds) extra_inds = np.array(list(full_set - set(sampled_inds))) if len(extra_inds) > num_extra: extra_inds = self.random_choice(extra_inds, num_extra) sampled_inds = np.concatenate([sampled_inds, extra_inds]) return sampled_inds