Python numpy.add() Examples
The following are 30 code examples for showing how to use numpy.add(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: Keras-GAN Author: eriklindernoren File: sgan.py License: MIT License | 8 votes |
def build_generator(self): model = Sequential() model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim)) model.add(Reshape((7, 7, 128))) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(128, kernel_size=3, padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(64, kernel_size=3, padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(1, kernel_size=3, padding="same")) model.add(Activation("tanh")) model.summary() noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img)
Example 2
Project: Keras-GAN Author: eriklindernoren File: context_encoder.py License: MIT License | 7 votes |
def build_discriminator(self): model = Sequential() model.add(Conv2D(64, kernel_size=3, strides=2, input_shape=self.missing_shape, padding="same")) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(128, kernel_size=3, strides=2, padding="same")) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(256, kernel_size=3, padding="same")) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Flatten()) model.add(Dense(1, activation='sigmoid')) model.summary() img = Input(shape=self.missing_shape) validity = model(img) return Model(img, validity)
Example 3
Project: sparse-subspace-clustering-python Author: abhinav4192 File: BuildAdjacency.py License: MIT License | 6 votes |
def BuildAdjacency(CMat, K): CMat = CMat.astype(float) CKSym = None N, _ = CMat.shape CAbs = np.absolute(CMat).astype(float) for i in range(0, N): c = CAbs[:, i] PInd = np.flip(np.argsort(c), 0) CAbs[:, i] = CAbs[:, i] / float(np.absolute(c[PInd[0]])) CSym = np.add(CAbs, CAbs.T).astype(float) if K != 0: Ind = np.flip(np.argsort(CSym, axis=0), 0) CK = np.zeros([N, N]).astype(float) for i in range(0, N): for j in range(0, K): CK[Ind[j, i], i] = CSym[Ind[j, i], i] / float(np.absolute(CSym[Ind[0, i], i])) CKSym = np.add(CK, CK.T) else: CKSym = CSym return CKSym
Example 4
Project: tensortrade Author: tensortrade-org File: heston.py License: Apache License 2.0 | 6 votes |
def geometric_brownian_motion_jump_diffusion_log_returns(params: ModelParameters): """ Constructs combines a geometric brownian motion process (log returns) with a jump diffusion process (log returns) to produce a sequence of gbm jump returns. Arguments: params : ModelParameters The parameters for the stochastic model. Returns: A GBM process with jumps in it """ jump_diffusion = jump_diffusion_process(params) geometric_brownian_motion = geometric_brownian_motion_log_returns(params) return np.add(jump_diffusion, geometric_brownian_motion)
Example 5
Project: tensortrade Author: tensortrade-org File: test_feed.py License: Apache License 2.0 | 6 votes |
def test_multi_step_adding(): a1 = Stream([1, 2, 3]).rename("a1") a2 = Stream([4, 5, 6]).rename("a2") t1 = BinOp(np.add)(a1, a2).rename("t1") t2 = BinOp(np.add)(t1, a2).rename("t2") feed = DataFeed([a1, a2, t1, t2]) output = feed.next() assert output == {'a1': 1, 'a2': 4, 't1': 5, 't2': 9} feed = DataFeed([a1, a2, t2]) output = feed.next() assert output == {'a1': 1, 'a2': 4, 't2': 9}
Example 6
Project: NeuroKit Author: neuropsychology File: rsp_findpeaks.py License: MIT License | 6 votes |
def _rsp_findpeaks_outliers(rsp_cleaned, extrema, amplitude_min=0.3): # Only consider those extrema that have a minimum vertical distance to # their direct neighbor, i.e., define outliers in absolute amplitude # difference between neighboring extrema. vertical_diff = np.abs(np.diff(rsp_cleaned[extrema])) median_diff = np.median(vertical_diff) min_diff = np.where(vertical_diff > (median_diff * amplitude_min))[0] extrema = extrema[min_diff] # Make sure that the alternation of peaks and troughs is unbroken. If # alternation of sign in extdiffs is broken, remove the extrema that # cause the breaks. amplitudes = rsp_cleaned[extrema] extdiffs = np.sign(np.diff(amplitudes)) extdiffs = np.add(extdiffs[0:-1], extdiffs[1:]) removeext = np.where(extdiffs != 0)[0] + 1 extrema = np.delete(extrema, removeext) amplitudes = np.delete(amplitudes, removeext) return extrema, amplitudes
Example 7
Project: Keras-GAN Author: eriklindernoren File: ccgan.py License: MIT License | 6 votes |
def build_discriminator(self): img = Input(shape=self.img_shape) model = Sequential() model.add(Conv2D(64, kernel_size=4, strides=2, padding='same', input_shape=self.img_shape)) model.add(LeakyReLU(alpha=0.8)) model.add(Conv2D(128, kernel_size=4, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(InstanceNormalization()) model.add(Conv2D(256, kernel_size=4, strides=2, padding='same')) model.add(LeakyReLU(alpha=0.2)) model.add(InstanceNormalization()) model.summary() img = Input(shape=self.img_shape) features = model(img) validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(features) label = Flatten()(features) label = Dense(self.num_classes+1, activation="softmax")(label) return Model(img, [validity, label])
Example 8
Project: Keras-GAN Author: eriklindernoren File: bigan.py License: MIT License | 6 votes |
def build_encoder(self): model = Sequential() model.add(Flatten(input_shape=self.img_shape)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(self.latent_dim)) model.summary() img = Input(shape=self.img_shape) z = model(img) return Model(img, z)
Example 9
Project: Keras-GAN Author: eriklindernoren File: infogan.py License: MIT License | 6 votes |
def build_generator(self): model = Sequential() model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim)) model.add(Reshape((7, 7, 128))) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(128, kernel_size=3, padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(momentum=0.8)) model.add(UpSampling2D()) model.add(Conv2D(64, kernel_size=3, padding="same")) model.add(Activation("relu")) model.add(BatchNormalization(momentum=0.8)) model.add(Conv2D(self.channels, kernel_size=3, padding='same')) model.add(Activation("tanh")) gen_input = Input(shape=(self.latent_dim,)) img = model(gen_input) model.summary() return Model(gen_input, img)
Example 10
Project: Keras-GAN Author: eriklindernoren File: wgan.py License: MIT License | 6 votes |
def build_generator(self): model = Sequential() model.add(Dense(128 * 7 * 7, activation="relu", input_dim=self.latent_dim)) model.add(Reshape((7, 7, 128))) model.add(UpSampling2D()) model.add(Conv2D(128, kernel_size=4, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(UpSampling2D()) model.add(Conv2D(64, kernel_size=4, padding="same")) model.add(BatchNormalization(momentum=0.8)) model.add(Activation("relu")) model.add(Conv2D(self.channels, kernel_size=4, padding="same")) model.add(Activation("tanh")) model.summary() noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img)
Example 11
Project: Keras-GAN Author: eriklindernoren File: lsgan.py License: MIT License | 6 votes |
def build_generator(self): model = Sequential() model.add(Dense(256, input_dim=self.latent_dim)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(1024)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(np.prod(self.img_shape), activation='tanh')) model.add(Reshape(self.img_shape)) model.summary() noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img)
Example 12
Project: Keras-GAN Author: eriklindernoren File: lsgan.py License: MIT License | 6 votes |
def build_discriminator(self): model = Sequential() model.add(Flatten(input_shape=self.img_shape)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(256)) model.add(LeakyReLU(alpha=0.2)) # (!!!) No softmax model.add(Dense(1)) model.summary() img = Input(shape=self.img_shape) validity = model(img) return Model(img, validity)
Example 13
Project: Keras-GAN Author: eriklindernoren File: cogan.py License: MIT License | 6 votes |
def build_discriminators(self): img1 = Input(shape=self.img_shape) img2 = Input(shape=self.img_shape) # Shared discriminator layers model = Sequential() model.add(Flatten(input_shape=self.img_shape)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(256)) model.add(LeakyReLU(alpha=0.2)) img1_embedding = model(img1) img2_embedding = model(img2) # Discriminator 1 validity1 = Dense(1, activation='sigmoid')(img1_embedding) # Discriminator 2 validity2 = Dense(1, activation='sigmoid')(img2_embedding) return Model(img1, validity1), Model(img2, validity2)
Example 14
Project: Keras-GAN Author: eriklindernoren File: dualgan.py License: MIT License | 6 votes |
def build_generator(self): X = Input(shape=(self.img_dim,)) model = Sequential() model.add(Dense(256, input_dim=self.img_dim)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dropout(0.4)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dropout(0.4)) model.add(Dense(1024)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dropout(0.4)) model.add(Dense(self.img_dim, activation='tanh')) X_translated = model(X) return Model(X, X_translated)
Example 15
Project: Keras-GAN Author: eriklindernoren File: gan.py License: MIT License | 6 votes |
def build_generator(self): model = Sequential() model.add(Dense(256, input_dim=self.latent_dim)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(1024)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(np.prod(self.img_shape), activation='tanh')) model.add(Reshape(self.img_shape)) model.summary() noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img)
Example 16
Project: Keras-GAN Author: eriklindernoren File: gan.py License: MIT License | 6 votes |
def build_discriminator(self): model = Sequential() model.add(Flatten(input_shape=self.img_shape)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(256)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(1, activation='sigmoid')) model.summary() img = Input(shape=self.img_shape) validity = model(img) return Model(img, validity)
Example 17
Project: Keras-GAN Author: eriklindernoren File: bgan.py License: MIT License | 6 votes |
def build_generator(self): model = Sequential() model.add(Dense(256, input_dim=self.latent_dim)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(1024)) model.add(LeakyReLU(alpha=0.2)) model.add(BatchNormalization(momentum=0.8)) model.add(Dense(np.prod(self.img_shape), activation='tanh')) model.add(Reshape(self.img_shape)) model.summary() noise = Input(shape=(self.latent_dim,)) img = model(noise) return Model(noise, img)
Example 18
Project: Keras-GAN Author: eriklindernoren File: bgan.py License: MIT License | 6 votes |
def build_discriminator(self): model = Sequential() model.add(Flatten(input_shape=self.img_shape)) model.add(Dense(512)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(256)) model.add(LeakyReLU(alpha=0.2)) model.add(Dense(1, activation='sigmoid')) model.summary() img = Input(shape=self.img_shape) validity = model(img) return Model(img, validity)
Example 19
Project: recruit Author: Frank-qlu File: test_old_ma.py License: Apache License 2.0 | 6 votes |
def test_testAddSumProd(self): # Test add, sum, product. (x, y, a10, m1, m2, xm, ym, z, zm, xf, s) = self.d assert_(eq(np.add.reduce(x), add.reduce(x))) assert_(eq(np.add.accumulate(x), add.accumulate(x))) assert_(eq(4, sum(array(4), axis=0))) assert_(eq(4, sum(array(4), axis=0))) assert_(eq(np.sum(x, axis=0), sum(x, axis=0))) assert_(eq(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0))) assert_(eq(np.sum(x, 0), sum(x, 0))) assert_(eq(np.product(x, axis=0), product(x, axis=0))) assert_(eq(np.product(x, 0), product(x, 0))) assert_(eq(np.product(filled(xm, 1), axis=0), product(xm, axis=0))) if len(s) > 1: assert_(eq(np.concatenate((x, y), 1), concatenate((xm, ym), 1))) assert_(eq(np.add.reduce(x, 1), add.reduce(x, 1))) assert_(eq(np.sum(x, 1), sum(x, 1))) assert_(eq(np.product(x, 1), product(x, 1)))
Example 20
Project: recruit Author: Frank-qlu File: test_core.py License: Apache License 2.0 | 6 votes |
def test_addsumprod(self): # Tests add, sum, product. (x, y, a10, m1, m2, xm, ym, z, zm, xf) = self.d assert_equal(np.add.reduce(x), add.reduce(x)) assert_equal(np.add.accumulate(x), add.accumulate(x)) assert_equal(4, sum(array(4), axis=0)) assert_equal(4, sum(array(4), axis=0)) assert_equal(np.sum(x, axis=0), sum(x, axis=0)) assert_equal(np.sum(filled(xm, 0), axis=0), sum(xm, axis=0)) assert_equal(np.sum(x, 0), sum(x, 0)) assert_equal(np.product(x, axis=0), product(x, axis=0)) assert_equal(np.product(x, 0), product(x, 0)) assert_equal(np.product(filled(xm, 1), axis=0), product(xm, axis=0)) s = (3, 4) x.shape = y.shape = xm.shape = ym.shape = s if len(s) > 1: assert_equal(np.concatenate((x, y), 1), concatenate((xm, ym), 1)) assert_equal(np.add.reduce(x, 1), add.reduce(x, 1)) assert_equal(np.sum(x, 1), sum(x, 1)) assert_equal(np.product(x, 1), product(x, 1))
Example 21
Project: recruit Author: Frank-qlu File: test_core.py License: Apache License 2.0 | 6 votes |
def test_datafriendly_add(self): # Test keeping data w/ (inplace) addition x = array([1, 2, 3], mask=[0, 0, 1]) # Test add w/ scalar xx = x + 1 assert_equal(xx.data, [2, 3, 3]) assert_equal(xx.mask, [0, 0, 1]) # Test iadd w/ scalar x += 1 assert_equal(x.data, [2, 3, 3]) assert_equal(x.mask, [0, 0, 1]) # Test add w/ array x = array([1, 2, 3], mask=[0, 0, 1]) xx = x + array([1, 2, 3], mask=[1, 0, 0]) assert_equal(xx.data, [1, 4, 3]) assert_equal(xx.mask, [1, 0, 1]) # Test iadd w/ array x = array([1, 2, 3], mask=[0, 0, 1]) x += array([1, 2, 3], mask=[1, 0, 0]) assert_equal(x.data, [1, 4, 3]) assert_equal(x.mask, [1, 0, 1])
Example 22
Project: argus-freesound Author: lRomul File: tiles.py License: MIT License | 5 votes |
def compute_pyramid_patch_weight_loss(width, height) -> np.ndarray: """Compute a weight matrix that assigns bigger weight on pixels in center and less weight to pixels on image boundary. This weight matrix then used for merging individual tile predictions and helps dealing with prediction artifacts on tile boundaries. :param width: Tile width :param height: Tile height :return: Since-channel image [Width x Height] """ xc = width * 0.5 yc = height * 0.5 xl = 0 xr = width yb = 0 yt = height Dc = np.zeros((width, height)) De = np.zeros((width, height)) for i in range(width): for j in range(height): Dc[i, j] = np.sqrt(np.square(i - xc + 0.5) + np.square(j - yc + 0.5)) De_l = np.sqrt(np.square(i - xl + 0.5) + np.square(j - j + 0.5)) De_r = np.sqrt(np.square(i - xr + 0.5) + np.square(j - j + 0.5)) De_b = np.sqrt(np.square(i - i + 0.5) + np.square(j - yb + 0.5)) De_t = np.sqrt(np.square(i - i + 0.5) + np.square(j - yt + 0.5)) De[i, j] = np.min([De_l, De_r, De_b, De_t]) alpha = (width * height) / np.sum(np.divide(De, np.add(Dc, De))) W = alpha * np.divide(De, np.add(Dc, De)) return W, Dc, De
Example 23
Project: tensortrade Author: tensortrade-org File: node.py License: Apache License 2.0 | 5 votes |
def __add__(self, other): if np.isscalar(other): other = Constant(other, "Constant({})".format(other)) name = "Add({},{})".format(self.name, other.name) return BinOp(np.add, name)(self, other) assert isinstance(other, Node) name = "Add({},{})".format(self.name, other.name) return BinOp(np.add, name)(self, other)
Example 24
Project: tensortrade Author: tensortrade-org File: test_feed.py License: Apache License 2.0 | 5 votes |
def test_stream_adding(): a1 = Stream([1, 2, 3]).rename("a1") a2 = Stream([4, 5, 6]).rename("a2") t1 = BinOp(np.add)(a1, a2).rename("a1+a2") feed = DataFeed([t1, a1, a2]) output = feed.next() assert output == {'a1': 1, 'a2': 4, 'a1+a2': 5}
Example 25
Project: tensortrade Author: tensortrade-org File: test_transform.py License: Apache License 2.0 | 5 votes |
def test_namespace(): a = Stream([1, 2, 3]).rename("a") with Module("world") as world: a1 = Stream([4, 5, 6]).rename("a1") a2 = Stream([7, 8, 9]).rename("a2") with Module("sub-world") as sub_world: a3 = Stream([10, 11, 12]).rename("a3") a4 = Stream([13, 14, 15]).rename("a4") t3 = BinOp(np.add)(a2, a4).rename("t3") t1 = BinOp(np.multiply)(a, t3).rename("t1") feed = DataFeed([t1, world, sub_world]) assert feed.next() == { "world:/a1": 4, "world:/a2": 7, "world:/sub-world:/a3": 10, "world:/sub-world:/a4": 13, "world:/sub-world:/t3": 20, "t1": 20 } feed.reset() assert feed.next() == { "world:/a1": 4, "world:/a2": 7, "world:/sub-world:/a3": 10, "world:/sub-world:/a4": 13, "world:/sub-world:/t3": 20, "t1": 20 }
Example 26
Project: gnocchi Author: gnocchixyz File: utils.py License: Apache License 2.0 | 5 votes |
def to_timestamps(values): try: if len(values) == 0: return [] if isinstance(values[0], (numpy.datetime64, datetime.datetime)): times = numpy.array(values) else: try: # Try to convert to float. If it works, then we consider # timestamps to be number of seconds since Epoch # e.g. 123456 or 129491.1293 float(values[0]) except ValueError: try: # Try to parse the value as a string of ISO timestamp # e.g. 2017-10-09T23:23:12.123 numpy.datetime64(values[0]) except ValueError: # Last chance: it can be relative timestamp, so convert # to timedelta relative to now() # e.g. "-10 seconds" or "5 minutes" times = numpy.fromiter( numpy.add(numpy.datetime64(utcnow()), [to_timespan(v, True) for v in values]), dtype='datetime64[ns]', count=len(values)) else: times = numpy.array(values, dtype='datetime64[ns]') else: times = numpy.array(values, dtype='float') * 10e8 except ValueError: raise ValueError("Unable to convert timestamps") times = times.astype('datetime64[ns]') if (times < unix_universal_start64).any(): raise ValueError('Timestamp must be after Epoch') return times
Example 27
Project: simpleflow Author: PytLab File: operations.py License: MIT License | 5 votes |
def compute_output(self): ''' Compute and return the value of addition operation. ''' x, y = self.input_nodes self.output_value = np.add(x.output_value, y.output_value) return self.output_value
Example 28
Project: simpleflow Author: PytLab File: operations.py License: MIT License | 5 votes |
def add(x, y, name=None): ''' Returns x + y element-wise. ''' return Add(x, y, name) # ------------------------------------------------------------------------------ # Multiplication operation # ------------------------------------------------------------------------------
Example 29
Project: iAI Author: aimuch File: chptToBin.py License: MIT License | 5 votes |
def convert_rnn_bias(weights, dimensions, forget_bias = 1.0): """ TensorFlow bias parameters for BasicLSTMCell are formatted as: CellN: Bi, Bc, Bf, Bo TensorRT expects the format to be: CellN: Wf, Wi, Wc, Wo, Rf, Ri, Rc, Ro Since Tensorflow already combines U and W, we double the size and set all of U to zero. """ num_units = dimensions["num_units"] layers = dimensions["layers"] temp_weights = np.zeros([layers, 2 * 4, num_units], dtype=np.float32) weights = np.reshape(weights, (layers, 4, num_units)) # then we reorder gates from Tensorflow's 'icfo' into TensorRT's 'fico' order input_perm = [ 1, 2, 0, 3 ] for i in range(4): temp_weights[:, input_perm[i], :] = weights[:, i, :] # Add a value to f bias to be consistent with the Tensorflow model. print("Adding {0} to forget bias".format(forget_bias)) temp_weights[:, 0, :] = np.add(temp_weights[:, 0, :], forget_bias) weights = deepcopy(temp_weights) return weights
Example 30
Project: iAI Author: aimuch File: chptToBin.py License: MIT License | 5 votes |
def convert_rnn_bias(weights, dimensions, forget_bias = 1.0): """ TensorFlow bias parameters for BasicLSTMCell are formatted as: CellN: Bi, Bc, Bf, Bo TensorRT expects the format to be: CellN: Wf, Wi, Wc, Wo, Rf, Ri, Rc, Ro Since Tensorflow already combines U and W, we double the size and set all of U to zero. """ num_units = dimensions["num_units"] layers = dimensions["layers"] temp_weights = np.zeros([layers, 2 * 4, num_units], dtype=np.float32) weights = np.reshape(weights, (layers, 4, num_units)) # then we reorder gates from Tensorflow's 'icfo' into TensorRT's 'fico' order input_perm = [ 1, 2, 0, 3 ] for i in range(4): temp_weights[:, input_perm[i], :] = weights[:, i, :] # Add a value to f bias to be consistent with the Tensorflow model. print("Adding {0} to forget bias".format(forget_bias)) temp_weights[:, 0, :] = np.add(temp_weights[:, 0, :], forget_bias) weights = deepcopy(temp_weights) return weights