Python PIL.Image.composite() Examples

The following are 30 code examples for showing how to use PIL.Image.composite(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.

You may check out the related API usage on the sidebar.

You may also want to check out all available functions/classes of the module PIL.Image , or try the search function .

Example 1
Project: optillusion-animation   Author: minimaxir   File: image_rotation_data.py    License: MIT License 6 votes vote down vote up
def get_rotated_image_labels(client, image, bg, phi):

    # https://stackoverflow.com/a/5253554
    rot = image.rotate(-phi)   # clockwise
    image_tf = Image.composite(rot, bg, rot)

    filename = str(phi) + '.png'
    image_tf.convert('RGB').save(os.path.join(output_path, filename))

    # https://stackoverflow.com/a/33117447
    imgByteArr = io.BytesIO()
    image_tf.save(imgByteArr, format='PNG')
    imgByteArr = imgByteArr.getvalue() 

    image = types.Image(content=imgByteArr)
    response = client.label_detection(image=image)
    return response 
Example 2
Project: wx-fancy-pic   Author: Lavande   File: lomolive.py    License: MIT License 6 votes vote down vote up
def lomoize (image,darkness,saturation):
	
	(width,height) = image.size

	max = width
	if height > width:
		max = height
	
	mask = Image.open("./lomolive/lomomask.jpg").resize((max,max))

	left = round((max - width) / 2)
	upper = round((max - height) / 2)
	
	mask = mask.crop((left,upper,left+width,upper + height))

#	mask = Image.open('mask_l.png')

	darker = ImageEnhance.Brightness(image).enhance(darkness)	
	saturated = ImageEnhance.Color(image).enhance(saturation)
	lomoized = Image.composite(saturated,darker,mask)
	
	return lomoized 
Example 3
Project: Dense-CoAttention-Network   Author: cvlab-tohoku   File: utils.py    License: MIT License 6 votes vote down vote up
def mask_img(img, attn, upscale=32):
		"""
		Put attention weights to each region in image.
		--------------------
		Arguments:
			img (ndarray: H x W x C): image data.
			attn (ndarray: 14 x 14): attention weights of each region.
			upscale (int): the ratio between attention size and image size.
		"""
		attn = transform.pyramid_expand(attn, upscale=upscale, sigma=20)
		attn = misc.toimage(attn).convert("L")
		mask = misc.toimage(np.zeros(img.shape, dtype=np.uint8)).convert("RGBA")
		img = misc.toimage(img).convert("RGBA")
		img = Image.composite(img, mask, attn)

		return img 
Example 4
Project: DOTA_models   Author: ringringyi   File: visualization_utils.py    License: Apache License 2.0 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a float numpy array of shape (img_height, img_height) with
      values between 0 and 1
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.7)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.float32:
    raise ValueError('`mask` not of type np.float32')
  if np.any(np.logical_or(mask > 1.0, mask < 0.0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 5
Project: object_detector_app   Author: datitran   File: visualization_utils.py    License: MIT License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a float numpy array of shape (img_height, img_height) with
      values between 0 and 1
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.7)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.float32:
    raise ValueError('`mask` not of type np.float32')
  if np.any(np.logical_or(mask > 1.0, mask < 0.0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 6
Project: vehicle_counting_tensorflow   Author: ahmetozlu   File: visualization_utils.py    License: MIT License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.7)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 7
Project: vehicle_counting_tensorflow   Author: ahmetozlu   File: visualization_utils.py    License: MIT License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.4)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  if image.shape[:2] != mask.shape:
    raise ValueError('The image has spatial dimensions %s but the mask has '
                     'dimensions %s' % (image.shape[:2], mask.shape))
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 8
Project: BMW-TensorFlow-Inference-API-CPU   Author: BMW-InnovationLab   File: visualization_utils.py    License: Apache License 2.0 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.4)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  if image.shape[:2] != mask.shape:
    raise ValueError('The image has spatial dimensions %s but the mask has '
                     'dimensions %s' % (image.shape[:2], mask.shape))
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 9
Project: face-detection-ssd-mobilenet   Author: Seymour-Lee   File: visualization_utils_color.py    License: Apache License 2.0 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a float numpy array of shape (img_height, img_height) with
      values between 0 and 1
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.7)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.float32:
    raise ValueError('`mask` not of type np.float32')
  if np.any(np.logical_or(mask > 1.0, mask < 0.0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 10
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.4)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  if image.shape[:2] != mask.shape:
    raise ValueError('The image has spatial dimensions %s but the mask has '
                     'dimensions %s' % (image.shape[:2], mask.shape))
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 11
Project: MobileNet-SSDLite-RealSense-TF   Author: PINTO0309   File: visualization_utils.py    License: MIT License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.4)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  if image.shape[:2] != mask.shape:
    raise ValueError('The image has spatial dimensions %s but the mask has '
                     'dimensions %s' % (image.shape[:2], mask.shape))
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 12
Project: Person-Detection-and-Tracking   Author: ambakick   File: visualization_utils.py    License: MIT License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.4)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  if image.shape[:2] != mask.shape:
    raise ValueError('The image has spatial dimensions %s but the mask has '
                     'dimensions %s' % (image.shape[:2], mask.shape))
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 13
Project: Person-Detection-and-Tracking   Author: ambakick   File: visualization_utils.py    License: MIT License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.4)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  if image.shape[:2] != mask.shape:
    raise ValueError('The image has spatial dimensions %s but the mask has '
                     'dimensions %s' % (image.shape[:2], mask.shape))
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 14
Project: blitznet   Author: dvornikita   File: demo_utils.py    License: MIT License 5 votes vote down vote up
def put_transparent_mask(img, mask, palette):
    mask_np = np.array(mask, dtype=np.uint8)
    mask_png = Image.fromarray(mask_np, mode='P')
    mask_png.putpalette(palette)
    mask_rgb = mask_png.convert('RGB')

    mask_np[mask_np > 0] = 130
    mask_np[mask_np == 0] = 255
    mask_l = Image.fromarray(mask_np, mode='L')
    out_image = Image.composite(img, mask_rgb, mask_l)
    return out_image 
Example 15
Project: object_centric_VAD   Author: fjchange   File: visualization_utils.py    License: MIT License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.4)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  if image.shape[:2] != mask.shape:
    raise ValueError('The image has spatial dimensions %s but the mask has '
                     'dimensions %s' % (image.shape[:2], mask.shape))
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 16
Project: cartoonify   Author: danmacnish   File: visualization_utils.py    License: MIT License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.7)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 17
Project: pbt   Author: MattKleinsmith   File: utils.py    License: MIT License 5 votes vote down vote up
def mask_image(img, mask, opacity=1.00, bg=False):
    """
        - img (PIL)
        - mask (PIL)
        - opacity (float) (default: 1.00)
    Returns a PIL image.
    """
    blank = Image.new('RGB', img.size, color=0)
    if bg:
        masked_image = Image.composite(blank, img, mask)
    else:
        masked_image = Image.composite(img, blank, mask)
    if opacity < 1:
        masked_image = Image.blend(img, masked_image, opacity)
    return masked_image 
Example 18
Project: Gather-Deployment   Author: huseinzol05   File: visualization_utils.py    License: MIT License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.4)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  if image.shape[:2] != mask.shape:
    raise ValueError('The image has spatial dimensions %s but the mask has '
                     'dimensions %s' % (image.shape[:2], mask.shape))
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 19
Project: Gather-Deployment   Author: huseinzol05   File: visualization_utils.py    License: MIT License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.4)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  if image.shape[:2] != mask.shape:
    raise ValueError('The image has spatial dimensions %s but the mask has '
                     'dimensions %s' % (image.shape[:2], mask.shape))
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 20
Project: Gather-Deployment   Author: huseinzol05   File: visualization_utils.py    License: MIT License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.4)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  if image.shape[:2] != mask.shape:
    raise ValueError('The image has spatial dimensions %s but the mask has '
                     'dimensions %s' % (image.shape[:2], mask.shape))
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 21
Project: Gather-Deployment   Author: huseinzol05   File: visualization_utils.py    License: MIT License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.4)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  if image.shape[:2] != mask.shape:
    raise ValueError('The image has spatial dimensions %s but the mask has '
                     'dimensions %s' % (image.shape[:2], mask.shape))
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 22
Project: Gather-Deployment   Author: huseinzol05   File: visualization_utils.py    License: MIT License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.4)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  if image.shape[:2] != mask.shape:
    raise ValueError('The image has spatial dimensions %s but the mask has '
                     'dimensions %s' % (image.shape[:2], mask.shape))
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 23
Project: garbage-object-detection-tensorflow   Author: maartensukel   File: visualization_utils.py    License: MIT License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a float numpy array of shape (img_height, img_height) with
      values between 0 and 1
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.7)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.float32:
    raise ValueError('`mask` not of type np.float32')
  if np.any(np.logical_or(mask > 1.0, mask < 0.0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 24
Project: HereIsWally   Author: tadejmagajna   File: visualization_utils.py    License: MIT License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a float numpy array of shape (img_height, img_height) with
      values between 0 and 1
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.7)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.float32:
    raise ValueError('`mask` not of type np.float32')
  if np.any(np.logical_or(mask > 1.0, mask < 0.0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 25
Project: yolo_v2   Author: rky0930   File: visualization_utils.py    License: Apache License 2.0 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.7)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 26
Project: Traffic-Rule-Violation-Detection-System   Author: ShreyAmbesh   File: visualization_utils.py    License: MIT License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.4)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  if image.shape[:2] != mask.shape:
    raise ValueError('The image has spatial dimensions %s but the mask has '
                     'dimensions %s' % (image.shape[:2], mask.shape))
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 27
Project: Hands-On-Machine-Learning-with-OpenCV-4   Author: PacktPublishing   File: visualization_utils.py    License: MIT License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7):
    """Draws mask on an image.

    Args:
      image: uint8 numpy array with shape (img_height, img_height, 3)
      mask: a float numpy array of shape (img_height, img_height) with
        values between 0 and 1
      color: color to draw the keypoints with. Default is red.
      alpha: transparency value between 0 and 1. (default: 0.7)

    Raises:
      ValueError: On incorrect data type for image or masks.
    """
    if image.dtype != np.uint8:
        raise ValueError('`image` not of type np.uint8')
    if mask.dtype != np.float32:
        raise ValueError('`mask` not of type np.float32')
    if np.any(np.logical_or(mask > 1.0, mask < 0.0)):
        raise ValueError('`mask` elements should be in [0, 1]')
    rgb = ImageColor.getrgb(color)
    pil_image = Image.fromarray(image)

    solid_color = np.expand_dims(
        np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
    pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
    pil_mask = Image.fromarray(np.uint8(255.0 * alpha * mask)).convert('L')
    pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
    np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 28
Project: tensorflow   Author: luyishisi   File: visualization_utils.py    License: BSD 2-Clause "Simplified" License 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.7):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a float numpy array of shape (img_height, img_height) with
      values between 0 and 1
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.7)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.float32:
    raise ValueError('`mask` not of type np.float32')
  if np.any(np.logical_or(mask > 1.0, mask < 0.0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 29
Project: Gun-Detector   Author: itsamitgoel   File: visualization_utils.py    License: Apache License 2.0 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.4)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  if image.shape[:2] != mask.shape:
    raise ValueError('The image has spatial dimensions %s but the mask has '
                     'dimensions %s' % (image.shape[:2], mask.shape))
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB'))) 
Example 30
Project: tpu_models   Author: artyompal   File: visualization_utils.py    License: Apache License 2.0 5 votes vote down vote up
def draw_mask_on_image_array(image, mask, color='red', alpha=0.4):
  """Draws mask on an image.

  Args:
    image: uint8 numpy array with shape (img_height, img_height, 3)
    mask: a uint8 numpy array of shape (img_height, img_height) with
      values between either 0 or 1.
    color: color to draw the keypoints with. Default is red.
    alpha: transparency value between 0 and 1. (default: 0.4)

  Raises:
    ValueError: On incorrect data type for image or masks.
  """
  if image.dtype != np.uint8:
    raise ValueError('`image` not of type np.uint8')
  if mask.dtype != np.uint8:
    raise ValueError('`mask` not of type np.uint8')
  if np.any(np.logical_and(mask != 1, mask != 0)):
    raise ValueError('`mask` elements should be in [0, 1]')
  if image.shape[:2] != mask.shape:
    raise ValueError('The image has spatial dimensions %s but the mask has '
                     'dimensions %s' % (image.shape[:2], mask.shape))
  rgb = ImageColor.getrgb(color)
  pil_image = Image.fromarray(image)

  solid_color = np.expand_dims(
      np.ones_like(mask), axis=2) * np.reshape(list(rgb), [1, 1, 3])
  pil_solid_color = Image.fromarray(np.uint8(solid_color)).convert('RGBA')
  pil_mask = Image.fromarray(np.uint8(255.0*alpha*mask)).convert('L')
  pil_image = Image.composite(pil_solid_color, pil_image, pil_mask)
  np.copyto(image, np.array(pil_image.convert('RGB')))