Python math.pi() Examples
The following are 30
code examples of math.pi().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
math
, or try the search function
.

Example #1
Source File: Wave.py From BiblioPixelAnimations with MIT License | 7 votes |
def step(self, amt=1): for i in range(self._size): y = math.sin( math.pi * float(self.cycles) * float(self._step * i) / float(self._size)) if y >= 0.0: # Peaks of sine wave are white y = 1.0 - y # Translate Y to 0.0 (top) to 1.0 (center) r, g, b = self.palette(0) c2 = (int(255 - float(255 - r) * y), int(255 - float(255 - g) * y), int(255 - float(255 - b) * y)) else: # Troughs of sine wave are black y += 1.0 # Translate Y to 0.0 (bottom) to 1.0 (center) r, g, b = self.palette(0) c2 = (int(float(r) * y), int(float(g) * y), int(float(b) * y)) self.layout.set(self._start + i, c2) self._step += amt
Example #2
Source File: Wave.py From BiblioPixelAnimations with MIT License | 6 votes |
def step(self, amt=1): for i in range(self._size): y = math.sin((math.pi * float(self.cycles) * float(i) / float(self._size)) + self._moveStep) if y >= 0.0: # Peaks of sine wave are white y = 1.0 - y # Translate Y to 0.0 (top) to 1.0 (center) r, g, b = self.palette(0) c2 = (int(255 - float(255 - r) * y), int(255 - float(255 - g) * y), int(255 - float(255 - b) * y)) else: # Troughs of sine wave are black y += 1.0 # Translate Y to 0.0 (bottom) to 1.0 (center) r, g, b = self.palette(0) c2 = (int(float(r) * y), int(float(g) * y), int(float(b) * y)) self.layout.set(self._start + i, c2) self._moveStep += amt self._moveStep += 1 if(self._moveStep >= self._size): self._moveStep = 0
Example #3
Source File: minitaur_gym_env.py From soccer-matlab with BSD 2-Clause "Simplified" License | 6 votes |
def _get_observation_upper_bound(self): """Get the upper bound of the observation. Returns: The upper bound of an observation. See GetObservation() for the details of each element of an observation. """ upper_bound = np.zeros(self._get_observation_dimension()) num_motors = self.minitaur.num_motors upper_bound[0:num_motors] = math.pi # Joint angle. upper_bound[num_motors:2 * num_motors] = ( motor.MOTOR_SPEED_LIMIT) # Joint velocity. upper_bound[2 * num_motors:3 * num_motors] = ( motor.OBSERVED_TORQUE_LIMIT) # Joint torque. upper_bound[3 * num_motors:] = 1.0 # Quaternion of base orientation. return upper_bound
Example #4
Source File: minitaur.py From soccer-matlab with BSD 2-Clause "Simplified" License | 6 votes |
def MapToMinusPiToPi(angles): """Maps a list of angles to [-pi, pi]. Args: angles: A list of angles in rad. Returns: A list of angle mapped to [-pi, pi]. """ mapped_angles = copy.deepcopy(angles) for i in range(len(angles)): mapped_angles[i] = math.fmod(angles[i], TWO_PI) if mapped_angles[i] >= math.pi: mapped_angles[i] -= TWO_PI elif mapped_angles[i] < -math.pi: mapped_angles[i] += TWO_PI return mapped_angles
Example #5
Source File: minitaur_randomize_terrain_gym_env_example.py From soccer-matlab with BSD 2-Clause "Simplified" License | 6 votes |
def ResetTerrainExample(): """An example showing resetting random terrain env.""" num_reset = 10 steps = 100 env = minitaur_randomize_terrain_gym_env.MinitaurRandomizeTerrainGymEnv( render=True, leg_model_enabled=False, motor_velocity_limit=np.inf, pd_control_enabled=True) action = [math.pi / 2] * 8 for _ in xrange(num_reset): env.reset() for _ in xrange(steps): _, _, done, _ = env.step(action) if done: break
Example #6
Source File: minitaur_trotting_env.py From soccer-matlab with BSD 2-Clause "Simplified" License | 6 votes |
def _gen_signal(self, t, phase): """Generates a sinusoidal reference leg trajectory. The foot (leg tip) will move in a ellipse specified by extension and swing amplitude. Args: t: Current time in simulation. phase: The phase offset for the periodic trajectory. Returns: The desired leg extension and swing angle at the current time. """ period = 1 / self._step_frequency extension = self._extension_amplitude * math.cos( 2 * math.pi / period * t + phase) swing = self._swing_amplitude * math.sin(2 * math.pi / period * t + phase) return extension, swing
Example #7
Source File: minitaur_trotting_env.py From soccer-matlab with BSD 2-Clause "Simplified" License | 6 votes |
def _signal(self, t): """Generates the trotting gait for the robot. Args: t: Current time in simulation. Returns: A numpy array of the reference leg positions. """ # Generates the leg trajectories for the two digonal pair of legs. ext_first_pair, sw_first_pair = self._gen_signal(t, 0) ext_second_pair, sw_second_pair = self._gen_signal(t, math.pi) trotting_signal = np.array([ sw_first_pair, sw_second_pair, sw_second_pair, sw_first_pair, ext_first_pair, ext_second_pair, ext_second_pair, ext_first_pair ]) signal = np.array(self._init_pose) + trotting_signal return signal
Example #8
Source File: minitaur_ball_gym_env.py From soccer-matlab with BSD 2-Clause "Simplified" License | 6 votes |
def _get_observation(self): world_translation_minitaur, world_rotation_minitaur = ( self._pybullet_client.getBasePositionAndOrientation( self.minitaur.quadruped)) world_translation_ball, world_rotation_ball = ( self._pybullet_client.getBasePositionAndOrientation(self._ball_id)) minitaur_translation_world, minitaur_rotation_world = ( self._pybullet_client.invertTransform(world_translation_minitaur, world_rotation_minitaur)) minitaur_translation_ball, _ = ( self._pybullet_client.multiplyTransforms(minitaur_translation_world, minitaur_rotation_world, world_translation_ball, world_rotation_ball)) distance = math.sqrt(minitaur_translation_ball[0]**2 + minitaur_translation_ball[1]**2) angle = math.atan2(minitaur_translation_ball[0], minitaur_translation_ball[1]) self._observation = [angle - math.pi / 2, distance] return self._observation
Example #9
Source File: minitaur_reactive_env.py From soccer-matlab with BSD 2-Clause "Simplified" License | 6 votes |
def _get_observation_upper_bound(self): """Get the upper bound of the observation. Returns: The upper bound of an observation. See _get_true_observation() for the details of each element of an observation. """ upper_bound_roll = 2 * math.pi upper_bound_pitch = 2 * math.pi upper_bound_roll_dot = 2 * math.pi / self._time_step upper_bound_pitch_dot = 2 * math.pi / self._time_step upper_bound_motor_angle = 2 * math.pi upper_bound = [ upper_bound_roll, upper_bound_pitch, upper_bound_roll_dot, upper_bound_pitch_dot ] if self._use_angle_in_observation: upper_bound.extend([upper_bound_motor_angle] * NUM_MOTORS) return np.array(upper_bound)
Example #10
Source File: minitaur_gym_env_example.py From soccer-matlab with BSD 2-Clause "Simplified" License | 6 votes |
def ResetPoseExample(log_path=None): """An example that the minitaur stands still using the reset pose.""" steps = 10000 environment = minitaur_gym_env.MinitaurGymEnv( urdf_version=minitaur_gym_env.DERPY_V0_URDF_VERSION, render=True, leg_model_enabled=False, motor_velocity_limit=np.inf, pd_control_enabled=True, accurate_motor_model_enabled=True, motor_overheat_protection=True, hard_reset=False, log_path=log_path) action = [math.pi / 2] * 8 for _ in range(steps): _, _, done, _ = environment.step(action) time.sleep(1./100.) if done: break
Example #11
Source File: minitaur_terrain_randomizer.py From soccer-matlab with BSD 2-Clause "Simplified" License | 6 votes |
def sample(self): """Samples new points around some existing point. Removes the sampling base point and also stores the new jksampled points if they are far enough from all existing points. """ active_point = self._active_list.pop() for _ in xrange(self._max_sample_size): # Generate random points near the current active_point between the radius random_radius = np.random.uniform(self._min_radius, 2 * self._min_radius) random_angle = np.random.uniform(0, 2 * math.pi) # The sampled 2D points near the active point sample = random_radius * np.array( [np.cos(random_angle), np.sin(random_angle)]) + active_point if not self._is_in_grid(sample): continue if self._is_close_to_existing_points(sample): continue self._active_list.append(sample) self._grid[self._point_to_index_1d(sample)] = sample
Example #12
Source File: minitaur_gym_env_example.py From soccer-matlab with BSD 2-Clause "Simplified" License | 6 votes |
def ResetPoseExample(): """An example that the minitaur stands still using the reset pose.""" steps = 1000 randomizer = (minitaur_env_randomizer.MinitaurEnvRandomizer()) environment = minitaur_gym_env.MinitaurBulletEnv( render=True, leg_model_enabled=False, motor_velocity_limit=np.inf, pd_control_enabled=True, accurate_motor_model_enabled=True, motor_overheat_protection=True, env_randomizer = randomizer, hard_reset=False) action = [math.pi / 2] * 8 for _ in range(steps): _, _, done, _ = environment.step(action) if done: break environment.reset()
Example #13
Source File: minitaur.py From soccer-matlab with BSD 2-Clause "Simplified" License | 6 votes |
def ConvertFromLegModel(self, actions): """Convert the actions that use leg model to the real motor actions. Args: actions: The theta, phi of the leg model. Returns: The eight desired motor angles that can be used in ApplyActions(). """ motor_angle = copy.deepcopy(actions) scale_for_singularity = 1 offset_for_singularity = 1.5 half_num_motors = int(self.num_motors / 2) quater_pi = math.pi / 4 for i in range(self.num_motors): action_idx = i // 2 forward_backward_component = (-scale_for_singularity * quater_pi * ( actions[action_idx + half_num_motors] + offset_for_singularity)) extension_component = (-1)**i * quater_pi * actions[action_idx] if i >= half_num_motors: extension_component = -extension_component motor_angle[i] = ( math.pi + forward_backward_component + extension_component) return motor_angle
Example #14
Source File: kuka.py From soccer-matlab with BSD 2-Clause "Simplified" License | 6 votes |
def __init__(self, urdfRootPath=pybullet_data.getDataPath(), timeStep=0.01): self.urdfRootPath = urdfRootPath self.timeStep = timeStep self.maxVelocity = .35 self.maxForce = 200. self.fingerAForce = 2 self.fingerBForce = 2.5 self.fingerTipForce = 2 self.useInverseKinematics = 1 self.useSimulation = 1 self.useNullSpace =21 self.useOrientation = 1 self.kukaEndEffectorIndex = 6 self.kukaGripperIndex = 7 #lower limits for null space self.ll=[-.967,-2 ,-2.96,0.19,-2.96,-2.09,-3.05] #upper limits for null space self.ul=[.967,2 ,2.96,2.29,2.96,2.09,3.05] #joint ranges for null space self.jr=[5.8,4,5.8,4,5.8,4,6] #restposes for null space self.rp=[0,0,0,0.5*math.pi,0,-math.pi*0.5*0.66,0] #joint damping coefficents self.jd=[0.00001,0.00001,0.00001,0.00001,0.00001,0.00001,0.00001,0.00001,0.00001,0.00001,0.00001,0.00001,0.00001,0.00001] self.reset()
Example #15
Source File: test_pybullet_sim_gym_env.py From soccer-matlab with BSD 2-Clause "Simplified" License | 6 votes |
def ResetPoseExample(steps): """An example that the minitaur stands still using the reset pose.""" environment = pybullet_sim_gym_env.PyBulletSimGymEnv( pybullet_sim_factory=boxstack_pybullet_sim, debug_visualization=False, render=True, action_repeat=30) action = [math.pi / 2] * 8 vid = video_recorder.VideoRecorder(env=environment,path="vid.mp4") for _ in range(steps): print(_) startsim = time.time() _, _, done, _ = environment.step(action) stopsim = time.time() startrender = time.time() #environment.render(mode='rgb_array') vid.capture_frame() stoprender = time.time() print ("env.step " , (stopsim - startsim)) print ("env.render " , (stoprender - startrender)) if done: environment.reset()
Example #16
Source File: common.py From PyOptiX with MIT License | 6 votes |
def calculate_camera_variables(eye, lookat, up, fov, aspect_ratio, fov_is_vertical=False): import numpy as np import math W = np.array(lookat) - np.array(eye) wlen = np.linalg.norm(W) U = np.cross(W, np.array(up)) U /= np.linalg.norm(U) V = np.cross(U, W) V /= np.linalg.norm(V) if fov_is_vertical: vlen = wlen * math.tan(0.5 * fov * math.pi / 180.0) V *= vlen ulen = vlen * aspect_ratio U *= ulen else: ulen = wlen * math.tan(0.5 * fov * math.pi / 180.0) U *= ulen vlen = ulen * aspect_ratio V *= vlen return U, V, W
Example #17
Source File: transform_utils.py From robosuite with MIT License | 6 votes |
def random_quat(rand=None): """Return uniform random unit quaternion. rand: array like or None Three independent random variables that are uniformly distributed between 0 and 1. >>> q = random_quat() >>> np.allclose(1.0, vector_norm(q)) True >>> q = random_quat(np.random.random(3)) >>> q.shape (4,) """ if rand is None: rand = np.random.rand(3) else: assert len(rand) == 3 r1 = np.sqrt(1.0 - rand[0]) r2 = np.sqrt(rand[0]) pi2 = math.pi * 2.0 t1 = pi2 * rand[1] t2 = pi2 * rand[2] return np.array( (np.sin(t1) * r1, np.cos(t1) * r1, np.sin(t2) * r2, np.cos(t2) * r2), dtype=np.float32, )
Example #18
Source File: loss.py From torch-toolbox with BSD 3-Clause "New" or "Revised" License | 6 votes |
def __init__( self, classes, m=0.5, s=64, easy_margin=True, weight=None, size_average=None, ignore_index=-100, reduce=None, reduction='mean'): super(ArcLoss, self).__init__(weight, size_average, reduce, reduction) self.ignore_index = ignore_index assert s > 0. assert 0 <= m <= (math.pi / 2) self.s = s self.m = m self.cos_m = math.cos(m) self.sin_m = math.sin(m) self.mm = math.sin(math.pi - m) * m self.threshold = math.cos(math.pi - m) self.classes = classes self.easy_margin = easy_margin
Example #19
Source File: loss.py From torch-toolbox with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _get_body(self, x, target): cos_t = torch.gather(x, 1, target.unsqueeze(1)) # cos(theta_yi) if self.easy_margin: cond = torch.relu(cos_t) else: cond_v = cos_t - self.threshold cond = torch.relu(cond_v) cond = cond.bool() # Apex would convert FP16 to FP32 here # cos(theta_yi + m) new_zy = torch.cos(torch.acos(cos_t) + self.m).type(cos_t.dtype) if self.easy_margin: zy_keep = cos_t else: zy_keep = cos_t - self.mm # (cos(theta_yi) - sin(pi - m)*m) new_zy = torch.where(cond, new_zy, zy_keep) diff = new_zy - cos_t # cos(theta_yi + m) - cos(theta_yi) gt_one_hot = F.one_hot(target, num_classes=self.classes) body = gt_one_hot * diff return body
Example #20
Source File: kaldi.py From audio with BSD 2-Clause "Simplified" License | 6 votes |
def _feature_window_function(window_type: str, window_size: int, blackman_coeff: float, device: torch.device, dtype: int, ) -> Tensor: r"""Returns a window function with the given type and size """ if window_type == HANNING: return torch.hann_window(window_size, periodic=False, device=device, dtype=dtype) elif window_type == HAMMING: return torch.hamming_window(window_size, periodic=False, alpha=0.54, beta=0.46, device=device, dtype=dtype) elif window_type == POVEY: # like hanning but goes to zero at edges return torch.hann_window(window_size, periodic=False, device=device, dtype=dtype).pow(0.85) elif window_type == RECTANGULAR: return torch.ones(window_size, device=device, dtype=dtype) elif window_type == BLACKMAN: a = 2 * math.pi / (window_size - 1) window_function = torch.arange(window_size, device=device, dtype=dtype) # can't use torch.blackman_window as they use different coefficients return (blackman_coeff - 0.5 * torch.cos(a * window_function) + (0.5 - blackman_coeff) * torch.cos(2 * a * window_function)).to(device=device, dtype=dtype) else: raise Exception('Invalid window type ' + window_type)
Example #21
Source File: transforms.py From audio with BSD 2-Clause "Simplified" License | 6 votes |
def _fade_in(self, waveform_length: int) -> Tensor: fade = torch.linspace(0, 1, self.fade_in_len) ones = torch.ones(waveform_length - self.fade_in_len) if self.fade_shape == "linear": fade = fade if self.fade_shape == "exponential": fade = torch.pow(2, (fade - 1)) * fade if self.fade_shape == "logarithmic": fade = torch.log10(.1 + fade) + 1 if self.fade_shape == "quarter_sine": fade = torch.sin(fade * math.pi / 2) if self.fade_shape == "half_sine": fade = torch.sin(fade * math.pi - math.pi / 2) / 2 + 0.5 return torch.cat((fade, ones)).clamp_(0, 1)
Example #22
Source File: demo.py From unicorn-hat-hd with MIT License | 5 votes |
def tunnel(x, y, step): speed = step / 100.0 x -= (u_width / 2) y -= (u_height / 2) xo = math.sin(step / 27.0) * 2 yo = math.cos(step / 18.0) * 2 x += xo y += yo if y == 0: if x < 0: angle = -(math.pi / 2) else: angle = (math.pi / 2) else: angle = math.atan(x / y) if y > 0: angle += math.pi angle /= 2 * math.pi # convert angle to 0...1 range hyp = math.sqrt(math.pow(x, 2) + math.pow(y, 2)) shade = hyp / 2.1 shade = 1 if shade > 1 else shade angle += speed depth = speed + (hyp / 10) col1 = hue_to_rgb[step % 255] col1 = (col1[0] * 0.8, col1[1] * 0.8, col1[2] * 0.8) col2 = hue_to_rgb[step % 255] col2 = (col2[0] * 0.3, col2[1] * 0.3, col2[2] * 0.3) col = col1 if int(abs(angle * 6.0)) % 2 == 0 else col2 td = .3 if int(abs(depth * 3.0)) % 2 == 0 else 0 col = (col[0] + td, col[1] + td, col[2] + td) col = (col[0] * shade, col[1] * shade, col[2] * shade) return (col[0] * 255, col[1] * 255, col[2] * 255)
Example #23
Source File: agent.py From indras_net with GNU General Public License v3.0 | 5 votes |
def ratio_to_sin(ratio): """ Take a ratio of y to x and turn it into a sine. """ return sin(ratio * pi / 2)
Example #24
Source File: grid_env.py From indras_net with GNU General Public License v3.0 | 5 votes |
def get_angle(self, agent1, agent2, grid_view=None): """ Use two agents to find the angle they make, using their coordinates """ dy = abs(agent1.pos[Y] - agent2.pos[Y]) dx = abs(agent1.pos[X] - agent2.pos[X]) if(dy == 0): return 180 if(dx == 0): return 90 else: rad = math.atan(dy / dx) angle = rad * (180 / math.pi) return angle
Example #25
Source File: asthama_search.py From pepper-robot-programming with MIT License | 5 votes |
def _transformTheta(self, theta): # CONVERTING THETA { THETA' % 360} if (float(theta) == math.radians(360)): theta = 0.0 if (float(theta) == -(math.radians(360))): theta = 0.0 if (float(theta) == math.radians(270)): theta = -math.pi/2 if (float(theta) == -(math.radians(270))): theta = math.pi/2 return theta
Example #26
Source File: graph_layout.py From EDeN with MIT License | 5 votes |
def _compute_initial_pos(self, graph): _radius = 1 _offset = 0 n = len(graph) pos = {id: np.array([_radius * math.cos(theta - math.pi / 2) + _offset, _radius * math.sin(theta - math.pi / 2) + _offset] ) for id, theta in enumerate( np.linspace(0, 2 * math.pi * (1 - 1 / float(n)), num=n))} return pos
Example #27
Source File: optimization.py From cmrc2019 with Creative Commons Attribution Share Alike 4.0 International | 5 votes |
def warmup_cosine(x, warmup=0.002): if x < warmup: return x/warmup return 0.5 * (1.0 + torch.cos(math.pi * x))
Example #28
Source File: modeling.py From cmrc2019 with Creative Commons Attribution Share Alike 4.0 International | 5 votes |
def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
Example #29
Source File: opt.py From comet-commonsense with Apache License 2.0 | 5 votes |
def warmup_cosine(x, warmup=0.002): s = 1 if x <= warmup else 0 return s*(x/warmup) + (1-s)*(0.5 * (1 + torch.cos(math.pi * x)))
Example #30
Source File: gpt.py From comet-commonsense with Apache License 2.0 | 5 votes |
def gelu(x): return (0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))))