Python os.getcwd() Examples
The following are 30
code examples of os.getcwd().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
os
, or try the search function
.
Example #1
Source File: test_values.py From python-template with Apache License 2.0 | 7 votes |
def test_dash_in_project_slug(cookies): ctx = {'project_slug': "my-package"} project = cookies.bake(extra_context=ctx) assert project.exit_code == 0 with open(os.path.join(str(project.project), 'setup.py')) as f: setup = f.read() print(setup) cwd = os.getcwd() os.chdir(str(project.project)) try: sh.python(['setup.py', 'install']) sh.python(['setup.py', 'build_sphinx']) except sh.ErrorReturnCode as e: pytest.fail(e) finally: os.chdir(cwd)
Example #2
Source File: test_values.py From python-template with Apache License 2.0 | 7 votes |
def test_double_quotes_in_name_and_description(cookies): ctx = {'project_short_description': '"double quotes"', 'full_name': '"name"name'} project = cookies.bake(extra_context=ctx) assert project.exit_code == 0 with open(os.path.join(str(project.project), 'setup.py')) as f: setup = f.read() print(setup) cwd = os.getcwd() os.chdir(str(project.project)) try: sh.python(['setup.py', 'install']) except sh.ErrorReturnCode as e: pytest.fail(e) finally: os.chdir(cwd)
Example #3
Source File: views_main.py From everyclass-server with Mozilla Public License 2.0 | 7 votes |
def exit_maintenance(): config = get_config() auth = request.authorization if auth \ and auth.username in config.MAINTENANCE_CREDENTIALS \ and config.MAINTENANCE_CREDENTIALS[auth.username] == auth.password: try: os.remove(config.MAINTENANCE_FILE) # remove maintenance file except OSError: return 'Not in maintenance mode. Ignore command.' open(os.path.join(os.getcwd(), 'reload'), "w+").close() # uwsgi reload return 'success' else: return Response( 'Could not verify your access level for that URL.\n' 'You have to login with proper credentials', 401, {'WWW-Authenticate': 'Basic realm="Login Required"'})
Example #4
Source File: AdaBoostStump.py From fuku-ml with MIT License | 6 votes |
def load_test_data(self, input_data_file=''): if (input_data_file == ''): input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/decision_stump_test.dat")) else: if (os.path.isfile(input_data_file) is not True): print("Please make sure input_data_file path is correct.") return self.test_X, self.test_Y self.test_X, self.test_Y = utility.DatasetLoader.load(input_data_file) if (self.feature_transform_mode == 'polynomial') or (self.feature_transform_mode == 'legendre'): self.test_X = self.test_X[:, 1:] self.test_X = utility.DatasetLoader.feature_transform( self.test_X, self.feature_transform_mode, self.feature_transform_degree ) return self.test_X, self.test_Y
Example #5
Source File: batch.py From aegea with Apache License 2.0 | 6 votes |
def ensure_lambda_helper(): awslambda = getattr(clients, "lambda") try: helper_desc = awslambda.get_function(FunctionName="aegea-dev-process_batch_event") logger.info("Using Batch helper Lambda %s", helper_desc["Configuration"]["FunctionArn"]) except awslambda.exceptions.ResourceNotFoundException: logger.info("Batch helper Lambda not found, installing") import chalice.cli orig_argv = sys.argv orig_wd = os.getcwd() try: os.chdir(os.path.join(os.path.dirname(__file__), "batch_events_lambda")) sys.argv = ["chalice", "deploy", "--no-autogen-policy"] chalice.cli.main() except SystemExit: pass finally: os.chdir(orig_wd) sys.argv = orig_argv
Example #6
Source File: defaultvalues.py From CAMISIM with Apache License 2.0 | 6 votes |
def __init__(self, label="DefaultValues", logfile=None, verbose=False, debug=False): super(DefaultValues, self).__init__(label=label, logfile=logfile, verbose=verbose, debug=debug) self._validator = Validator(logfile=logfile, verbose=verbose, debug=debug) pipeline_dir = os.path.dirname(self._validator.get_full_path(os.path.dirname(scripts.__file__))) self._DEFAULT_seed = random.randint(0, 2147483640) self._DEFAULT_tmp_dir = tempfile.gettempdir() self._DEFAULT_directory_pipeline = pipeline_dir original_wd = os.getcwd() os.chdir(pipeline_dir) file_path_config = os.path.join(pipeline_dir, "default_config.ini") if self._validator.validate_file(file_path_config, silent=True): self._from_config(file_path_config) else: self._from_hardcoded(pipeline_dir) os.chdir(original_wd)
Example #7
Source File: server.py From The-chat-room with MIT License | 6 votes |
def cd(self, message, conn): message = message.split()[1] # 截取目录名 # 如果是新连接或者下载上传文件后的发送则 不切换 只将当前工作目录发送过去 if message != 'same': f = r'./' + message os.chdir(f) # path = '' path = os.getcwd().split('\\') # 当前工作目录 for i in range(len(path)): if path[i] == 'resources': break pat = '' for j in range(i, len(path)): pat = pat + path[j] + ' ' pat = '\\'.join(pat.split()) # 如果切换目录超出范围则退回切换前目录 if 'resources' not in path: f = r'./resources' os.chdir(f) pat = 'resources' conn.send(pat.encode()) # 判断输入的命令并执行对应的函数
Example #8
Source File: test_values.py From python-template with Apache License 2.0 | 6 votes |
def test_single_quotes_in_name_and_description(cookies): ctx = {'project_short_description': "'single quotes'", 'full_name': "Mr. O'Keeffe"} project = cookies.bake(extra_context=ctx) assert project.exit_code == 0 with open(os.path.join(str(project.project), 'setup.py')) as f: setup = f.read() print(setup) cwd = os.getcwd() os.chdir(str(project.project)) try: sh.python(['setup.py', 'install']) except sh.ErrorReturnCode as e: pytest.fail(e) finally: os.chdir(cwd)
Example #9
Source File: test_project.py From python-template with Apache License 2.0 | 6 votes |
def test_install(cookies): project = cookies.bake() assert project.exit_code == 0 assert project.exception is None cwd = os.getcwd() os.chdir(str(project.project)) try: sh.python(['setup.py', 'install']) except sh.ErrorReturnCode as e: pytest.fail(e) finally: os.chdir(cwd)
Example #10
Source File: test_project.py From python-template with Apache License 2.0 | 6 votes |
def test_building_documentation_apidocs(cookies): project = cookies.bake(extra_context={'apidoc': 'yes'}) assert project.exit_code == 0 assert project.exception is None cwd = os.getcwd() os.chdir(str(project.project)) try: sh.python(['setup.py', 'build_sphinx']) except sh.ErrorReturnCode as e: pytest.fail(e) finally: os.chdir(cwd) apidocs = project.project.join('docs', '_build', 'html', 'apidocs') assert apidocs.join('my_python_project.html').isfile() assert apidocs.join('my_python_project.my_python_project.html').isfile()
Example #11
Source File: test_fuku_ml.py From fuku-ml with MIT License | 6 votes |
def test_polynomial_kernel_svm_binary_classifier(self): input_train_data_file = os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), 'FukuML/dataset/non_linear_train.dat') input_test_data_file = os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), 'FukuML/dataset/non_linear_test.dat') svm_bc = svm.BinaryClassifier() svm_bc.load_train_data(input_train_data_file) svm_bc.load_test_data(input_test_data_file) svm_bc.set_param(svm_kernel='polynomial_kernel', zeta=100, gamma=1, Q=3) svm_bc.init_W() W = svm_bc.train() print("\n訓練得出權重模型:") print(W) print("SVM Marging:") print(svm_bc.get_marge()) print("Support Vectors") print(svm_bc.get_support_vectors()) print("W 平均錯誤率(Ein):") print(svm_bc.calculate_avg_error(svm_bc.train_X, svm_bc.train_Y, W)) print("W 平均錯誤率(Eout):") print(svm_bc.calculate_test_data_avg_error()) print('-'*70)
Example #12
Source File: test_fuku_ml.py From fuku-ml with MIT License | 6 votes |
def test_gaussian_kernel_svm_binary_classifier(self): input_train_data_file = os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), 'FukuML/dataset/non_linear_train.dat') input_test_data_file = os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), 'FukuML/dataset/non_linear_test.dat') svm_bc = svm.BinaryClassifier() svm_bc.load_train_data(input_train_data_file) svm_bc.load_test_data(input_test_data_file) svm_bc.set_param(svm_kernel='gaussian_kernel', gamma=0.001) svm_bc.init_W() W = svm_bc.train() print("\n訓練得出權重模型:") print(W) print("SVM Marging:") print(svm_bc.get_marge()) print("Support Vectors") print(svm_bc.get_support_vectors()) print("W 平均錯誤率(Ein):") print(svm_bc.calculate_avg_error(svm_bc.train_X, svm_bc.train_Y, W)) print("W 平均錯誤率(Eout):") print(svm_bc.calculate_test_data_avg_error()) print('-'*70)
Example #13
Source File: test_fuku_ml.py From fuku-ml with MIT License | 6 votes |
def test_soft_polynomial_kernel_svm_binary_classifier(self): input_train_data_file = os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), 'FukuML/dataset/overlap_train.dat') input_test_data_file = os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), 'FukuML/dataset/overlap_test.dat') svm_bc = svm.BinaryClassifier() svm_bc.load_train_data(input_train_data_file) svm_bc.load_test_data(input_test_data_file) svm_bc.set_param(svm_kernel='soft_polynomial_kernel', zeta=0, gamma=1, Q=1, C=0.1) svm_bc.init_W() W = svm_bc.train() print("\n訓練得出權重模型:") print(W) print("SVM Marging:") print(svm_bc.get_marge()) print("Support Vectors") print(svm_bc.get_support_vectors()) print("W 平均錯誤率(Ein):") print(svm_bc.calculate_avg_error(svm_bc.train_X, svm_bc.train_Y, W)) print("W 平均錯誤率(Eout):") print(svm_bc.calculate_test_data_avg_error()) print('-'*70)
Example #14
Source File: RidgeRegression.py From fuku-ml with MIT License | 6 votes |
def load_test_data(self, input_data_file=''): if (input_data_file == ''): input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/pocket_pla_binary_test.dat")) else: if (os.path.isfile(input_data_file) is not True): print("Please make sure input_data_file path is correct.") return self.test_X, self.test_Y self.test_X, self.test_Y = utility.DatasetLoader.load(input_data_file) if (self.feature_transform_mode == 'polynomial') or (self.feature_transform_mode == 'legendre'): self.test_X = self.test_X[:, 1:] self.test_X = utility.DatasetLoader.feature_transform( self.test_X, self.feature_transform_mode, self.feature_transform_degree ) return self.test_X, self.test_Y
Example #15
Source File: RidgeRegression.py From fuku-ml with MIT License | 6 votes |
def load_test_data(self, input_data_file=''): if (input_data_file == ''): input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/ridge_regression_test.dat")) else: if (os.path.isfile(input_data_file) is not True): print("Please make sure input_data_file path is correct.") return self.test_X, self.test_Y self.test_X, self.test_Y = utility.DatasetLoader.load(input_data_file) if (self.feature_transform_mode == 'polynomial') or (self.feature_transform_mode == 'legendre'): self.test_X = self.test_X[:, 1:] self.test_X = utility.DatasetLoader.feature_transform( self.test_X, self.feature_transform_mode, self.feature_transform_degree ) return self.test_X, self.test_Y
Example #16
Source File: RidgeRegression.py From fuku-ml with MIT License | 6 votes |
def load_test_data(self, input_data_file=''): if (input_data_file == ''): input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/digits_multiclass_test.dat")) else: if (os.path.isfile(input_data_file) is not True): print("Please make sure input_data_file path is correct.") return self.test_X, self.test_Y self.test_X, self.test_Y = utility.DatasetLoader.load(input_data_file) if (self.feature_transform_mode == 'polynomial') or (self.feature_transform_mode == 'legendre'): self.test_X = self.test_X[:, 1:] self.test_X = utility.DatasetLoader.feature_transform( self.test_X, self.feature_transform_mode, self.feature_transform_degree ) return self.test_X, self.test_Y
Example #17
Source File: os_utils.py From godot-mono-builds with MIT License | 6 votes |
def find_executable(name) -> str: is_windows = os.name == 'nt' windows_exts = os.environ['PATHEXT'].split(ENV_PATH_SEP) if is_windows else None path_dirs = os.environ['PATH'].split(ENV_PATH_SEP) search_dirs = path_dirs + [os.getcwd()] # cwd is last in the list for dir in search_dirs: path = os.path.join(dir, name) if is_windows: for extension in windows_exts: path_with_ext = path + extension if os.path.isfile(path_with_ext) and os.access(path_with_ext, os.X_OK): return path_with_ext else: if os.path.isfile(path) and os.access(path, os.X_OK): return path return ''
Example #18
Source File: AdaBoostDecisionTree.py From fuku-ml with MIT License | 6 votes |
def load_test_data(self, input_data_file=''): if (input_data_file == ''): input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/decision_stump_test.dat")) else: if (os.path.isfile(input_data_file) is not True): print("Please make sure input_data_file path is correct.") return self.test_X, self.test_Y self.test_X, self.test_Y = utility.DatasetLoader.load(input_data_file) if (self.feature_transform_mode == 'polynomial') or (self.feature_transform_mode == 'legendre'): self.test_X = self.test_X[:, 1:] self.test_X = utility.DatasetLoader.feature_transform( self.test_X, self.feature_transform_mode, self.feature_transform_degree ) return self.test_X, self.test_Y
Example #19
Source File: PLA.py From fuku-ml with MIT License | 6 votes |
def load_test_data(self, input_data_file=''): if (input_data_file == ''): input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/digits_multiclass_test.dat")) else: if (os.path.isfile(input_data_file) is not True): print("Please make sure input_data_file path is correct.") return self.test_X, self.test_Y self.test_X, self.test_Y = utility.DatasetLoader.load(input_data_file) if (self.feature_transform_mode == 'polynomial') or (self.feature_transform_mode == 'legendre'): self.test_X = self.test_X[:, 1:] self.test_X = utility.DatasetLoader.feature_transform( self.test_X, self.feature_transform_mode, self.feature_transform_degree ) return self.test_X, self.test_Y
Example #20
Source File: SupportVectorRegression.py From fuku-ml with MIT License | 6 votes |
def load_test_data(self, input_data_file=''): if (input_data_file == ''): input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/pocket_pla_binary_test.dat")) else: if (os.path.isfile(input_data_file) is not True): print("Please make sure input_data_file path is correct.") return self.test_X, self.test_Y self.test_X, self.test_Y = utility.DatasetLoader.load(input_data_file) if (self.feature_transform_mode == 'polynomial') or (self.feature_transform_mode == 'legendre'): self.test_X = self.test_X[:, 1:] self.test_X = utility.DatasetLoader.feature_transform( self.test_X, self.feature_transform_mode, self.feature_transform_degree ) return self.test_X, self.test_Y
Example #21
Source File: KernelRidgeRegression.py From fuku-ml with MIT License | 6 votes |
def load_test_data(self, input_data_file=''): if (input_data_file == ''): input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/digits_multiclass_test.dat")) else: if (os.path.isfile(input_data_file) is not True): print("Please make sure input_data_file path is correct.") return self.test_X, self.test_Y self.test_X, self.test_Y = utility.DatasetLoader.load(input_data_file) if (self.feature_transform_mode == 'polynomial') or (self.feature_transform_mode == 'legendre'): self.test_X = self.test_X[:, 1:] self.test_X = utility.DatasetLoader.feature_transform( self.test_X, self.feature_transform_mode, self.feature_transform_degree ) return self.test_X, self.test_Y
Example #22
Source File: ProbabilisticSVM.py From fuku-ml with MIT License | 6 votes |
def load_test_data(self, input_data_file=''): if (input_data_file == ''): input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/logistic_regression_test.dat")) else: if (os.path.isfile(input_data_file) is not True): print("Please make sure input_data_file path is correct.") return self.test_X, self.test_Y self.test_X, self.test_Y = utility.DatasetLoader.load(input_data_file) if (self.feature_transform_mode == 'polynomial') or (self.feature_transform_mode == 'legendre'): self.test_X = self.test_X[:, 1:] self.test_X = utility.DatasetLoader.feature_transform( self.test_X, self.feature_transform_mode, self.feature_transform_degree ) return self.test_X, self.test_Y
Example #23
Source File: SupportVectorMachine.py From fuku-ml with MIT License | 6 votes |
def load_test_data(self, input_data_file=''): if (input_data_file == ''): input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/digits_multiclass_test.dat")) else: if (os.path.isfile(input_data_file) is not True): print("Please make sure input_data_file path is correct.") return self.test_X, self.test_Y self.test_X, self.test_Y = utility.DatasetLoader.load(input_data_file) if (self.feature_transform_mode == 'polynomial') or (self.feature_transform_mode == 'legendre'): self.test_X = self.test_X[:, 1:] self.test_X = utility.DatasetLoader.feature_transform( self.test_X, self.feature_transform_mode, self.feature_transform_degree ) return self.test_X, self.test_Y
Example #24
Source File: NeuralNetwork.py From fuku-ml with MIT License | 6 votes |
def load_test_data(self, input_data_file=''): if (input_data_file == ''): input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/neural_network_test.dat")) else: if (os.path.isfile(input_data_file) is not True): print("Please make sure input_data_file path is correct.") return self.test_X, self.test_Y self.test_X, self.test_Y = utility.DatasetLoader.load(input_data_file) if (self.feature_transform_mode == 'polynomial') or (self.feature_transform_mode == 'legendre'): self.test_X = self.test_X[:, 1:] self.test_X = utility.DatasetLoader.feature_transform( self.test_X, self.feature_transform_mode, self.feature_transform_degree ) return self.test_X, self.test_Y
Example #25
Source File: PocketPLA.py From fuku-ml with MIT License | 6 votes |
def load_test_data(self, input_data_file=''): if (input_data_file == ''): input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/digits_multiclass_test.dat")) else: if (os.path.isfile(input_data_file) is not True): print("Please make sure input_data_file path is correct.") return self.test_X, self.test_Y self.test_X, self.test_Y = utility.DatasetLoader.load(input_data_file) if (self.feature_transform_mode == 'polynomial') or (self.feature_transform_mode == 'legendre'): self.test_X = self.test_X[:, 1:] self.test_X = utility.DatasetLoader.feature_transform( self.test_X, self.feature_transform_mode, self.feature_transform_degree ) return self.test_X, self.test_Y
Example #26
Source File: DecisionStump.py From fuku-ml with MIT License | 6 votes |
def load_train_data(self, input_data_file=''): ''' Load train data Please check dataset/pla_binary_train.dat to understand the data format Each feature of data x separated with spaces And the ground truth y put in the end of line separated by a space ''' self.status = 'load_train_data' if (input_data_file == ''): input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/decision_stump_train.dat")) else: if (os.path.isfile(input_data_file) is not True): print("Please make sure input_data_file path is correct.") return self.train_X, self.train_Y self.train_X, self.train_Y = utility.DatasetLoader.load(input_data_file) return self.train_X, self.train_Y
Example #27
Source File: GradientBoostDecisionTree.py From fuku-ml with MIT License | 6 votes |
def load_test_data(self, input_data_file=''): if (input_data_file == ''): input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/pocket_pla_binary_test.dat")) else: if (os.path.isfile(input_data_file) is not True): print("Please make sure input_data_file path is correct.") return self.test_X, self.test_Y self.test_X, self.test_Y = utility.DatasetLoader.load(input_data_file) if (self.feature_transform_mode == 'polynomial') or (self.feature_transform_mode == 'legendre'): self.test_X = self.test_X[:, 1:] self.test_X = utility.DatasetLoader.feature_transform( self.test_X, self.feature_transform_mode, self.feature_transform_degree ) return self.test_X, self.test_Y
Example #28
Source File: LogisticRegression.py From fuku-ml with MIT License | 6 votes |
def load_train_data(self, input_data_file=''): ''' Load train data Please check dataset/logistic_regression_train.dat to understand the data format Each feature of data x separated with spaces And the ground truth y put in the end of line separated by a space ''' self.status = 'load_train_data' if (input_data_file == ''): input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/logistic_regression_train.dat")) else: if (os.path.isfile(input_data_file) is not True): print("Please make sure input_data_file path is correct.") return self.train_X, self.train_Y self.train_X, self.train_Y = utility.DatasetLoader.load(input_data_file) return self.train_X, self.train_Y
Example #29
Source File: LogisticRegression.py From fuku-ml with MIT License | 6 votes |
def load_test_data(self, input_data_file=''): if (input_data_file == ''): input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/digits_multiclass_test.dat")) else: if (os.path.isfile(input_data_file) is not True): print("Please make sure input_data_file path is correct.") return self.test_X, self.test_Y self.test_X, self.test_Y = utility.DatasetLoader.load(input_data_file) if (self.feature_transform_mode == 'polynomial') or (self.feature_transform_mode == 'legendre'): self.test_X = self.test_X[:, 1:] self.test_X = utility.DatasetLoader.feature_transform( self.test_X, self.feature_transform_mode, self.feature_transform_degree ) return self.test_X, self.test_Y
Example #30
Source File: LinearRegression.py From fuku-ml with MIT License | 6 votes |
def load_train_data(self, input_data_file=''): ''' Load train data Please check dataset/pocket_pla_binary_train.dat to understand the data format Each feature of data x separated with spaces And the ground truth y put in the end of line separated by a space ''' self.status = 'load_train_data' if (input_data_file == ''): input_data_file = os.path.normpath(os.path.join(os.path.join(os.getcwd(), os.path.dirname(__file__)), "dataset/pocket_pla_binary_train.dat")) else: if (os.path.isfile(input_data_file) is not True): print("Please make sure input_data_file path is correct.") return self.train_X, self.train_Y self.train_X, self.train_Y = utility.DatasetLoader.load(input_data_file) return self.train_X, self.train_Y