Python numpy.multiply() Examples
The following are 30 code examples for showing how to use numpy.multiply(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: captcha_generator.py License: Apache License 2.0 | 8 votes |
def image(self, captcha_str): """ Generate a greyscale captcha image representing number string Parameters ---------- captcha_str: str string a characters for captcha image Returns ------- numpy.ndarray Generated greyscale image in np.ndarray float type with values normalized to [0, 1] """ img = self.captcha.generate(captcha_str) img = np.fromstring(img.getvalue(), dtype='uint8') img = cv2.imdecode(img, cv2.IMREAD_GRAYSCALE) img = cv2.resize(img, (self.h, self.w)) img = img.transpose(1, 0) img = np.multiply(img, 1 / 255.0) return img
Example 2
Project: BiblioPixelAnimations Author: ManiacalLabs File: system_eq.py License: MIT License | 6 votes |
def get_audio_data(self): frames = self.rec.get_frames() result = [0] * self.bins if len(frames) > 0: # keeps only the last frame current_frame = frames[-1] # plots the time signal # self.line_top.set_data(self.time_vect, current_frame) # computes and plots the fft signal fft_frame = np.fft.rfft(current_frame) if self.auto_gain: fft_frame /= np.abs(fft_frame).max() else: fft_frame *= (1 + self.gain) / 5000000. fft_frame = np.abs(fft_frame) if self.log_scale: fft_frame = np.log10(np.add(1, np.multiply(10, fft_frame))) result = [min(int(max(i, 0.) * 1023), 1023) for i in fft_frame][0:self.bins] return result
Example 3
Project: BiblioPixelAnimations Author: ManiacalLabs File: system_eq.py License: MIT License | 6 votes |
def get_audio_data(self): frames = self.rec.get_frames() result = [0] * self.bins if len(frames) > 0: # keeps only the last frame current_frame = frames[-1] # plots the time signal # self.line_top.set_data(self.time_vect, current_frame) # computes and plots the fft signal fft_frame = np.fft.rfft(current_frame) if self.auto_gain: fft_frame /= np.abs(fft_frame).max() else: fft_frame *= (1 + self.gain) / 5000000. fft_frame = np.abs(fft_frame) if self.log_scale: fft_frame = np.log10(np.add(1, np.multiply(10, fft_frame))) result = [min(int(max(i, 0.) * 1023), 1023) for i in fft_frame][0:self.bins] return result
Example 4
Project: deep-learning-note Author: wdxtub File: 5_nueral_network.py License: MIT License | 6 votes |
def cost0(params, input_size, hidden_size, num_labels, X, y, learning_rate): m = X.shape[0] X = np.matrix(X) y = np.matrix(y) # reshape the parameter array into parameter matrices for each layer theta1 = np.matrix(np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1)))) theta2 = np.matrix(np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1)))) # run the feed-forward pass a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2) # compute the cost J = 0 for i in range(m): first_term = np.multiply(-y[i,:], np.log(h[i,:])) second_term = np.multiply((1 - y[i,:]), np.log(1 - h[i,:])) J += np.sum(first_term - second_term) J = J / m return J
Example 5
Project: deep-learning-note Author: wdxtub File: 5_nueral_network.py License: MIT License | 6 votes |
def cost(params, input_size, hidden_size, num_labels, X, y, learning_rate): m = X.shape[0] X = np.matrix(X) y = np.matrix(y) # reshape the parameter array into parameter matrices for each layer theta1 = np.matrix(np.reshape(params[:hidden_size * (input_size + 1)], (hidden_size, (input_size + 1)))) theta2 = np.matrix(np.reshape(params[hidden_size * (input_size + 1):], (num_labels, (hidden_size + 1)))) # run the feed-forward pass a1, z2, a2, z3, h = forward_propagate(X, theta1, theta2) # compute the cost J = 0 for i in range(m): first_term = np.multiply(-y[i,:], np.log(h[i,:])) second_term = np.multiply((1 - y[i,:]), np.log(1 - h[i,:])) J += np.sum(first_term - second_term) J = J / m # add the cost regularization term J += (float(learning_rate) / (2 * m)) * (np.sum(np.power(theta1[:,1:], 2)) + np.sum(np.power(theta2[:,1:], 2))) return J
Example 6
Project: deep-learning-note Author: wdxtub File: 9_anomaly_and_rec.py License: MIT License | 6 votes |
def cost(params, Y, R, num_features): Y = np.matrix(Y) # (1682, 943) R = np.matrix(R) # (1682, 943) num_movies = Y.shape[0] num_users = Y.shape[1] # reshape the parameter array into parameter matrices X = np.matrix(np.reshape(params[:num_movies * num_features], (num_movies, num_features))) # (1682, 10) Theta = np.matrix(np.reshape(params[num_movies * num_features:], (num_users, num_features))) # (943, 10) # initializations J = 0 # compute the cost error = np.multiply((X * Theta.T) - Y, R) # (1682, 943) squared_error = np.power(error, 2) # (1682, 943) J = (1. / 2) * np.sum(squared_error) return J
Example 7
Project: deep-learning-note Author: wdxtub File: 3_logistic_regression.py License: MIT License | 6 votes |
def gradientReg(theta, X, y, learningRate): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) parameters = int(theta.ravel().shape[1]) grad = np.zeros(parameters) error = sigmoid(X * theta.T) - y for i in range(parameters): term = np.multiply(error, X[:,i]) if (i == 0): grad[i] = np.sum(term) / len(X) else: grad[i] = (np.sum(term) / len(X)) + ((learningRate / len(X)) * theta[:,i]) return grad
Example 8
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: ocr_predict.py License: Apache License 2.0 | 6 votes |
def forward_ocr(self, img_): img_ = cv2.resize(img_, (80, 30)) img_ = img_.transpose(1, 0) print(img_.shape) img_ = img_.reshape((1, 80, 30)) print(img_.shape) # img_ = img_.reshape((80 * 30)) img_ = np.multiply(img_, 1 / 255.0) self.predictor.forward(data=img_, **self.init_state_dict) prob = self.predictor.get_output(0) label_list = [] for p in prob: print(np.argsort(p)) max_index = np.argsort(p)[::-1][0] label_list.append(max_index) return self.__get_string(label_list)
Example 9
Project: transferlearning Author: jindongwang File: EasyTL.py License: MIT License | 6 votes |
def get_cosine_dist(A, B): B = np.reshape(B, (1, -1)) if A.shape[1] == 1: A = np.hstack((A, np.zeros((A.shape[0], 1)))) B = np.hstack((B, np.zeros((B.shape[0], 1)))) aa = np.sum(np.multiply(A, A), axis=1).reshape(-1, 1) bb = np.sum(np.multiply(B, B), axis=1).reshape(-1, 1) ab = A @ B.T # to avoid NaN for zero norm aa[aa==0] = 1 bb[bb==0] = 1 D = np.real(np.ones((A.shape[0], B.shape[0])) - np.multiply((1/np.sqrt(np.kron(aa, bb.T))), ab)) return D
Example 10
Project: openISP Author: cruxopen File: nlm.py License: MIT License | 6 votes |
def calWeights(self, img, kernel, y, x): wmax = 0 sweight = 0 average = 0 for j in range(2 * self.Ds + 1 - 2 * self.ds - 1): for i in range(2 * self.Ds + 1 - 2 * self.ds - 1): start_y = y - self.Ds + self.ds + j start_x = x - self.Ds + self.ds + i neighbour_w = img[start_y - self.ds:start_y + self.ds + 1, start_x - self.ds:start_x + self.ds + 1] center_w = img[y-self.ds:y+self.ds+1, x-self.ds:x+self.ds+1] if j != y or i != x: sub = np.subtract(neighbour_w, center_w) dist = np.sum(np.multiply(kernel, np.multiply(sub, sub))) w = np.exp(-dist/pow(self.h, 2)) # replaced by look up table if w > wmax: wmax = w sweight = sweight + w average = average + w * img[start_y, start_x] return sweight, average, wmax
Example 11
Project: openISP Author: cruxopen File: bnf.py License: MIT License | 6 votes |
def execute(self): img_pad = self.padding() img_pad = img_pad.astype(np.uint16) raw_h = self.img.shape[0] raw_w = self.img.shape[1] bnf_img = np.empty((raw_h, raw_w), np.uint16) rdiff = np.zeros((5,5), dtype='uint16') for y in range(img_pad.shape[0] - 4): for x in range(img_pad.shape[1] - 4): for i in range(5): for j in range(5): rdiff[i,j] = abs(img_pad[y+i,x+j] - img_pad[y+2, x+2]) if rdiff[i,j] >= self.rthres[0]: rdiff[i,j] = self.rw[0] elif rdiff[i,j] < self.rthres[0] and rdiff[i,j] >= self.rthres[1]: rdiff[i,j] = self.rw[1] elif rdiff[i,j] < self.rthres[1] and rdiff[i,j] >= self.rthres[2]: rdiff[i,j] = self.rw[2] elif rdiff[i,j] < self.rthres[2]: rdiff[i,j] = self.rw[3] weights = np.multiply(rdiff, self.dw) bnf_img[y,x] = np.sum(np.multiply(img_pad[y:y+5,x:x+5], weights[:,:])) / np.sum(weights) self.img = bnf_img return self.clipping()
Example 12
Project: ciftify Author: edickie File: ciftify_PINT_vertices.py License: MIT License | 6 votes |
def roi_surf_data(df, vertex_colname, surf, hemisphere, roi_radius): ''' uses wb_command -surface-geodesic-rois to build rois (3D files) then load and collasp that into 1D array ''' ## right the L and R hemisphere vertices from the table out to temptxt with ciftify.utils.TempDir() as lil_tmpdir: ## write a temp vertex list file vertex_list = os.path.join(lil_tmpdir, 'vertex_list.txt') df.loc[df.hemi == hemisphere, vertex_colname].to_csv(vertex_list,sep='\n',index=False, header=False) ## from the temp text build - func masks and target masks roi_surf = os.path.join(lil_tmpdir,'roi_surf.func.gii') docmd(['wb_command', '-surface-geodesic-rois', surf, str(roi_radius), vertex_list, roi_surf, '-overlap-logic', 'EXCLUDE']) rois_data = ciftify.niio.load_gii_data(roi_surf) ## multiply by labels and reduce to 1 vector vlabels = df[df.hemi == hemisphere].roiidx.tolist() rois_data = np.multiply(rois_data, vlabels) rois_data1D = np.max(rois_data, axis=1) return rois_data1D
Example 13
Project: python-esppy Author: sassoftware File: mnist_input_data.py License: Apache License 2.0 | 6 votes |
def __init__(self, images, labels, fake_data=False, one_hot=False): """Construct a DataSet. one_hot arg is used only if fake_data is true.""" if fake_data: self._num_examples = 10000 self.one_hot = one_hot else: assert images.shape[0] == labels.shape[0], ( 'images.shape: %s labels.shape: %s' % (images.shape, labels.shape)) self._num_examples = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) assert images.shape[3] == 1 images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) # Convert from [0, 255] -> [0.0, 1.0]. images = images.astype(numpy.float32) images = numpy.multiply(images, 1.0 / 255.0) self._images = images self._labels = labels self._epochs_completed = 0 self._index_in_epoch = 0
Example 14
Project: CartoonGAN-Tensorflow Author: taki0112 File: edge_smooth.py License: MIT License | 6 votes |
def make_edge_smooth(dataset_name, img_size) : check_folder('./dataset/{}/{}'.format(dataset_name, 'trainB_smooth')) file_list = glob('./dataset/{}/{}/*.*'.format(dataset_name, 'trainB')) save_dir = './dataset/{}/trainB_smooth'.format(dataset_name) kernel_size = 5 kernel = np.ones((kernel_size, kernel_size), np.uint8) gauss = cv2.getGaussianKernel(kernel_size, 0) gauss = gauss * gauss.transpose(1, 0) for f in tqdm(file_list) : file_name = os.path.basename(f) bgr_img = cv2.imread(f) gray_img = cv2.imread(f, 0) bgr_img = cv2.resize(bgr_img, (img_size, img_size)) pad_img = np.pad(bgr_img, ((2, 2), (2, 2), (0, 0)), mode='reflect') gray_img = cv2.resize(gray_img, (img_size, img_size)) edges = cv2.Canny(gray_img, 100, 200) dilation = cv2.dilate(edges, kernel) gauss_img = np.copy(bgr_img) idx = np.where(dilation != 0) for i in range(np.sum(dilation != 0)): gauss_img[idx[0][i], idx[1][i], 0] = np.sum( np.multiply(pad_img[idx[0][i]:idx[0][i] + kernel_size, idx[1][i]:idx[1][i] + kernel_size, 0], gauss)) gauss_img[idx[0][i], idx[1][i], 1] = np.sum( np.multiply(pad_img[idx[0][i]:idx[0][i] + kernel_size, idx[1][i]:idx[1][i] + kernel_size, 1], gauss)) gauss_img[idx[0][i], idx[1][i], 2] = np.sum( np.multiply(pad_img[idx[0][i]:idx[0][i] + kernel_size, idx[1][i]:idx[1][i] + kernel_size, 2], gauss)) cv2.imwrite(os.path.join(save_dir, file_name), gauss_img)
Example 15
Project: DualFisheye Author: ooterness File: fisheye.py License: MIT License | 6 votes |
def get_uv(self, xyz_vec): # Extract lens parameters of interest. fov_rad = self.lens.fov_deg * pi / 180 fov_scale = np.float32(2 * self.lens.radius_px / fov_rad) # Normalize the input vector and rotate to match lens reference axes. xyz_rot = get_rotation_matrix(self.lens.center_qq) * matrix_norm(xyz_vec) # Convert to polar coordinates relative to lens boresight. # (In lens coordinates, unit vector's X axis gives boresight angle; # normalize Y/Z to get a planar unit vector for the bearing.) # Note: Image +Y maps to 3D +Y, and image +X maps to 3D +Z. theta_rad = np.arccos(xyz_rot[0,:]) proj_vec = matrix_norm(np.concatenate((xyz_rot[2,:], xyz_rot[1,:]))) # Fisheye lens maps 3D angle to focal-plane radius. # TODO: Do we need a better model for lens distortion? rad_px = theta_rad * fov_scale # Convert back to focal-plane rectangular coordinates. uv = np.multiply(rad_px, proj_vec) + self.lens.center_px return np.asarray(uv + 0.5, dtype=int) # Given an 2xN array of UV pixel coordinates, check if each pixel is # within the fisheye field of view. Returns N-element boolean mask.
Example 16
Project: DualFisheye Author: ooterness File: fisheye.py License: MIT License | 6 votes |
def add_pixels(self, uv_px, img1d, weight=None): # Lookup row & column for each in-bounds coordinate. mask = self.get_mask(uv_px) xx = uv_px[0,mask] yy = uv_px[1,mask] # Update matrix according to assigned weight. if weight is None: img1d[mask] = self.img[yy,xx] elif np.isscalar(weight): img1d[mask] += self.img[yy,xx] * weight else: w1 = np.asmatrix(weight, dtype='float32') w3 = w1.transpose() * np.ones((1,3)) img1d[mask] += np.multiply(self.img[yy,xx], w3[mask]) # A panorama image made from several FisheyeImage sources. # TODO: Add support for supersampled anti-aliasing filters.
Example 17
Project: Jtyoui Author: jtyoui File: fm.py License: MIT License | 6 votes |
def get_prediction(data, w0, w, v): """预测值 :param data: 特征 :param w0: 一次项权重 :param w: 常数项权重 :param v: 交叉项权重 :return: 预测结果 """ m = np.shape(data)[0] result = [] for x in range(m): inter_1 = data[x] * v inter_2 = np.multiply(data[x], data[x]) * np.multiply(v, v) inter = np.sum(np.multiply(inter_1, inter_1) - inter_2) / 2. p = w0 + data[x] * w + inter pre = sigmoid(p[0, 0]) result.append(pre) return result
Example 18
Project: deep-learning-note Author: wdxtub File: 4_multi_classification.py License: MIT License | 5 votes |
def cost(theta, X, y, learningRate): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) first = np.multiply(-y, np.log(sigmoid(X * theta.T))) second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T))) reg = (learningRate / (2 * len(X))) * np.sum(np.power(theta[:,1:theta.shape[1]], 2)) return np.sum(first - second) / len(X) + reg
Example 19
Project: deep-learning-note Author: wdxtub File: 4_multi_classification.py License: MIT License | 5 votes |
def gradient(theta, X, y, learningRate): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) parameters = int(theta.ravel().shape[1]) error = sigmoid(X * theta.T) - y grad = ((X.T * error) / len(X)).T + ((learningRate / len(X)) * theta) # intercept gradient is not regularized grad[0, 0] = np.sum(np.multiply(error, X[:,0])) / len(X) return np.array(grad).ravel()
Example 20
Project: deep-learning-note Author: wdxtub File: 5_nueral_network.py License: MIT License | 5 votes |
def sigmoid_gradient(z): return np.multiply(sigmoid(z), (1 - sigmoid(z)))
Example 21
Project: deep-learning-note Author: wdxtub File: 2_linear_regression.py License: MIT License | 5 votes |
def gradientDescent(X, y, theta, alpha, iters): temp = np.matrix(np.zeros(theta.shape)) parameters = int(theta.ravel().shape[1]) cost = np.zeros(iters) for i in range(iters): error = (X * theta.T) - y for j in range(parameters): term = np.multiply(error, X[:, j]) temp[0,j] = theta[0,j] - ((alpha / len(X)) * np.sum(term)) theta = temp cost[i] = computeCost(X, y, theta) return theta, cost
Example 22
Project: deep-learning-note Author: wdxtub File: 9_anomaly_and_rec.py License: MIT License | 5 votes |
def cost0(params, Y, R, num_features): Y = np.matrix(Y) # (1682, 943) R = np.matrix(R) # (1682, 943) num_movies = Y.shape[0] num_users = Y.shape[1] # reshape the parameter array into parameter matrices X = np.matrix(np.reshape(params[:num_movies * num_features], (num_movies, num_features))) # (1682, 10) Theta = np.matrix(np.reshape(params[num_movies * num_features:], (num_users, num_features))) # (943, 10) # initializations J = 0 X_grad = np.zeros(X.shape) # (1682, 10) Theta_grad = np.zeros(Theta.shape) # (943, 10) # compute the cost error = np.multiply((X * Theta.T) - Y, R) # (1682, 943) squared_error = np.power(error, 2) # (1682, 943) J = (1. / 2) * np.sum(squared_error) # calculate the gradients X_grad = error * Theta Theta_grad = error.T * X # unravel the gradient matrices into a single array grad = np.concatenate((np.ravel(X_grad), np.ravel(Theta_grad))) return J, grad
Example 23
Project: deep-learning-note Author: wdxtub File: 9_anomaly_and_rec.py License: MIT License | 5 votes |
def cost1(params, Y, R, num_features, learning_rate): Y = np.matrix(Y) # (1682, 943) R = np.matrix(R) # (1682, 943) num_movies = Y.shape[0] num_users = Y.shape[1] # reshape the parameter array into parameter matrices X = np.matrix(np.reshape(params[:num_movies * num_features], (num_movies, num_features))) # (1682, 10) Theta = np.matrix(np.reshape(params[num_movies * num_features:], (num_users, num_features))) # (943, 10) # initializations J = 0 X_grad = np.zeros(X.shape) # (1682, 10) Theta_grad = np.zeros(Theta.shape) # (943, 10) # compute the cost error = np.multiply((X * Theta.T) - Y, R) # (1682, 943) squared_error = np.power(error, 2) # (1682, 943) J = (1. / 2) * np.sum(squared_error) # add the cost regularization J = J + ((learning_rate / 2) * np.sum(np.power(Theta, 2))) J = J + ((learning_rate / 2) * np.sum(np.power(X, 2))) # calculate the gradients with regularization X_grad = (error * Theta) + (learning_rate * X) Theta_grad = (error.T * X) + (learning_rate * Theta) # unravel the gradient matrices into a single array grad = np.concatenate((np.ravel(X_grad), np.ravel(Theta_grad))) return J, grad
Example 24
Project: deep-learning-note Author: wdxtub File: 3_logistic_regression.py License: MIT License | 5 votes |
def cost(theta, X, y): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) first = np.multiply(-y, np.log(sigmoid(X * theta.T))) second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T))) return np.sum(first - second) / (len(X))
Example 25
Project: deep-learning-note Author: wdxtub File: 3_logistic_regression.py License: MIT License | 5 votes |
def costReg(theta, X, y, learningRate): theta = np.matrix(theta) X = np.matrix(X) y = np.matrix(y) first = np.multiply(-y, np.log(sigmoid(X * theta.T))) second = np.multiply((1 - y), np.log(1 - sigmoid(X * theta.T))) reg = (learningRate / (2 * len(X))) * np.sum(np.power(theta[:,1:theta.shape[1]], 2)) return np.sum(first - second) / len(X) + reg
Example 26
Project: NiBetaSeries Author: HBClab File: conftest.py License: MIT License | 5 votes |
def sub_events(bids_dir, sub_metadata, preproc_file, bids_events_fname=bids_events_fname): events_file = bids_dir.ensure(bids_events_fname) # read in subject metadata to get the TR with open(str(sub_metadata), 'r') as md: bold_metadata = json.load(md) tr = bold_metadata["RepetitionTime"] # time_points tp = nib.load(str(preproc_file)).shape[-1] # create voxel timeseries task_onsets = np.zeros(tp) # add waffles at every 40 time points task_onsets[0::40] = 1 # add fries at every 40 time points starting at 3 task_onsets[3::40] = 1 # add milkshakes at every 40 time points starting at 6 task_onsets[6::40] = 1 # create event tsv num_trials = np.where(task_onsets == 1)[0].shape[0] onsets = np.multiply(np.where(task_onsets == 1), tr).reshape(num_trials) durations = [1] * num_trials num_conds = 3 trial_types = ['waffle', 'fry', 'milkshake'] * int((num_trials / num_conds)) events_df = pd.DataFrame.from_dict({'onset': onsets, 'duration': durations, 'trial_type': trial_types}) # reorder columns events_df = events_df[['onset', 'duration', 'trial_type']] # save the events_df to file events_df.to_csv(str(events_file), index=False, sep='\t') return events_file
Example 27
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: gradcam.py License: Apache License 2.0 | 5 votes |
def get_guided_grad_cam(cam, imggrad): """Compute Guided Grad-CAM. Refer section 3 of https://arxiv.org/abs/1610.02391 for details""" return np.multiply(cam, imggrad)
Example 28
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: randomproj.py License: Apache License 2.0 | 5 votes |
def _get_mask(self, idx, in_data): """Returns the mask by which to multiply the parts of the embedding layer. In this version, we have no weights to apply. """ mask = idx >= 0 # bool False for -1 values that should be removed. shape=(b,mnz) mask = np.expand_dims(mask,2) # shape = (b,mnz,1) mask = np.repeat(mask, self._proj_dim, axis=2) # shape = (b,mnz,d) return mask
Example 29
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: randomproj.py License: Apache License 2.0 | 5 votes |
def forward(self, is_train, req, in_data, out_data, aux): #Note: see this run in notebooks/howto-numpy-random-proj.ipynb # Notation for shapes: b = batch_size, mnz = max_nonzero, d = proj_dim idx = in_data[0].asnumpy().astype('int32') # shape=(b,mnz) wd = self.W[idx] # shape= (b,mnz,d) mask = self._get_mask(idx, in_data) wd = np.multiply(wd,mask) # shape=(b,mnz,d), but zero'd out non-masked y = np.sum(wd,axis=1) # shape=(b,d) mxy = mx.nd.array(y) #NOTE: this hangs if the environment variables aren't set correctly # See https://github.com/dmlc/mxnet/issues/3813 self.assign(out_data[0], req[0], mxy)
Example 30
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: VAE.py License: Apache License 2.0 | 5 votes |
def sampler(mu, logvar): z = mu + np.multiply(np.exp(0.5*logvar), np.random.normal(loc=0, scale=1,size=np.shape(logvar))) return z