Python numpy.int32() Examples

The following are 30 code examples for showing how to use numpy.int32(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.

You may check out the related API usage on the sidebar.

You may also want to check out all available functions/classes of the module numpy , or try the search function .

Example 1
Project: cat-bbs   Author: aleju   File: common.py    License: MIT License 6 votes vote down vote up
def draw_heatmap(img, heatmap, alpha=0.5):
    """Draw a heatmap overlay over an image."""
    assert len(heatmap.shape) == 2 or \
        (len(heatmap.shape) == 3 and heatmap.shape[2] == 1)
    assert img.dtype in [np.uint8, np.int32, np.int64]
    assert heatmap.dtype in [np.float32, np.float64]

    if img.shape[0:2] != heatmap.shape[0:2]:
        heatmap_rs = np.clip(heatmap * 255, 0, 255).astype(np.uint8)
        heatmap_rs = ia.imresize_single_image(
            heatmap_rs[..., np.newaxis],
            img.shape[0:2],
            interpolation="nearest"
        )
        heatmap = np.squeeze(heatmap_rs) / 255.0

    cmap = plt.get_cmap('jet')
    heatmap_cmapped = cmap(heatmap)
    heatmap_cmapped = np.delete(heatmap_cmapped, 3, 2)
    heatmap_cmapped = heatmap_cmapped * 255
    mix = (1-alpha) * img + alpha * heatmap_cmapped
    mix = np.clip(mix, 0, 255).astype(np.uint8)
    return mix 
Example 2
Project: cat-bbs   Author: aleju   File: create_dataset.py    License: MIT License 6 votes vote down vote up
def load_keypoints(image_filepath, image_height, image_width):
    """Load facial keypoints of one image."""
    fp_keypoints = "%s.cat" % (image_filepath,)
    if not os.path.isfile(fp_keypoints):
        raise Exception("Could not find keypoint coordinates for image '%s'." \
                        % (image_filepath,))
    else:
        coords_raw = open(fp_keypoints, "r").readlines()[0].strip().split(" ")
        coords_raw = [abs(int(coord)) for coord in coords_raw]
        keypoints = []
        #keypoints_arr = np.zeros((9*2,), dtype=np.int32)
        for i in range(1, len(coords_raw), 2): # first element is the number of coords
            x = np.clip(coords_raw[i], 0, image_width-1)
            y = np.clip(coords_raw[i+1], 0, image_height-1)
            keypoints.append((x, y))

        return keypoints 
Example 3
Project: Att-ChemdNER   Author: lingluodlut   File: theano_backend.py    License: Apache License 2.0 6 votes vote down vote up
def in_top_k(predictions, targets, k):
    '''Returns whether the `targets` are in the top `k` `predictions`

    # Arguments
        predictions: A tensor of shape batch_size x classess and type float32.
        targets: A tensor of shape batch_size and type int32 or int64.
        k: An int, number of top elements to consider.

    # Returns
        A tensor of shape batch_size and type int. output_i is 1 if
        targets_i is within top-k values of predictions_i
    '''
    predictions_top_k = T.argsort(predictions)[:, -k:]
    result, _ = theano.map(lambda prediction, target: any(equal(prediction, target)), sequences=[predictions_top_k, targets])
    return result


# CONVOLUTIONS 
Example 4
Project: Att-ChemdNER   Author: lingluodlut   File: theano_backend.py    License: Apache License 2.0 6 votes vote down vote up
def ctc_path_probs(predict, Y, alpha=1e-4):
    smoothed_predict = (1 - alpha) * predict[:, Y] + alpha * np.float32(1.) / Y.shape[0]
    L = T.log(smoothed_predict)
    zeros = T.zeros_like(L[0])
    log_first = zeros

    f_skip_idxs = ctc_create_skip_idxs(Y)
    b_skip_idxs = ctc_create_skip_idxs(Y[::-1])  # there should be a shortcut to calculating this

    def step(log_f_curr, log_b_curr, f_active, log_f_prev, b_active, log_b_prev):
        f_active_next, log_f_next = ctc_update_log_p(f_skip_idxs, zeros, f_active, log_f_curr, log_f_prev)
        b_active_next, log_b_next = ctc_update_log_p(b_skip_idxs, zeros, b_active, log_b_curr, log_b_prev)
        return f_active_next, log_f_next, b_active_next, log_b_next

    [f_active, log_f_probs, b_active, log_b_probs], _ = theano.scan(
        step, sequences=[L, L[::-1, ::-1]], outputs_info=[np.int32(1), log_first, np.int32(1), log_first])

    idxs = T.arange(L.shape[1]).dimshuffle('x', 0)
    mask = (idxs < f_active.dimshuffle(0, 'x')) & (idxs < b_active.dimshuffle(0, 'x'))[::-1, ::-1]
    log_probs = log_f_probs + log_b_probs[::-1, ::-1] - L
    return log_probs, mask 
Example 5
def create_roidb_from_box_list(self, box_list, gt_roidb):
    assert len(box_list) == self.num_images, \
            'Number of boxes must match number of ground-truth images'
    roidb = []

    if gt_roidb is not None:
        for i in range(self.num_images):
            boxes = box_list[i]

            real_label = gt_roidb[i]['labels']

            roidb.append({'boxes' : boxes,
                          'labels' : np.array([real_label], dtype=np.int32),
                          'flipped' : False})
    else:
        for i in range(self.num_images):
            boxes = box_list[i]

            roidb.append({'boxes' : boxes,
                          'labels' : np.zeros((1, 0), dtype=np.int32),
                          'flipped' : False})

    return roidb 
Example 6
def generate_anchors_pre(height, width, feat_stride, anchor_scales=(8,16,32), anchor_ratios=(0.5,1,2)):
  """ A wrapper function to generate anchors given different scales
    Also return the number of anchors in variable 'length'
  """
  anchors = generate_anchors(ratios=np.array(anchor_ratios), scales=np.array(anchor_scales))
  A = anchors.shape[0]
  shift_x = np.arange(0, width) * feat_stride
  shift_y = np.arange(0, height) * feat_stride
  shift_x, shift_y = np.meshgrid(shift_x, shift_y)
  shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose()
  K = shifts.shape[0]
  # width changes faster, so here it is H, W, C
  anchors = anchors.reshape((1, A, 4)) + shifts.reshape((1, K, 4)).transpose((1, 0, 2))
  anchors = anchors.reshape((K * A, 4)).astype(np.float32, copy=False)
  length = np.int32(anchors.shape[0])

  return anchors, length 
Example 7
Project: gated-graph-transformer-network   Author: hexahedria   File: ggtnn_train.py    License: MIT License 6 votes vote down vote up
def assemble_batch(story_fns, num_answer_words, format_spec):
    stories = []
    for sfn in story_fns:
        with gzip.open(sfn,'rb') as f:
            cvtd_story, _, _, _ = pickle.load(f)
        stories.append(cvtd_story)
    sents, graphs, queries, answers = zip(*stories)
    cvtd_sents = np.array(sents, np.int32)
    cvtd_queries = np.array(queries, np.int32)
    max_ans_len = max(len(a) for a in answers)
    cvtd_answers = np.stack([convert_answer(answer, num_answer_words, format_spec, max_ans_len) for answer in answers])
    num_new_nodes, new_node_strengths, new_node_ids, next_edges = zip(*graphs)
    num_new_nodes = np.stack(num_new_nodes)
    new_node_strengths = np.stack(new_node_strengths)
    new_node_ids = np.stack(new_node_ids)
    next_edges = np.stack(next_edges)
    return cvtd_sents, cvtd_queries, cvtd_answers, num_new_nodes, new_node_strengths, new_node_ids, next_edges 
Example 8
Project: disentangling_conditional_gans   Author: zalandoresearch   File: dataset_tool.py    License: MIT License 6 votes vote down vote up
def create_cifar100(tfrecord_dir, cifar100_dir):
    print('Loading CIFAR-100 from "%s"' % cifar100_dir)
    import pickle
    with open(os.path.join(cifar100_dir, 'train'), 'rb') as file:
        data = pickle.load(file, encoding='latin1')
    images = data['data'].reshape(-1, 3, 32, 32)
    labels = np.array(data['fine_labels'])
    assert images.shape == (50000, 3, 32, 32) and images.dtype == np.uint8
    assert labels.shape == (50000,) and labels.dtype == np.int32
    assert np.min(images) == 0 and np.max(images) == 255
    assert np.min(labels) == 0 and np.max(labels) == 99
    onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
    onehot[np.arange(labels.size), labels] = 1.0

    with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
        order = tfr.choose_shuffled_order()
        for idx in range(order.size):
            tfr.add_image(images[order[idx]])
        tfr.add_labels(onehot[order])

#---------------------------------------------------------------------------- 
Example 9
Project: disentangling_conditional_gans   Author: zalandoresearch   File: dataset.py    License: MIT License 6 votes vote down vote up
def __init__(self, resolution=1024, num_channels=3, dtype='uint8', dynamic_range=[0,255], label_size=0, label_dtype='float32'):
        self.resolution         = resolution
        self.resolution_log2    = int(np.log2(resolution))
        self.shape              = [num_channels, resolution, resolution]
        self.dtype              = dtype
        self.dynamic_range      = dynamic_range
        self.label_size         = label_size
        self.label_dtype        = label_dtype
        self._tf_minibatch_var  = None
        self._tf_lod_var        = None
        self._tf_minibatch_np   = None
        self._tf_labels_np      = None

        assert self.resolution == 2 ** self.resolution_log2
        with tf.name_scope('Dataset'):
            self._tf_minibatch_var = tf.Variable(np.int32(0), name='minibatch_var')
            self._tf_lod_var = tf.Variable(np.int32(0), name='lod_var') 
Example 10
Project: mmdetection   Author: open-mmlab   File: maskiou_head.py    License: Apache License 2.0 6 votes vote down vote up
def _get_area_ratio(self, pos_proposals, pos_assigned_gt_inds, gt_masks):
        """Compute area ratio of the gt mask inside the proposal and the gt
        mask of the corresponding instance."""
        num_pos = pos_proposals.size(0)
        if num_pos > 0:
            area_ratios = []
            proposals_np = pos_proposals.cpu().numpy()
            pos_assigned_gt_inds = pos_assigned_gt_inds.cpu().numpy()
            # compute mask areas of gt instances (batch processing for speedup)
            gt_instance_mask_area = gt_masks.areas
            for i in range(num_pos):
                gt_mask = gt_masks[pos_assigned_gt_inds[i]]

                # crop the gt mask inside the proposal
                bbox = proposals_np[i, :].astype(np.int32)
                gt_mask_in_proposal = gt_mask.crop(bbox)

                ratio = gt_mask_in_proposal.areas[0] / (
                    gt_instance_mask_area[pos_assigned_gt_inds[i]] + 1e-7)
                area_ratios.append(ratio)
            area_ratios = torch.from_numpy(np.stack(area_ratios)).float().to(
                pos_proposals.device)
        else:
            area_ratios = pos_proposals.new_zeros((0, ))
        return area_ratios 
Example 11
def _load_dataset_clipping(self, dataset_dir, epsilon):
    """Helper method which loads dataset and determines clipping range.

    Args:
      dataset_dir: location of the dataset.
      epsilon: maximum allowed size of adversarial perturbation.
    """
    self.dataset_max_clip = {}
    self.dataset_min_clip = {}
    self._dataset_image_count = 0
    for fname in os.listdir(dataset_dir):
      if not fname.endswith('.png'):
        continue
      image_id = fname[:-4]
      image = np.array(
          Image.open(os.path.join(dataset_dir, fname)).convert('RGB'))
      image = image.astype('int32')
      self._dataset_image_count += 1
      self.dataset_max_clip[image_id] = np.clip(image + epsilon,
                                                0,
                                                255).astype('uint8')
      self.dataset_min_clip[image_id] = np.clip(image - epsilon,
                                                0,
                                                255).astype('uint8') 
Example 12
def load_images(input_dir, metadata_file_path, batch_shape):
    """Retrieve numpy arrays of images and labels, read from a directory."""
    num_images = batch_shape[0]
    with open(metadata_file_path) as input_file:
        reader = csv.reader(input_file)
        header_row = next(reader)
        rows = list(reader)

    row_idx_image_id = header_row.index('ImageId')
    row_idx_true_label = header_row.index('TrueLabel')
    images = np.zeros(batch_shape)
    labels = np.zeros(num_images, dtype=np.int32)
    for idx in xrange(num_images):
        row = rows[idx]
        filepath = os.path.join(input_dir, row[row_idx_image_id] + '.png')

        with tf.gfile.Open(filepath, 'rb') as f:
            image = np.array(
                Image.open(f).convert('RGB')).astype(np.float) / 255.0
        images[idx, :, :, :] = image
        labels[idx] = int(row[row_idx_true_label])
    return images, labels 
Example 13
Project: deep-learning-note   Author: wdxtub   File: 18_basic_tfrecord.py    License: MIT License 6 votes vote down vote up
def read_from_tfrecord(filenames):
    tfrecord_file_queue = tf.train.string_input_producer(filenames, name='queue')
    reader = tf.TFRecordReader()
    _, tfrecord_serialized = reader.read(tfrecord_file_queue)

    tfrecord_features = tf.parse_single_example(tfrecord_serialized, features={
        'label': tf.FixedLenFeature([],tf.int64),
        'shape': tf.FixedLenFeature([],tf.string),
        'image': tf.FixedLenFeature([],tf.string),
    }, name='features')

    image = tf.decode_raw(tfrecord_features['image'], tf.uint8)
    shape = tf.decode_raw(tfrecord_features['shape'], tf.int32)

    image = tf.reshape(image, shape)
    label = tfrecord_features['label']
    return label, shape, image 
Example 14
Project: deep-learning-note   Author: wdxtub   File: w2v_utils.py    License: MIT License 6 votes vote down vote up
def batch_gen(download_url, expected_byte, vocab_size, batch_size,
              skip_window, visual_fld):
    local_dest = 'data/w2v/text8.zip'
    utils.download_one_file(download_url, local_dest, expected_byte)
    words = read_data(local_dest)
    dictionary, _ = build_vocab(words, vocab_size, visual_fld)
    index_words = convert_words_to_index(words, dictionary)
    del words  # to save memory
    single_gen = generate_sample(index_words, skip_window)

    while True:
        center_batch = np.zeros(batch_size, dtype=np.int32)
        target_batch = np.zeros([batch_size, 1])
        for index in range(batch_size):
            center_batch[index], target_batch[index] = next(single_gen)
        yield center_batch, target_batch 
Example 15
Project: fullrmc   Author: bachiraoun   File: run.py    License: GNU Affero General Public License v3.0 6 votes vote down vote up
def bonds_CH(ENGINE, rang=10, recur=10, refine=False, explore=True):
    groups = []
    for idx in range(0,ENGINE.pdb.numberOfAtoms, 13):
        groups.append( np.array([idx+1 ,idx+2 ], dtype=np.int32) ) # C1-H11
        groups.append( np.array([idx+1 ,idx+3 ], dtype=np.int32) ) # C1-H12
        groups.append( np.array([idx+4 ,idx+5 ], dtype=np.int32) ) # C2-H21
        groups.append( np.array([idx+4 ,idx+6 ], dtype=np.int32) ) # C2-H22
        groups.append( np.array([idx+7 ,idx+8 ], dtype=np.int32) ) # C3-H31
        groups.append( np.array([idx+7 ,idx+9 ], dtype=np.int32) ) # C3-H32
        groups.append( np.array([idx+10,idx+11], dtype=np.int32) ) # C4-H41
        groups.append( np.array([idx+10,idx+12], dtype=np.int32) ) # C4-H42
    ENGINE.set_groups(groups)
    [g.set_move_generator(DistanceAgitationGenerator(amplitude=0.2,agitate=(True,True))) for g in ENGINE.groups]
    # set selector
    if refine or explore:
        gs = RecursiveGroupSelector(RandomSelector(ENGINE), recur=recur, refine=refine, explore=explore)
        ENGINE.set_group_selector(gs)
    # number of steps
    nsteps = recur*len(ENGINE.groups)
    for stepIdx in range(rang):
        LOGGER.info("Running 'bonds_CH' mode step %i"%(stepIdx))
        ENGINE.run(numberOfSteps=nsteps, saveFrequency=nsteps)

# ############ RUN H-C-H ANGLES ############ # 
Example 16
Project: fullrmc   Author: bachiraoun   File: run.py    License: GNU Affero General Public License v3.0 6 votes vote down vote up
def angles_HCH(ENGINE, rang=5, recur=10, refine=False, explore=True):
    groups = []
    for idx in range(0,ENGINE.pdb.numberOfAtoms, 13):
        groups.append( np.array([idx+1 ,idx+2, idx+3 ], dtype=np.int32) ) # H11-C1-H12
        groups.append( np.array([idx+4 ,idx+5, idx+6 ], dtype=np.int32) ) # H21-C2-H22
        groups.append( np.array([idx+7 ,idx+8, idx+9 ], dtype=np.int32) ) # H31-C3-H32
        groups.append( np.array([idx+10,idx+11,idx+12], dtype=np.int32) ) # H41-C4-H42
    ENGINE.set_groups(groups)
    [g.set_move_generator(AngleAgitationGenerator(amplitude=5)) for g in ENGINE.groups]
    # set selector
    if refine or explore:
        gs = RecursiveGroupSelector(RandomSelector(ENGINE), recur=recur, refine=refine, explore=explore)
        ENGINE.set_group_selector(gs)
    # number of steps
    nsteps = recur*len(ENGINE.groups)
    for stepIdx in range(rang):
        LOGGER.info("Running 'angles_HCH' mode step %i"%(stepIdx))
        ENGINE.run(numberOfSteps=nsteps, saveFrequency=nsteps)

# ############ RUN ATOMS ############ # 
Example 17
Project: dynamic-training-with-apache-mxnet-on-aws   Author: awslabs   File: data.py    License: Apache License 2.0 6 votes vote down vote up
def tokenize(self, path):
        """Tokenizes a text file."""
        assert os.path.exists(path)
        # Add words to the dictionary
        with open(path, 'r') as f:
            tokens = 0
            for line in f:
                words = line.split() + ['<eos>']
                tokens += len(words)
                for word in words:
                    self.dictionary.add_word(word)

        # Tokenize file content
        with open(path, 'r') as f:
            ids = np.zeros((tokens,), dtype='int32')
            token = 0
            for line in f:
                words = line.split() + ['<eos>']
                for word in words:
                    ids[token] = self.dictionary.word2idx[word]
                    token += 1

        return mx.nd.array(ids, dtype='int32') 
Example 18
Project: dynamic-training-with-apache-mxnet-on-aws   Author: awslabs   File: utils.py    License: Apache License 2.0 6 votes vote down vote up
def sample_mog(prob, mean, var, rng):
    """Sample from independent mixture of gaussian (MoG) distributions

    Each batch is an independent MoG distribution.

    Parameters
    ----------
    prob : numpy.ndarray
      mixture probability of each gaussian. Shape --> (batch_num, center_num)
    mean : numpy.ndarray
      mean of each gaussian. Shape --> (batch_num, center_num, sample_dim)
    var : numpy.ndarray
      variance of each gaussian. Shape --> (batch_num, center_num, sample_dim)
    rng : numpy.random.RandomState

    Returns
    -------
    ret : numpy.ndarray
      sampling result. Shape --> (batch_num, sample_dim)
    """
    gaussian_inds = sample_categorical(prob, rng).astype(numpy.int32)
    mean = mean[numpy.arange(mean.shape[0]), gaussian_inds, :]
    var = var[numpy.arange(mean.shape[0]), gaussian_inds, :]
    ret = sample_normal(mean=mean, var=var, rng=rng)
    return ret 
Example 19
Project: dynamic-training-with-apache-mxnet-on-aws   Author: awslabs   File: ndarray.py    License: Apache License 2.0 6 votes vote down vote up
def dtype(self):
        """Data-type of the array's elements.

        Returns
        -------
        numpy.dtype
            This NDArray's data type.

        Examples
        --------
        >>> x = mx.nd.zeros((2,3))
        >>> x.dtype
        <type 'numpy.float32'>
        >>> y = mx.nd.zeros((2,3), dtype='int32')
        >>> y.dtype
        <type 'numpy.int32'>
        """
        mx_dtype = ctypes.c_int()
        check_call(_LIB.MXNDArrayGetDType(
            self.handle, ctypes.byref(mx_dtype)))
        return _DTYPE_MX_TO_NP[mx_dtype.value] 
Example 20
Project: dynamic-training-with-apache-mxnet-on-aws   Author: awslabs   File: ndarray.py    License: Apache License 2.0 6 votes vote down vote up
def asnumpy(self):
        """Returns a ``numpy.ndarray`` object with value copied from this array.

        Examples
        --------
        >>> x = mx.nd.ones((2,3))
        >>> y = x.asnumpy()
        >>> type(y)
        <type 'numpy.ndarray'>
        >>> y
        array([[ 1.,  1.,  1.],
               [ 1.,  1.,  1.]], dtype=float32)
        >>> z = mx.nd.ones((2,3), dtype='int32')
        >>> z.asnumpy()
        array([[1, 1, 1],
               [1, 1, 1]], dtype=int32)
        """
        data = np.empty(self.shape, dtype=self.dtype)
        check_call(_LIB.MXNDArraySyncCopyToCPU(
            self.handle,
            data.ctypes.data_as(ctypes.c_void_p),
            ctypes.c_size_t(data.size)))
        return data 
Example 21
Project: dynamic-training-with-apache-mxnet-on-aws   Author: awslabs   File: ndarray.py    License: Apache License 2.0 6 votes vote down vote up
def asscalar(self):
        """Returns a scalar whose value is copied from this array.

        This function is equivalent to ``self.asnumpy()[0]``. This NDArray must have shape (1,).

        Examples
        --------
        >>> x = mx.nd.ones((1,), dtype='int32')
        >>> x.asscalar()
        1
        >>> type(x.asscalar())
        <type 'numpy.int32'>
        """
        if self.shape != (1,):
            raise ValueError("The current array is not a scalar")
        return self.asnumpy()[0] 
Example 22
def test_zero_prop2():
    x = mx.sym.Variable('x')
    idx = mx.sym.Variable('idx')
    y = mx.sym.batch_take(x, idx)
    z = mx.sym.stop_gradient(y)
    exe = z.simple_bind(ctx=mx.cpu(), x=(10, 10), idx=(10,),
                        type_dict={'x': np.float32, 'idx': np.int32})
    exe.forward()
    exe.backward()

    # The following bind() should throw an exception. We discard the expected stderr
    # output for this operation only in order to keep the test logs clean.
    with discard_stderr():
        try:
            y.simple_bind(ctx=mx.cpu(), x=(10, 10), idx=(10,),
                          type_dict={'x': np.float32, 'idx': np.int32})
        except:
            return

    assert False 
Example 23
Project: Black-Box-Audio   Author: rtaori   File: run_audio_attack.py    License: MIT License 5 votes vote down vote up
def setup_graph(self, input_audio_batch, target_phrase): 
        batch_size = input_audio_batch.shape[0]
        weird = (input_audio_batch.shape[1] - 1) // 320 
        logits_arg2 = np.tile(weird, batch_size)
        dense_arg1 = np.array(np.tile(target_phrase, (batch_size, 1)), dtype=np.int32)
        dense_arg2 = np.array(np.tile(target_phrase.shape[0], batch_size), dtype=np.int32)
        
        pass_in = np.clip(input_audio_batch, -2**15, 2**15-1)
        seq_len = np.tile(weird, batch_size).astype(np.int32)
        
        with tf.variable_scope('', reuse=tf.AUTO_REUSE):
            
            inputs = tf.placeholder(tf.float32, shape=pass_in.shape, name='a')
            len_batch = tf.placeholder(tf.float32, name='b')
            arg2_logits = tf.placeholder(tf.int32, shape=logits_arg2.shape, name='c')
            arg1_dense = tf.placeholder(tf.float32, shape=dense_arg1.shape, name='d')
            arg2_dense = tf.placeholder(tf.int32, shape=dense_arg2.shape, name='e')
            len_seq = tf.placeholder(tf.int32, shape=seq_len.shape, name='f')
            
            logits = get_logits(inputs, arg2_logits)
            target = ctc_label_dense_to_sparse(arg1_dense, arg2_dense, len_batch)
            ctcloss = tf.nn.ctc_loss(labels=tf.cast(target, tf.int32), inputs=logits, sequence_length=len_seq)
            decoded, _ = tf.nn.ctc_greedy_decoder(logits, arg2_logits, merge_repeated=True)
            
            sess = tf.Session()
            saver = tf.train.Saver(tf.global_variables())
            saver.restore(sess, "models/session_dump")
            
        func1 = lambda a, b, c, d, e, f: sess.run(ctcloss, 
            feed_dict={inputs: a, len_batch: b, arg2_logits: c, arg1_dense: d, arg2_dense: e, len_seq: f})
        func2 = lambda a, b, c, d, e, f: sess.run([ctcloss, decoded], 
            feed_dict={inputs: a, len_batch: b, arg2_logits: c, arg1_dense: d, arg2_dense: e, len_seq: f})
        return (func1, func2) 
Example 24
Project: Black-Box-Audio   Author: rtaori   File: run_audio_attack.py    License: MIT License 5 votes vote down vote up
def getctcloss(self, input_audio_batch, target_phrase, decode=False):
        batch_size = input_audio_batch.shape[0]
        weird = (input_audio_batch.shape[1] - 1) // 320 
        logits_arg2 = np.tile(weird, batch_size)
        dense_arg1 = np.array(np.tile(target_phrase, (batch_size, 1)), dtype=np.int32)
        dense_arg2 = np.array(np.tile(target_phrase.shape[0], batch_size), dtype=np.int32)
        
        pass_in = np.clip(input_audio_batch, -2**15, 2**15-1)
        seq_len = np.tile(weird, batch_size).astype(np.int32)

        if decode:
            return self.funcs[1](pass_in, batch_size, logits_arg2, dense_arg1, dense_arg2, seq_len)
        else:
            return self.funcs[0](pass_in, batch_size, logits_arg2, dense_arg1, dense_arg2, seq_len) 
Example 25
Project: vergeml   Author: mme   File: env.py    License: MIT License 5 votes vote down vote up
def _convert(self, vals):
        res = {}
        for k, v in vals.items():
            if isinstance(v, (np.int, np.int8, np.int16, np.int32, np.int64)):
                v = int(v)
            elif isinstance(v, (np.float, np.float16, np.float32, np.float64)):
                v = float(v)
            elif isinstance(v, Labels):
                v = list(v)
            elif isinstance(v, np.ndarray):
                v = v.tolist()
            elif isinstance(v, dict):
                v = self._convert(v)
            res[k] = v
        return res 
Example 26
Project: vergeml   Author: mme   File: env.py    License: MIT License 5 votes vote down vote up
def _toscalar(v):
    if isinstance(v, (np.float16, np.float32, np.float64,
                      np.uint8, np.uint16, np.uint32, np.uint64,
                      np.int8, np.int16, np.int32, np.int64)):
        return np.asscalar(v)
    else:
        return v 
Example 27
Project: cat-bbs   Author: aleju   File: bbs.py    License: MIT License 5 votes vote down vote up
def draw_on_image(self, img, color=[0, 255, 0], alpha=1.0, thickness=1, copy=copy):
        assert img.dtype in [np.uint8, np.float32, np.int32, np.int64]

        result = np.copy(img) if copy else img
        for i in range(thickness):
            y = [self.y1-i, self.y1-i, self.y2+i, self.y2+i]
            x = [self.x1-i, self.x2+i, self.x2+i, self.x1-i]
            rr, cc = draw.polygon_perimeter(y, x, shape=img.shape)
            if alpha >= 0.99:
                result[rr, cc, 0] = color[0]
                result[rr, cc, 1] = color[1]
                result[rr, cc, 2] = color[2]
            else:
                if result.dtype == np.float32:
                    result[rr, cc, 0] = (1 - alpha) * result[rr, cc, 0] + alpha * color[0]
                    result[rr, cc, 1] = (1 - alpha) * result[rr, cc, 1] + alpha * color[1]
                    result[rr, cc, 2] = (1 - alpha) * result[rr, cc, 2] + alpha * color[2]
                    result = np.clip(result, 0, 255)
                else:
                    result = result.astype(np.float32)
                    result[rr, cc, 0] = (1 - alpha) * result[rr, cc, 0] + alpha * color[0]
                    result[rr, cc, 1] = (1 - alpha) * result[rr, cc, 1] + alpha * color[1]
                    result[rr, cc, 2] = (1 - alpha) * result[rr, cc, 2] + alpha * color[2]
                    result = np.clip(result, 0, 255).astype(np.uint8)

        return result 
Example 28
Project: Att-ChemdNER   Author: lingluodlut   File: utils.py    License: Apache License 2.0 5 votes vote down vote up
def evaluate(parameters, f_eval, raw_sentences, parsed_sentences,
             id_to_tag, dictionary_tags,filename,
             useAttend=True):
#{{{
    """
    Evaluate current model using CoNLL script.
    """
    n_tags = len(id_to_tag)
    predictions = []
    count = np.zeros((n_tags, n_tags), dtype=np.int32)

    for raw_sentence, data in zip(raw_sentences, parsed_sentences):
        input = create_input(data, parameters, False,useAttend=useAttend)
        if parameters['crf']:
            y_preds = np.array(f_eval(*input))
        else:
            y_preds = f_eval(*input).argmax(axis=1)
        y_reals = np.array(data['tags']).astype(np.int32)
        assert len(y_preds) == len(y_reals)
        p_tags = [id_to_tag[y_pred] for y_pred in y_preds]
        r_tags = [id_to_tag[y_real] for y_real in y_reals]
        if parameters['tag_scheme'] == 'iobes':
            p_tags = iobes_iob(p_tags)
            r_tags = iobes_iob(r_tags)
        for i, (y_pred, y_real) in enumerate(zip(y_preds, y_reals)):
            new_line = " ".join(raw_sentence[i][:-1] + [r_tags[i], p_tags[i]])
            predictions.append(new_line)
            count[y_real, y_pred] += 1
        predictions.append("")
    #write to file 
    with codecs.open(filename, 'w', 'utf8') as f:
        f.write("\n".join(predictions))
    return get_perf(filename) 
#}}} 
Example 29
Project: Att-ChemdNER   Author: lingluodlut   File: model.py    License: Apache License 2.0 5 votes vote down vote up
def modelScore(self,tag_ids,scores,s_len):
    #{{{
        """
            ATTENTATION THIS FUNCTION IS SYMBOL PROGRAMMING
            this function is to return the score of our model at a fixed sentence label 
        @param:
            scores:        the scores matrix ,the output of our model
            tag:           a numpy array, which represent one sentence label 
            sent_lens:     a scalar number, the length of sentence.
                because our sentence label will be expand to max sentence length,
                so we will use this to get the original sentence label. 
        @return: 
            a scalar number ,the score;
        """
    #{{{
        n_tags=self.output_dim;
        transitions=self.transitions;
        #score from tags_scores
        real_path_score = scores[T.arange(s_len), tag_ids].sum()

        # Score from transitions
        b_id = theano.shared(value=np.array([n_tags], dtype=np.int32))
        e_id = theano.shared(value=np.array([n_tags + 1], dtype=np.int32))
        padded_tags_ids = T.concatenate([b_id, tag_ids, e_id], axis=0)
        real_path_score += transitions[
                padded_tags_ids[T.arange(s_len + 1)],
                padded_tags_ids[T.arange(s_len + 1) + 1]
            ].sum()
        #to prevent T.exp(real_path_score) to be inf 
        #return real_path_score;
        return real_path_score/s_len;
    #}}}
    #}}} 
Example 30
Project: Att-ChemdNER   Author: lingluodlut   File: theano_backend.py    License: Apache License 2.0 5 votes vote down vote up
def arange(start, stop=None, step=1, dtype='int32'):
    '''Creates a 1-D tensor containing a sequence of integers.

    The function arguments use the same convention as
    Theano's arange: if only one argument is provided,
    it is in fact the "stop" argument.

    The default type of the returned tensor is 'int32' to
    match TensorFlow's default.
    '''
    return T.arange(start, stop=stop, step=step, dtype=dtype)