Python numpy.heaviside() Examples
The following are 8 code examples for showing how to use numpy.heaviside(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: trax Author: google File: math_ops.py License: Apache License 2.0 | 5 votes |
def heaviside(x1, x2): def f(x1, x2): return tf.where(x1 < 0, tf.constant(0, dtype=x2.dtype), tf.where(x1 > 0, tf.constant(1, dtype=x2.dtype), x2)) y = _bin_op(f, x1, x2) if not np.issubdtype(y.dtype, np.inexact): y = y.astype(dtypes.default_float_type()) return y
Example 2
Project: anticipy Author: sky-uk File: forecast_models.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def _f_step(a_x, a_date, params, is_mult=False, **kwargs): (A, B) = params if is_mult: y = 1 + (B - 1) * np.heaviside(a_x - A, 1) else: y = B * np.heaviside(a_x - A, 1) return y # TODO: Implement initialisation for multiplicative composition
Example 3
Project: anticipy Author: sky-uk File: forecast_models.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def _f_ramp(a_x, a_date, params, is_mult=False, **kwargs): (A, B) = params if is_mult: y = 1 + (a_x - A) * (B) * np.heaviside(a_x - A, 1) else: y = (a_x - A) * B * np.heaviside(a_x - A, 1) return y
Example 4
Project: qkit Author: qkitgroup File: IVD_dummy.py License: GNU General Public License v2.0 | 5 votes |
def get_IVC_JJ(x, Ic, Rn, SNR): sign = np.sign(x[-1] - x[0]) return Rn * x * np.heaviside(np.abs(x) - Ic, int(sign > 0)) \ + (np.heaviside(x, int(sign > 0)) - np.heaviside(x + sign * Ic, 0)) * Ic * Rn \ + Ic * Rn / SNR * np.random.rand(x.size)
Example 5
Project: seglearn Author: dmbee File: feature_functions.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def __call__(self, X): sign = np.heaviside(-1 * X[:, :-1] * X[:, 1:], 0) abs_diff = np.abs(np.diff(X, axis=1)) return np.sum(sign * abs_diff >= self.threshold, axis=1, dtype=X.dtype)
Example 6
Project: Carnets Author: holzschu File: helpers.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def helper_heaviside(f, unit1, unit2): try: converter2 = (get_converter(unit2, dimensionless_unscaled) if unit2 is not None else None) except UnitsError: raise UnitTypeError("Can only apply 'heaviside' function with a " "dimensionless second argument.") return ([None, converter2], dimensionless_unscaled)
Example 7
Project: Carnets Author: holzschu File: test_quantity_ufuncs.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_heaviside_scalar(self): assert np.heaviside(0. * u.m, 0.5) == 0.5 * u.dimensionless_unscaled assert np.heaviside(0. * u.s, 25 * u.percent) == 0.25 * u.dimensionless_unscaled assert np.heaviside(2. * u.J, 0.25) == 1. * u.dimensionless_unscaled
Example 8
Project: Carnets Author: holzschu File: test_quantity_ufuncs.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_heaviside_array(self): values = np.array([-1., 0., 0., +1.]) halfway = np.array([0.75, 0.25, 0.75, 0.25]) * u.dimensionless_unscaled assert np.all(np.heaviside(values * u.m, halfway * u.dimensionless_unscaled) == [0, 0.25, 0.75, +1.] * u.dimensionless_unscaled)