Python PIL.Image.NEAREST Examples
The following are 30
code examples of PIL.Image.NEAREST().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
PIL.Image
, or try the search function
.

Example #1
Source File: transform.py From DeepLab_v3_plus with MIT License | 8 votes |
def __call__(self, sample): img = sample['image'] mask = sample['label'] assert img.size == mask.size w, h = img.size # if one side is 512 if (w >= h and w == self.size[1]) or (h >= w and h == self.size[0]): return {'image': img, 'label': mask} # if both sides is not equal to 512, resize to 512 * 512 oh, ow = self.size img = img.resize((ow, oh), Image.BILINEAR) mask = mask.resize((ow, oh), Image.NEAREST) return {'image': img, 'label': mask}
Example #2
Source File: custom_transforms.py From overhaul-distillation with MIT License | 6 votes |
def __call__(self, sample): img = sample['image'] mask = sample['label'] w, h = img.size if w > h: oh = self.crop_size ow = int(1.0 * w * oh / h) else: ow = self.crop_size oh = int(1.0 * h * ow / w) img = img.resize((ow, oh), Image.BILINEAR) mask = mask.resize((ow, oh), Image.NEAREST) # center crop w, h = img.size x1 = int(round((w - self.crop_size) / 2.)) y1 = int(round((h - self.crop_size) / 2.)) img = img.crop((x1, y1, x1 + self.crop_size, y1 + self.crop_size)) mask = mask.crop((x1, y1, x1 + self.crop_size, y1 + self.crop_size)) return {'image': img, 'label': mask}
Example #3
Source File: sample_onnx.py From iAI with MIT License | 6 votes |
def preprocess_image(image_path, inp_dims): ppm_image = Image.open(image_path) # resize image new_h = 224 new_w = 224 size = (new_w, new_h) # resize image img = ppm_image.resize(size, Image.NEAREST) # convert to numpy array img = np.array(img) # hwc2chw img = img.transpose(2, 0, 1) # convert image to 1D array img = img.ravel() # convert image to float img = img.astype(np.float32) # normalize image data img = normalize_data(img, inp_dims) return img
Example #4
Source File: fisheye.py From DualFisheye with MIT License | 6 votes |
def update_preview(self, psize): # Safety check: Ignore calls during construction/destruction. if not self.init_done: return # Copy latest user settings to the lens object. self.lens.fov_deg = self.f.get() self.lens.radius_px = self.r.get() self.lens.center_px[0] = self.x.get() self.lens.center_px[1] = self.y.get() # Re-scale the image to match the canvas size. # Note: Make a copy first, because thumbnail() operates in-place. self.img_sc = self.img.copy() self.img_sc.thumbnail(psize, Image.NEAREST) self.img_tk = ImageTk.PhotoImage(self.img_sc) # Re-scale the x/y/r parameters to match the preview scale. pre_scale = float(psize[0]) / float(self.img.size[0]) x = self.x.get() * pre_scale y = self.y.get() * pre_scale r = self.r.get() * pre_scale # Clear and redraw the canvas. self.preview.delete('all') self.preview.create_image(0, 0, anchor=tk.NW, image=self.img_tk) self.preview.create_oval(x-r, y-r, x+r, y+r, outline='#C00000', width=3) # Make a combined label/textbox/slider for a given variable:
Example #5
Source File: augmentations.py From PLARD with MIT License | 6 votes |
def __call__(self, img, mask): if self.padding > 0: img = ImageOps.expand(img, border=self.padding, fill=0) mask = ImageOps.expand(mask, border=self.padding, fill=0) assert img.size == mask.size w, h = img.size th, tw = self.size if w == tw and h == th: return img, mask if w < tw or h < th: return img.resize((tw, th), Image.BILINEAR), mask.resize((tw, th), Image.NEAREST) x1 = random.randint(0, w - tw) y1 = random.randint(0, h - th) return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th))
Example #6
Source File: PILTransform.py From ext_portrait_segmentation with MIT License | 6 votes |
def __call__(self, rgb_img, label_img=None): label1 = label_img label2 = label_img if self.scale1 != 1: w, h = label_img.size label1 = label1.resize((w//self.scale1, h//self.scale1), Image.NEAREST) if self.scale2 != 1: w, h = label_img.size label2 = label2.resize((w//self.scale2, h//self.scale2), Image.NEAREST) rgb_img = F.to_tensor(rgb_img) # convert to tensor (values between 0 and 1) rgb_img = F.normalize(rgb_img, self.mean, self.std) # normalize the tensor label1 = torch.LongTensor(np.array(label1).astype(np.int64)) label2 = torch.LongTensor(np.array(label2).astype(np.int64)) return rgb_img, label1, label2
Example #7
Source File: data_loader.py From cycada_release with BSD 2-Clause "Simplified" License | 6 votes |
def get_transform2(dataset_name, net_transform, downscale): "Returns image and label transform to downscale, crop and prepare for net." orig_size = get_orig_size(dataset_name) transform = [] target_transform = [] if downscale is not None: transform.append(transforms.Resize(orig_size // downscale)) target_transform.append( transforms.Resize(orig_size // downscale, interpolation=Image.NEAREST)) transform.extend([transforms.Resize(orig_size), net_transform]) target_transform.extend([transforms.Resize(orig_size, interpolation=Image.NEAREST), to_tensor_raw]) transform = transforms.Compose(transform) target_transform = transforms.Compose(target_transform) return transform, target_transform
Example #8
Source File: transform.py From pytorch-semantic-segmentation with MIT License | 6 votes |
def __call__(self, input, target): # do something to both images and labels if self.reshape_size is not None: input = input.resize(self.reshape_size,Image.BILINEAR) target = target.resize(self.reshape_size,Image.NEAREST) if self.augment : input, target = RandomCrop(self.crop_size)(input,target) # RandomCrop for image and label in the same area input, target = self.flip(input,target) # RandomFlip for both croped image and label input, target = self.rotate(input,target) else: input, target = CenterCrop(self.crop_size)(input, target) # CenterCrop for the validation data input = ToTensor()(input) Normalize([.485, .456, .406], [.229, .224, .225])(input) #normalize with the params of imagenet target = torch.from_numpy(np.array(target)).long().unsqueeze(0) return input, target
Example #9
Source File: base_seg.py From LEDNet with MIT License | 6 votes |
def _val_sync_transform(self, img, mask): outsize = self.crop_size short_size = outsize w, h = img.size if w > h: oh = short_size ow = int(1.0 * w * oh / h) else: ow = short_size oh = int(1.0 * h * ow / w) img = img.resize((ow, oh), Image.BILINEAR) mask = mask.resize((ow, oh), Image.NEAREST) # center crop w, h = img.size x1 = int(round((w - outsize) / 2.)) y1 = int(round((h - outsize) / 2.)) img = img.crop((x1, y1, x1 + outsize, y1 + outsize)) mask = mask.crop((x1, y1, x1 + outsize, y1 + outsize)) # final transform img, mask = self._img_transform(img), self._mask_transform(mask) return img, mask
Example #10
Source File: seg_data_base.py From SegmenTron with Apache License 2.0 | 6 votes |
def _val_sync_transform(self, img, mask): outsize = self.crop_size short_size = min(outsize) w, h = img.size if w > h: oh = short_size ow = int(1.0 * w * oh / h) else: ow = short_size oh = int(1.0 * h * ow / w) img = img.resize((ow, oh), Image.BILINEAR) mask = mask.resize((ow, oh), Image.NEAREST) # center crop w, h = img.size x1 = int(round((w - outsize[1]) / 2.)) y1 = int(round((h - outsize[0]) / 2.)) img = img.crop((x1, y1, x1 + outsize[1], y1 + outsize[0])) mask = mask.crop((x1, y1, x1 + outsize[1], y1 + outsize[0])) # final transform img, mask = self._img_transform(img), self._mask_transform(mask) return img, mask
Example #11
Source File: openwpm.py From PrivacyScore with GNU General Public License v3.0 | 6 votes |
def pixelize_screenshot(screenshot, screenshot_pixelized, target_width=390, pixelsize=3): """ Thumbnail a screenshot to `target_width` and pixelize it. :param screenshot: Screenshot to be thumbnailed in pixelized :param screenshot_pixelized: File to which the result should be written :param target_width: Width of the final thumbnail :param pixelsize: Size of the final pixels :return: None """ if target_width % pixelsize != 0: raise ValueError("pixelsize must divide target_width") img = Image.open(screenshot) width, height = img.size if height > width: img = img.crop((0, 0, width, width)) height = width undersampling_width = target_width // pixelsize ratio = width / height new_height = int(undersampling_width / ratio) img = img.resize((undersampling_width, new_height), Image.BICUBIC) img = img.resize((target_width, new_height * pixelsize), Image.NEAREST) img.save(screenshot_pixelized, format='png')
Example #12
Source File: Voc_Dataset.py From Deeplab-v3plus with MIT License | 6 votes |
def _val_sync_transform(self, img, mask): outsize = self.crop_size short_size = outsize w, h = img.size if w > h: oh = short_size ow = int(1.0 * w * oh / h) else: ow = short_size oh = int(1.0 * h * ow / w) img = img.resize((ow, oh), Image.BILINEAR) mask = mask.resize((ow, oh), Image.NEAREST) # center crop w, h = img.size x1 = int(round((w - outsize) / 2.)) y1 = int(round((h - outsize) / 2.)) img = img.crop((x1, y1, x1 + outsize, y1 + outsize)) mask = mask.crop((x1, y1, x1 + outsize, y1 + outsize)) # final transform img, mask = self._img_transform(img), self._mask_transform(mask) return img, mask
Example #13
Source File: cityscapes_Dataset.py From Deeplab-v3plus with MIT License | 6 votes |
def _val_sync_transform(self, img, mask): outsize = self.crop_size short_size = outsize w, h = img.size if w > h: oh = short_size ow = int(1.0 * w * oh / h) else: ow = short_size oh = int(1.0 * h * ow / w) img = img.resize((ow, oh), Image.BILINEAR) mask = mask.resize((ow, oh), Image.NEAREST) # center crop w, h = img.size x1 = int(round((w - outsize) / 2.)) y1 = int(round((h - outsize) / 2.)) img = img.crop((x1, y1, x1 + outsize, y1 + outsize)) mask = mask.crop((x1, y1, x1 + outsize, y1 + outsize)) # final transform img, mask = self._img_transform(img), self._mask_transform(mask) return img, mask
Example #14
Source File: compute_multiview_projection.py From Pointnet2.ScanNet with MIT License | 6 votes |
def resize_crop_image(image, new_image_dims): image_dims = [image.shape[1], image.shape[0]] if image_dims != new_image_dims: resize_width = int(math.floor(new_image_dims[1] * float(image_dims[0]) / float(image_dims[1]))) image = transforms.Resize([new_image_dims[1], resize_width], interpolation=Image.NEAREST)(Image.fromarray(image)) image = transforms.CenterCrop([new_image_dims[1], new_image_dims[0]])(image) return np.array(image)
Example #15
Source File: segbase.py From gluon-cv with Apache License 2.0 | 6 votes |
def _val_sync_transform(self, img, mask): outsize = self.crop_size short_size = outsize w, h = img.size if w > h: oh = short_size ow = int(1.0 * w * oh / h) else: ow = short_size oh = int(1.0 * h * ow / w) img = img.resize((ow, oh), Image.BILINEAR) mask = mask.resize((ow, oh), Image.NEAREST) # center crop w, h = img.size x1 = int(round((w - outsize) / 2.)) y1 = int(round((h - outsize) / 2.)) img = img.crop((x1, y1, x1+outsize, y1+outsize)) mask = mask.crop((x1, y1, x1+outsize, y1+outsize)) # final transform img, mask = self._img_transform(img), self._mask_transform(mask) return img, mask
Example #16
Source File: joint_transforms.py From pytorch-semantic-segmentation with MIT License | 6 votes |
def __call__(self, img, mask): if self.padding > 0: img = ImageOps.expand(img, border=self.padding, fill=0) mask = ImageOps.expand(mask, border=self.padding, fill=0) assert img.size == mask.size w, h = img.size th, tw = self.size if w == tw and h == th: return img, mask if w < tw or h < th: return img.resize((tw, th), Image.BILINEAR), mask.resize((tw, th), Image.NEAREST) x1 = random.randint(0, w - tw) y1 = random.randint(0, h - th) return img.crop((x1, y1, x1 + tw, y1 + th)), mask.crop((x1, y1, x1 + tw, y1 + th))
Example #17
Source File: base.py From PyTorch-Encoding with MIT License | 6 votes |
def _val_sync_transform(self, img, mask): outsize = self.crop_size short_size = outsize w, h = img.size if w > h: oh = short_size ow = int(1.0 * w * oh / h) else: ow = short_size oh = int(1.0 * h * ow / w) img = img.resize((ow, oh), Image.BILINEAR) mask = mask.resize((ow, oh), Image.NEAREST) # center crop w, h = img.size x1 = int(round((w - outsize) / 2.)) y1 = int(round((h - outsize) / 2.)) img = img.crop((x1, y1, x1+outsize, y1+outsize)) mask = mask.crop((x1, y1, x1+outsize, y1+outsize)) # final transform return img, self._mask_transform(mask)
Example #18
Source File: cityscapescoarse.py From PyTorch-Encoding with MIT License | 6 votes |
def _val_sync_transform(self, img, mask): """ synchronized transformation """ outsize = 720 short = outsize w, h = img.size if w > h: oh = short ow = int(1.0 * w * oh / h) else: ow = short oh = int(1.0 * h * ow / w) img = img.resize((ow, oh), Image.BILINEAR) mask = mask.resize((ow, oh), Image.NEAREST) # center crop w, h = img.size x1 = int(round((w - outsize) / 2.)) y1 = int(round((h - outsize) / 2.)) img = img.crop((x1, y1, x1+outsize, y1+outsize)) mask = mask.crop((x1, y1, x1+outsize, y1+outsize)) return img, mask
Example #19
Source File: transform.py From DeepLab_v3_plus with MIT License | 5 votes |
def __call__(self, sample): img, mask = sample['image'], sample['label'] if self.padding > 0: img = ImageOps.expand(img, border=self.padding, fill=0) mask = ImageOps.expand(mask, border=self.padding, fill=0) assert img.size == mask.size w, h = img.size th, tw = self.size # target size if w == tw and h == th: return {'image': img, 'label': mask} if w < tw or h < th: img = img.resize((tw, th), Image.BILINEAR) mask = mask.resize((tw, th), Image.NEAREST) return {'image': img, 'label': mask} x1 = random.randint(0, w - tw) y1 = random.randint(0, h - th) img = img.crop((x1, y1, x1 + tw, y1 + th)) mask = mask.crop((x1, y1, x1 + tw, y1 + th)) return {'image': img, 'label': mask}
Example #20
Source File: transform.py From DeepLab_v3_plus with MIT License | 5 votes |
def __call__(self, sample): img = sample['image'] mask = sample['label'] assert img.size == mask.size img = img.resize(self.size, Image.BILINEAR) mask = mask.resize(self.size, Image.NEAREST) return {'image': img, 'label': mask}
Example #21
Source File: transform.py From DeepLab_v3_plus with MIT License | 5 votes |
def __call__(self, sample): img = sample['image'] mask = sample['label'] assert img.size == mask.size for attempt in range(10): area = img.size[0] * img.size[1] target_area = random.uniform(0.45, 1.0) * area aspect_ratio = random.uniform(0.5, 2) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if random.random() < 0.5: w, h = h, w if w <= img.size[0] and h <= img.size[1]: x1 = random.randint(0, img.size[0] - w) y1 = random.randint(0, img.size[1] - h) img = img.crop((x1, y1, x1 + w, y1 + h)) mask = mask.crop((x1, y1, x1 + w, y1 + h)) assert (img.size == (w, h)) img = img.resize((self.size, self.size), Image.BILINEAR) mask = mask.resize((self.size, self.size), Image.NEAREST) return {'image': img, 'label': mask} # Fallback scale = Scale(self.size) crop = CenterCrop(self.size) sample = crop(scale(sample)) return sample
Example #22
Source File: transform.py From DeepLab_v3_plus with MIT License | 5 votes |
def __call__(self, sample): img = sample['image'] mask = sample['label'] rotate_degree = random.random() * 2 * self.degree - self.degree img = img.rotate(rotate_degree, Image.BILINEAR) mask = mask.rotate(rotate_degree, Image.NEAREST) return {'image': img, 'label': mask}
Example #23
Source File: transform.py From DeepLab_v3_plus with MIT License | 5 votes |
def __call__(self, sample): img = sample['image'] mask = sample['label'] assert img.size == mask.size scale = random.uniform(self.limit[0], self.limit[1]) w = int(scale * img.size[0]) h = int(scale * img.size[1]) img, mask = img.resize((w, h), Image.BILINEAR), mask.resize((w, h), Image.NEAREST) return {'image': img, 'label': mask}
Example #24
Source File: custom_transforms.py From overhaul-distillation with MIT License | 5 votes |
def __call__(self, sample): img = sample['image'] mask = sample['label'] rotate_degree = random.uniform(-1*self.degree, self.degree) img = img.rotate(rotate_degree, Image.BILINEAR) mask = mask.rotate(rotate_degree, Image.NEAREST) return {'image': img, 'label': mask}
Example #25
Source File: custom_transforms.py From overhaul-distillation with MIT License | 5 votes |
def __call__(self, sample): img = sample['image'] mask = sample['label'] # random scale (short edge) short_size = random.randint(int(self.base_size * 0.5), int(self.base_size * 2.0)) w, h = img.size if h > w: ow = short_size oh = int(1.0 * h * ow / w) else: oh = short_size ow = int(1.0 * w * oh / h) img = img.resize((ow, oh), Image.BILINEAR) mask = mask.resize((ow, oh), Image.NEAREST) # pad crop if short_size < self.crop_size: padh = self.crop_size - oh if oh < self.crop_size else 0 padw = self.crop_size - ow if ow < self.crop_size else 0 img = ImageOps.expand(img, border=(0, 0, padw, padh), fill=0) mask = ImageOps.expand(mask, border=(0, 0, padw, padh), fill=self.fill) # random crop crop_size w, h = img.size x1 = random.randint(0, w - self.crop_size) y1 = random.randint(0, h - self.crop_size) img = img.crop((x1, y1, x1 + self.crop_size, y1 + self.crop_size)) mask = mask.crop((x1, y1, x1 + self.crop_size, y1 + self.crop_size)) return {'image': img, 'label': mask}
Example #26
Source File: custom_transforms.py From overhaul-distillation with MIT License | 5 votes |
def __init__(self, size): self.image_resize = transforms.Resize(size, Image.BILINEAR) self.mask_resize = transforms.Resize(size, Image.NEAREST)
Example #27
Source File: nyu_transform.py From Visualizing-CNNs-for-monocular-depth-estimation with MIT License | 5 votes |
def __call__(self, sample): image, depth = sample['image'], sample['depth'] image = self.changeScale(image, self.size) depth = self.changeScale(depth, self.size,Image.NEAREST) return {'image': image, 'depth': depth}
Example #28
Source File: augmentation.py From DPC with MIT License | 5 votes |
def __init__(self, size, interpolation=Image.NEAREST): assert isinstance(size, int) or (isinstance(size, collections.Iterable) and len(size) == 2) self.size = size self.interpolation = interpolation
Example #29
Source File: train.py From robosat with MIT License | 5 votes |
def get_dataset_loaders(model, dataset, workers): target_size = (model["common"]["image_size"],) * 2 batch_size = model["common"]["batch_size"] path = dataset["common"]["dataset"] mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] transform = JointCompose( [ JointTransform(ConvertImageMode("RGB"), ConvertImageMode("P")), JointTransform(Resize(target_size, Image.BILINEAR), Resize(target_size, Image.NEAREST)), JointTransform(CenterCrop(target_size), CenterCrop(target_size)), JointRandomHorizontalFlip(0.5), JointRandomRotation(0.5, 90), JointRandomRotation(0.5, 90), JointRandomRotation(0.5, 90), JointTransform(ImageToTensor(), MaskToTensor()), JointTransform(Normalize(mean=mean, std=std), None), ] ) train_dataset = SlippyMapTilesConcatenation( [os.path.join(path, "training", "images")], os.path.join(path, "training", "labels"), transform ) val_dataset = SlippyMapTilesConcatenation( [os.path.join(path, "validation", "images")], os.path.join(path, "validation", "labels"), transform ) assert len(train_dataset) > 0, "at least one tile in training dataset" assert len(val_dataset) > 0, "at least one tile in validation dataset" train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=workers) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, drop_last=True, num_workers=workers) return train_loader, val_loader
Example #30
Source File: tgc_gui.py From TGC-Designer-Tools with Apache License 2.0 | 5 votes |
def drawCourse(cjson): global root global canvas global canvas_image data = drawCourseAsImage(cjson) im = Image.fromarray((255.0*data).astype(np.uint8), 'RGB').resize((image_width, image_height), Image.NEAREST) im = im.transpose(Image.FLIP_TOP_BOTTOM) cim = ImageTk.PhotoImage(image=im) canvas.img = cim # Need to save reference to ImageTK canvas.itemconfig(canvas_image, image = cim) drawScorecard(cjson) root.update()