Python torch.nn.functional.relu() Examples
The following are 30
code examples of torch.nn.functional.relu().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
torch.nn.functional
, or try the search function
.
Example #1
Source File: model.py From cat-bbs with MIT License | 8 votes |
def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(MyResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # note the increasing dilation self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilation=1) self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4) # these layers will not be used self.avgpool = nn.AvgPool2d(7) self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_()
Example #2
Source File: model.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def forward(self, x): out = F.relu(self.conv1(x)) out = self.bnm1(out) out = F.relu(self.conv2(out)) out = self.bnm2(out) out = F.max_pool2d(out, 2) out = F.relu(self.conv3(out)) out = self.bnm3(out) out = F.relu(self.conv4(out)) out = self.bnm4(out) out = F.max_pool2d(out, 2) out = out.view(out.size(0), -1) #out = self.dropout1(out) out = F.relu(self.fc1(out)) #out = self.dropout2(out) out = self.bnm5(out) out = F.relu(self.fc2(out)) #out = self.dropout3(out) out = self.bnm6(out) out = self.fc3(out) return (out)
Example #3
Source File: model.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def forward(self, x): out = F.relu(self.conv1(x)) out = F.relu(self.conv2(out)) out = F.max_pool2d(out, 2) out = F.relu(self.conv3(out)) out = F.relu(self.conv4(out)) out = F.max_pool2d(out, 2) out = F.relu(self.conv5(out)) out = F.max_pool2d(out, 2) out = out.view(out.size(0), -1) out = self.dropout1(out) out = F.relu(self.fc1(out)) out = self.dropout2(out) out = F.relu(self.fc2(out)) out = self.dropout3(out) out = self.fc3(out) return (out)
Example #4
Source File: model.py From cat-bbs with MIT License | 6 votes |
def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out
Example #5
Source File: model.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 6 votes |
def forward(self, x): out = F.relu(self.conv1(x)) out = self.bnm1(out) out = F.relu(self.conv2(out)) out = self.bnm2(out) out = F.max_pool2d(out, 2) out = F.relu(self.conv3(out)) out = self.bnm3(out) out = F.relu(self.conv4(out)) out = self.bnm4(out) out = F.max_pool2d(out, 2) out = out.view(out.size(0), -1) #out = self.dropout1(out) out = F.relu(self.fc1(out)) #out = self.dropout2(out) out = self.bnm5(out) out = F.relu(self.fc2(out)) #out = self.dropout3(out) out = self.bnm6(out) out = self.fc3(out) return (out)
Example #6
Source File: ssd_vgg.py From mmdetection with Apache License 2.0 | 6 votes |
def forward(self, x): """Forward function.""" outs = [] for i, layer in enumerate(self.features): x = layer(x) if i in self.out_feature_indices: outs.append(x) for i, layer in enumerate(self.extra): x = F.relu(layer(x), inplace=True) if i % 2 == 1: outs.append(x) outs[0] = self.l2_norm(outs[0]) if len(outs) == 1: return outs[0] else: return tuple(outs)
Example #7
Source File: densenet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): out = self.conv(F.relu(self.bn(x))) out = F.avg_pool2d(out, 2) return out
Example #8
Source File: pnasnet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): # Left branch y1 = self.sep_conv1(x) y2 = self.sep_conv2(x) # Right branch y3 = F.max_pool2d(x, kernel_size=3, stride=self.stride, padding=1) if self.stride==2: y3 = self.bn1(self.conv1(y3)) y4 = self.sep_conv3(x) # Concat & reduce channels b1 = F.relu(y1+y2) b2 = F.relu(y3+y4) y = torch.cat([b1,b2], 1) return F.relu(self.bn2(self.conv2(y)))
Example #9
Source File: pnasnet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.layer5(out) out = F.avg_pool2d(out, 8) out = self.linear(out.view(out.size(0), -1)) return out
Example #10
Source File: dpn.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) x = self.shortcut(x) d = self.out_planes out = torch.cat([x[:,:d,:,:]+out[:,:d,:,:], x[:,d:,:,:], out[:,d:,:,:]], 1) out = F.relu(out) return out
Example #11
Source File: lenet_cwnet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): out = F.relu(self.conv1(x)) out = F.max_pool2d(out, 2) out = F.relu(self.conv2(out)) out = F.max_pool2d(out, 2) out = out.view(out.size(0), -1) out = F.relu(self.fc1(out)) out = F.relu(self.fc2(out)) out = self.fc3(out) return (out, F.log_softmax(out))
Example #12
Source File: model.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): out = F.relu(self.conv1(x)) out = F.max_pool2d(out, 2) out = F.relu(self.conv2(out)) out = F.max_pool2d(out, 2) out = out.view(out.size(0), -1) out = F.relu(self.fc1(out)) out = F.relu(self.fc2(out)) out = self.fc3(out) return (out)
Example #13
Source File: lenet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): out = F.relu(self.conv1(x)) out = F.max_pool2d(out, 2) out = F.relu(self.conv2(out)) out = F.max_pool2d(out, 2) out = out.view(out.size(0), -1) out = F.relu(self.fc1(out)) out = F.relu(self.fc2(out)) out = self.fc3(out) return (out,F.log_softmax(out))
Example #14
Source File: lenet_cwnet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x)
Example #15
Source File: lenet_cwnet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): out = F.relu(self.conv1(x)) out = F.relu(self.conv2(out)) out = F.max_pool2d(out, 2) out = F.relu(self.conv3(out)) out = F.relu(self.conv4(out)) out = F.max_pool2d(out, 2) out = out.view(out.size(0), -1) out = F.relu(self.fc1(out)) out = F.relu(self.fc2(out)) out = self.fc3(out) return (out, F.log_softmax(out))
Example #16
Source File: small_model.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): x = self.conv1(x) x = self.conv2(x) # x = self.conv3(x) x = x.view(x.size(0),-1) x = F.relu(self.fc1(x)) x = self.fc2(x) return (x, F.log_softmax(x))
Example #17
Source File: model.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x)
Example #18
Source File: pnasnet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): y1 = self.sep_conv1(x) y2 = F.max_pool2d(x, kernel_size=3, stride=self.stride, padding=1) if self.stride==2: y2 = self.bn1(self.conv1(y2)) return F.relu(y1+y2)
Example #19
Source File: resnext.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) out += self.shortcut(x) out = F.relu(out) return out
Example #20
Source File: senet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): out = F.relu(self.bn1(x)) shortcut = self.shortcut(out) if hasattr(self, 'shortcut') else x out = self.conv1(out) out = self.conv2(F.relu(self.bn2(out))) # Squeeze w = F.avg_pool2d(out, out.size(2)) w = F.relu(self.fc1(w)) w = F.sigmoid(self.fc2(w)) # Excitation out = out * w out += shortcut return out
Example #21
Source File: model.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): out = F.relu(self.conv1(x)) out = F.relu(self.conv2(out)) out = F.max_pool2d(out, 2) out = F.relu(self.conv3(out)) out = F.relu(self.conv4(out)) out = F.max_pool2d(out, 2) out = out.view(out.size(0), -1) out = F.relu(self.fc1(out)) out = F.relu(self.fc2(out)) out = self.fc3(out) return (out)
Example #22
Source File: small_model.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): #x = self.conv1(x) #x = self.conv2(x) # x = self.conv3(x) x = x.view(x.size(0),-1) x = F.relu(self.fc1(x)) x = self.fc2(x) return (x, F.log_softmax(x))
Example #23
Source File: small_model.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): x = self.conv1(x) x = self.conv2(x) # x = self.conv3(x) x = x.view(x.size(0),-1) x = F.relu(self.fc1(x)) x = self.fc2(x) return (x, F.log_softmax(x))
Example #24
Source File: shufflenet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out
Example #25
Source File: shufflenet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.shuffle1(out) out = F.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out)) res = self.shortcut(x) out = F.relu(torch.cat([out,res], 1)) if self.stride==2 else F.relu(out+res) return out
Example #26
Source File: lenet_cwnet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): out = F.relu(self.conv1(x)) out = F.max_pool2d(out, 2) out = F.relu(self.conv2(out)) out = F.max_pool2d(out, 2) out = out.view(out.size(0), -1) out = F.relu(self.fc1(out)) out = F.relu(self.fc2(out)) out = self.fc3(out) return (out, F.log_softmax(out))
Example #27
Source File: lenet_cwnet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): x = F.relu(F.max_pool2d(self.conv1(x), 2)) x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) x = self.fc2(x) return F.log_softmax(x)
Example #28
Source File: lenet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): out = F.relu(self.conv1(x)) out = F.max_pool2d(out, 2) out = F.relu(self.conv2(out)) out = F.max_pool2d(out, 2) out = out.view(out.size(0), -1) out = F.relu(self.fc1(out)) out = F.relu(self.fc2(out)) out = self.fc3(out) return (out,F.log_softmax(out))
Example #29
Source File: densenet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): out = self.conv1(x) out = self.trans1(self.dense1(out)) out = self.trans2(self.dense2(out)) out = self.trans3(self.dense3(out)) out = self.dense4(out) out = F.avg_pool2d(F.relu(self.bn(out)), 4) out = out.view(out.size(0), -1) out = self.linear(out) return (out,F.log_softmax(out))
Example #30
Source File: densenet.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def forward(self, x): out = self.conv(F.relu(self.bn(x))) out = F.avg_pool2d(out, 2) return out