Python math.ceil() Examples

The following are 30 code examples of math.ceil(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module math , or try the search function .
Example #1
Source File: HalvesRainbow.py    From BiblioPixelAnimations with MIT License 6 votes vote down vote up
def step(self, amt=1):
        center = float(self._maxLed) / 2
        center_floor = math.floor(center)
        center_ceil = math.ceil(center)

        if self._centerOut:
            self.layout.fill(
                self.palette(self._step), int(center_floor - self._current), int(center_floor - self._current))
            self.layout.fill(
                self.palette(self._step), int(center_ceil + self._current), int(center_ceil + self._current))
        else:
            self.layout.fill(
                self.palette(self._step), int(self._current), int(self._current))
            self.layout.fill(
                self.palette(self._step), int(self._maxLed - self._current), int(self._maxLed - self._current))

        self._step += amt + self._rainbowInc

        if self._current == center_floor:
            self._current = self._minLed
        else:
            self._current += amt 
Example #2
Source File: group_sampler.py    From mmdetection with Apache License 2.0 6 votes vote down vote up
def __iter__(self):
        indices = []
        for i, size in enumerate(self.group_sizes):
            if size == 0:
                continue
            indice = np.where(self.flag == i)[0]
            assert len(indice) == size
            np.random.shuffle(indice)
            num_extra = int(np.ceil(size / self.samples_per_gpu)
                            ) * self.samples_per_gpu - len(indice)
            indice = np.concatenate(
                [indice, np.random.choice(indice, num_extra)])
            indices.append(indice)
        indices = np.concatenate(indices)
        indices = [
            indices[i * self.samples_per_gpu:(i + 1) * self.samples_per_gpu]
            for i in np.random.permutation(
                range(len(indices) // self.samples_per_gpu))
        ]
        indices = np.concatenate(indices)
        indices = indices.astype(np.int64).tolist()
        assert len(indices) == self.num_samples
        return iter(indices) 
Example #3
Source File: progressbar.py    From multibootusb with GNU General Public License v2.0 6 votes vote down vote up
def _format_widgets(self):
        result = []
        expanding = []
        width = self.term_width

        for index, widget in enumerate(self.widgets):
            if isinstance(widget, widgets.WidgetHFill):
                result.append(widget)
                expanding.insert(0, index)
            else:
                widget = widgets.format_updatable(widget, self)
                result.append(widget)
                width -= len(widget)

        count = len(expanding)
        while count:
            portion = max(int(math.ceil(width * 1. / count)), 0)
            index = expanding.pop()
            count -= 1

            widget = result[index].update(self, portion)
            width -= len(widget)
            result[index] = widget

        return result 
Example #4
Source File: utils.py    From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 6 votes vote down vote up
def save_image(data, epoch, image_size, batch_size, output_dir, padding=2):
    """ save image """
    data = data.asnumpy().transpose((0, 2, 3, 1))
    datanp = np.clip(
        (data - np.min(data))*(255.0/(np.max(data) - np.min(data))), 0, 255).astype(np.uint8)
    x_dim = min(8, batch_size)
    y_dim = int(math.ceil(float(batch_size) / x_dim))
    height, width = int(image_size + padding), int(image_size + padding)
    grid = np.zeros((height * y_dim + 1 + padding // 2, width *
                     x_dim + 1 + padding // 2, 3), dtype=np.uint8)
    k = 0
    for y in range(y_dim):
        for x in range(x_dim):
            if k >= batch_size:
                break
            start_y = y * height + 1 + padding // 2
            end_y = start_y + height - padding
            start_x = x * width + 1 + padding // 2
            end_x = start_x + width - padding
            np.copyto(grid[start_y:end_y, start_x:end_x, :], datanp[k])
            k += 1
    imageio.imwrite(
        '{}/fake_samples_epoch_{}.png'.format(output_dir, epoch), grid) 
Example #5
Source File: gaussian_moments.py    From DOTA_models with Apache License 2.0 6 votes vote down vote up
def compute_a(sigma, q, lmbd, verbose=False):
  lmbd_int = int(math.ceil(lmbd))
  if lmbd_int == 0:
    return 1.0

  a_lambda_first_term_exact = 0
  a_lambda_second_term_exact = 0
  for i in xrange(lmbd_int + 1):
    coef_i = scipy.special.binom(lmbd_int, i) * (q ** i)
    s1, s2 = 0, 0
    for j in xrange(i + 1):
      coef_j = scipy.special.binom(i, j) * (-1) ** (i - j)
      s1 += coef_j * np.exp((j * j - j) / (2.0 * (sigma ** 2)))
      s2 += coef_j * np.exp((j * j + j) / (2.0 * (sigma ** 2)))
    a_lambda_first_term_exact += coef_i * s1
    a_lambda_second_term_exact += coef_i * s2

  a_lambda_exact = ((1.0 - q) * a_lambda_first_term_exact +
                    q * a_lambda_second_term_exact)
  if verbose:
    print "A: by binomial expansion    {} = {} + {}".format(
        a_lambda_exact,
        (1.0 - q) * a_lambda_first_term_exact,
        q * a_lambda_second_term_exact)
  return _to_np_float64(a_lambda_exact) 
Example #6
Source File: common_layers.py    From fine-lm with MIT License 6 votes vote down vote up
def make_even_size(x):
  """Pad x to be even-sized on axis 1 and 2, but only if necessary."""
  x_shape = x.get_shape().as_list()
  assert len(x_shape) > 2, "Only 3+-dimensional tensors supported."
  shape = [dim if dim is not None else -1 for dim in x_shape]
  new_shape = x_shape  # To make sure constant shapes remain constant.
  if x_shape[1] is not None:
    new_shape[1] = 2 * int(math.ceil(x_shape[1] * 0.5))
  if x_shape[2] is not None:
    new_shape[2] = 2 * int(math.ceil(x_shape[2] * 0.5))
  if shape[1] % 2 == 0 and shape[2] % 2 == 0:
    return x
  if shape[1] % 2 == 0:
    x, _ = pad_to_same_length(x, x, final_length_divisible_by=2, axis=2)
    x.set_shape(new_shape)
    return x
  if shape[2] % 2 == 0:
    x, _ = pad_to_same_length(x, x, final_length_divisible_by=2, axis=1)
    x.set_shape(new_shape)
    return x
  x, _ = pad_to_same_length(x, x, final_length_divisible_by=2, axis=1)
  x, _ = pad_to_same_length(x, x, final_length_divisible_by=2, axis=2)
  x.set_shape(new_shape)
  return x 
Example #7
Source File: get_references_web.py    From fine-lm with MIT License 6 votes vote down vote up
def main(_):
  shard_urls = fetch.get_urls_for_shard(FLAGS.urls_dir, FLAGS.shard_id)
  num_groups = int(math.ceil(len(shard_urls) / fetch.URLS_PER_CLIENT))
  tf.logging.info("Launching get_references_web_single_group sequentially for "
                  "%d groups in shard %d. Total URLs: %d",
                  num_groups, FLAGS.shard_id, len(shard_urls))
  command_prefix = FLAGS.command.split() + [
      "--urls_dir=%s" % FLAGS.urls_dir,
      "--shard_id=%d" % FLAGS.shard_id,
      "--debug_num_urls=%d" % FLAGS.debug_num_urls,
  ]
  with utils.timing("all_groups_fetch"):
    for i in range(num_groups):
      command = list(command_prefix)
      out_dir = os.path.join(FLAGS.out_dir, "process_%d" % i)
      command.append("--out_dir=%s" % out_dir)
      command.append("--group_id=%d" % i)
      try:
        # Even on 1 CPU, each group should finish within an hour.
        sp.check_call(command, timeout=60*60)
      except sp.TimeoutExpired:
        tf.logging.error("Group %d timed out", i) 
Example #8
Source File: display_methods.py    From indras_net with GNU General Public License v3.0 5 votes vote down vote up
def __init__(self, title, varieties, width, height,
                 anim=True, data_func=None, is_headless=False, legend_pos=4):
        """
        Setup a scatter plot.
        varieties contains the different types of
        entities to show in the plot, which
        will get assigned different colors
        """
        global anim_func

        self.scats = None
        self.anim = anim
        self.data_func = data_func
        self.s = ceil(4096 / width)
        self.headless = is_headless

        fig, ax = plt.subplots()
        ax.set_xlim(0, width)
        ax.set_ylim(0, height)
        self.create_scats(varieties)
        ax.legend(loc = legend_pos)
        ax.set_title(title)
        plt.grid(True)

        if anim and not self.headless:
            anim_func = animation.FuncAnimation(fig,
                                    self.update_plot,
                                    frames=1000,
                                    interval=500,
                                    blit=False) 
Example #9
Source File: section_output.py    From clikit with MIT License 5 votes vote down vote up
def add_content(self, content):  # type: (str) -> None
        for line_content in content.split("\n"):
            self._lines += (
                math.ceil(
                    len(self.remove_format(line_content).replace("\t", "        "))
                    / self._terminal.width
                )
                or 1
            )
            self._content.append(line_content)
            self._content.append("\n") 
Example #10
Source File: time.py    From clikit with MIT License 5 votes vote down vote up
def format_time(secs):  # type: (int) -> str
    for fmt in _TIME_FORMATS:
        if secs > fmt[0]:
            continue

        if len(fmt) == 2:
            return fmt[1]

        return "{} {}".format(math.ceil(secs / fmt[2]), fmt[1]) 
Example #11
Source File: img.py    From vergeml with MIT License 5 votes vote down vote up
def resize_image(img, width, height, method, mode, bg_color=(0, 0, 0, 0)):
    # Some code from:
    # https://github.com/charlesthk/python-resize-image/blob/master/resizeimage/resizeimage.py
    # Thank you!
    img = img.copy()
    pil_method = getattr(Image, method.upper())

    if mode == 'fill':
        img = img.resize((width, height), pil_method)
    elif mode == 'aspect-fill':
        w,h = img.size
        ratio = max(width / w, height / h)
        nsize = (int(math.ceil(w * ratio)), int(math.ceil(h * ratio)))
        img = img.resize(nsize, pil_method)
        w,h = img.size
        left = (w - width) / 2
        top = (h - height) / 2
        right = w - left
        bottom = h - top
        rect = (int(math.ceil(x)) for x in (left, top, right, bottom))
        img = img.crop(rect)
    elif mode == 'aspect-fit':
        img.thumbnail((width, height), pil_method)
        background = Image.new('RGBA', (width, height), bg_color)
        img_position = (
            int(math.ceil((width - img.width) / 2)),
            int(math.ceil((height - img.height) / 2))
        )
        background.paste(img, img_position)
        img = background.convert('RGB')
    
    return img 
Example #12
Source File: dkt.py    From dkt with MIT License 5 votes vote down vote up
def round_to_multiple(x, base):
    return int(base * math.ceil(float(x)/base)) 
Example #13
Source File: plotting.py    From cat-bbs with MIT License 5 votes vote down vote up
def __init__(self, titles, increasing, save_to_fp):
        assert len(titles) == len(increasing)
        n_plots = len(titles)
        self.titles = titles
        self.increasing = dict([(title, incr) for title, incr in zip(titles, increasing)])
        self.colors = ["red", "blue", "cyan", "magenta", "orange", "black"]

        self.nb_points_max = 500
        self.save_to_fp = save_to_fp
        self.start_batch_idx = 0
        self.autolimit_y = False
        self.autolimit_y_multiplier = 5

        #self.fig, self.axes = plt.subplots(nrows=2, ncols=2, figsize=(20, 20))
        nrows = max(1, int(math.sqrt(n_plots)))
        ncols = int(math.ceil(n_plots / nrows))
        width = ncols * 10
        height = nrows * 10

        self.fig, self.axes = plt.subplots(nrows=nrows, ncols=ncols, figsize=(width, height))

        if nrows == 1 and ncols == 1:
            self.axes = [self.axes]
        else:
            self.axes = self.axes.flat

        title_to_ax = dict()
        for idx, (title, ax) in enumerate(zip(self.titles, self.axes)):
            title_to_ax[title] = ax
        self.title_to_ax = title_to_ax

        self.fig.tight_layout()
        self.fig.subplots_adjust(left=0.05) 
Example #14
Source File: fun.py    From cyberdisc-bot with MIT License 5 votes vote down vote up
def quoteboard(self, ctx: Context, page: int = 1):
        """Show a leaderboard of users with the most quotes."""
        users = ""
        current = 1
        start_from = (page - 1) * 10

        async with self.bot.pool.acquire() as connection:
            page_count = ceil(
                await connection.fetchval(
                    "SELECT count(DISTINCT author_id) FROM quotes"
                ) / 10
            )

            if 1 > page > page_count:
                return await ctx.send(":no_entry_sign: Invalid page number")

            for result in await connection.fetch(
                "SELECT author_id, COUNT(author_id) as quote_count FROM quotes "
                "GROUP BY author_id ORDER BY quote_count DESC LIMIT 10 OFFSET $1",
                start_from,
            ):
                author, quotes = result.values()
                users += f"{start_from + current}. <@{author}> - {quotes}\n"
                current += 1

        embed = Embed(colour=Colour(0xAE444A))
        embed.add_field(name=f"Page {page}/{page_count}", value=users)
        embed.set_author(name="Quotes Leaderboard", icon_url=CYBERDISC_ICON_URL)

        await ctx.send(embed=embed) 
Example #15
Source File: network.py    From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License 5 votes vote down vote up
def _anchor_component(self, height, width):
    # just to get the shape right
    #height = int(math.ceil(self._im_info.data[0, 0] / self._feat_stride[0]))
    #width = int(math.ceil(self._im_info.data[0, 1] / self._feat_stride[0]))
    anchors, anchor_length = generate_anchors_pre(\
                                          height, width,
                                           self._feat_stride, self._anchor_scales, self._anchor_ratios)
    self._anchors = Variable(torch.from_numpy(anchors).cuda())
    self._anchor_length = anchor_length 
Example #16
Source File: atomic.py    From comet-commonsense with Apache License 2.0 5 votes vote down vote up
def select_partial_dataset(data_opts, data):
    num_selections = math.ceil(data_opts.kr * len(data))
    return random.sample(data, num_selections) 
Example #17
Source File: supersets.py    From iSDX with Apache License 2.0 5 votes vote down vote up
def recompute_all_supersets(self, pctrl):

        self.logger.debug("~Recomputing all Supersets...")

        self.rulecounts = self.recompute_rulecounts(pctrl)
        # get all sets of participants advertising the same prefix
        peer_sets = get_prefix2part_sets(pctrl)
        peer_sets = clear_inactive_parts(peer_sets, self.rulecounts.keys())
        peer_sets = removeSubsets(peer_sets)

        self.supersets = minimize_ss_rules_greedy(peer_sets, self.rulecounts, self.max_initial_bits)

        # impose an ordering on each superset by converting sets to lists
        for i in range(len(self.supersets)):
            self.supersets[i] = list(self.supersets[i])

        # if there is more than one superset, set the id size appropriately
        self.id_size = 1
        if len(self.supersets) > 1:
            self.id_size = int(math.ceil(math.log(len(self.supersets), 2)))
            
        # fix the mask size based on the id size
        self.mask_size = self.max_bits - self.id_size

        # in the unlikely case that there are more participants for a prefix than can fit in
        # the mask, truncate the list of participants (this may still be very broken)
        for superset in self.supersets:
            if len(superset) > self.mask_size:
                self.logger.warn('Superset too big!  Dropping participants.')
                del(superset[self.mask_size:])

        self.logger.debug("done.~")
        self.logger.debug("Supersets: >> "+str(self.supersets)) 
Example #18
Source File: ss_lib.py    From iSDX with Apache License 2.0 5 votes vote down vote up
def bitsRequired(supersets):
    """ How many bits are needed to represent any set in this construction?
    """
    if supersets is None:
    	return 0

    logM = 1
    if len(supersets) > 1:
        logM = math.ceil(math.log(len(supersets), 2))
    maxS = max(len(superset) for superset in supersets)

    return int(logM + maxS) 
Example #19
Source File: data.py    From Neural-LP with MIT License 5 votes vote down vote up
def _count_batch(self, samples, batch_size):
        relations = zip(*samples)[0]
        relations_counts = Counter(relations)
        num_batches = [ceil(1. * x / batch_size) for x in relations_counts.values()]
        return int(sum(num_batches)) 
Example #20
Source File: wrappers.py    From mmdetection with Apache License 2.0 5 votes vote down vote up
def forward(self, x):
        if x.numel() == 0 and torch.__version__ <= '1.4':
            out_shape = list(x.shape[:2])
            for i, k, p, s, d in zip(x.shape[-2:], _pair(self.kernel_size),
                                     _pair(self.padding), _pair(self.stride),
                                     _pair(self.dilation)):
                o = (i + 2 * p - (d * (k - 1) + 1)) / s + 1
                o = math.ceil(o) if self.ceil_mode else math.floor(o)
                out_shape.append(o)
            empty = NewEmptyTensorOp.apply(x, out_shape)
            return empty

        return super().forward(x) 
Example #21
Source File: group_sampler.py    From mmdetection with Apache License 2.0 5 votes vote down vote up
def __init__(self, dataset, samples_per_gpu=1):
        assert hasattr(dataset, 'flag')
        self.dataset = dataset
        self.samples_per_gpu = samples_per_gpu
        self.flag = dataset.flag.astype(np.int64)
        self.group_sizes = np.bincount(self.flag)
        self.num_samples = 0
        for i, size in enumerate(self.group_sizes):
            self.num_samples += int(np.ceil(
                size / self.samples_per_gpu)) * self.samples_per_gpu 
Example #22
Source File: group_sampler.py    From mmdetection with Apache License 2.0 5 votes vote down vote up
def __init__(self,
                 dataset,
                 samples_per_gpu=1,
                 num_replicas=None,
                 rank=None):
        _rank, _num_replicas = get_dist_info()
        if num_replicas is None:
            num_replicas = _num_replicas
        if rank is None:
            rank = _rank
        self.dataset = dataset
        self.samples_per_gpu = samples_per_gpu
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0

        assert hasattr(self.dataset, 'flag')
        self.flag = self.dataset.flag
        self.group_sizes = np.bincount(self.flag)

        self.num_samples = 0
        for i, j in enumerate(self.group_sizes):
            self.num_samples += int(
                math.ceil(self.group_sizes[i] * 1.0 / self.samples_per_gpu /
                          self.num_replicas)) * self.samples_per_gpu
        self.total_size = self.num_samples * self.num_replicas 
Example #23
Source File: group_sampler.py    From mmdetection with Apache License 2.0 5 votes vote down vote up
def __iter__(self):
        # deterministically shuffle based on epoch
        g = torch.Generator()
        g.manual_seed(self.epoch)

        indices = []
        for i, size in enumerate(self.group_sizes):
            if size > 0:
                indice = np.where(self.flag == i)[0]
                assert len(indice) == size
                indice = indice[list(torch.randperm(int(size),
                                                    generator=g))].tolist()
                extra = int(
                    math.ceil(
                        size * 1.0 / self.samples_per_gpu / self.num_replicas)
                ) * self.samples_per_gpu * self.num_replicas - len(indice)
                # pad indice
                tmp = indice.copy()
                for _ in range(extra // size):
                    indice.extend(tmp)
                indice.extend(tmp[:extra % size])
                indices.extend(indice)

        assert len(indices) == self.total_size

        indices = [
            indices[j] for i in list(
                torch.randperm(
                    len(indices) // self.samples_per_gpu, generator=g))
            for j in range(i * self.samples_per_gpu, (i + 1) *
                           self.samples_per_gpu)
        ]

        # subsample
        offset = self.num_samples * self.rank
        indices = indices[offset:offset + self.num_samples]
        assert len(indices) == self.num_samples

        return iter(indices) 
Example #24
Source File: gen_noisy.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def evaluate_checkpoint(sess,model):
    dataset = 'cifar'

    #with tf.Session() as sess:
    # Iterate over the samples batch-by-batch
    num_batches = int(math.ceil(num_eval_examples / eval_batch_size))
    adv_x_samples=[]
    adv_y_samples=[]
    for ibatch in range(num_batches):
      bstart = ibatch * eval_batch_size
      bend = min(bstart + eval_batch_size, num_eval_examples)

      x_batch = mnist.test.images[bstart:bend,:]
      y_batch = mnist.test.labels[bstart:bend]

      x_batch_adv = attack.perturb(x_batch, y_batch, sess)
      if(ibatch == 0):
          adv_x_samples = x_batch_adv
          adv_y_samples = y_batch
      else:
          adv_x_samples = np.concatenate((adv_x_samples, x_batch_adv), axis = 0)
          adv_y_samples = np.concatenate((adv_y_samples, y_batch), axis = 0)
    if(args.attack == 'xent'):
      atck = 'pgd'
      f = open(os.path.join(args.log_dir, 'Adv_%s_%s.p' % (dataset, atck)), "w")
    elif(args.attack == 'cw_pgd'):
      atck = 'cw_pgd'
      f = open(os.path.join(args.log_dir, 'Adv_%s_%s.p' % (dataset, atck)), "w")
    else:
      f = open(os.path.join(args.log_dir, "custom.p"), "w")
    pickle.dump({"adv_input":adv_x_samples,"adv_labels":adv_y_samples},f)
    f.close() 
Example #25
Source File: gen_whitebox_adv.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def evaluate_checkpoint(sess,model):
    dataset = 'cifar'

    #with tf.Session() as sess:
    # Iterate over the samples batch-by-batch
    num_batches = int(math.ceil(num_eval_examples / eval_batch_size))
    adv_x_samples=[]
    adv_y_samples=[]
    for ibatch in range(num_batches):
      bstart = ibatch * eval_batch_size
      bend = min(bstart + eval_batch_size, num_eval_examples)

      x_batch = mnist.test.images[bstart:bend,:]
      y_batch = mnist.test.labels[bstart:bend]

      x_batch_adv = attack.perturb(x_batch, y_batch, sess)
      if(ibatch == 0):
          adv_x_samples = x_batch_adv
          adv_y_samples = y_batch
      else:
          adv_x_samples = np.concatenate((adv_x_samples, x_batch_adv), axis = 0)
          adv_y_samples = np.concatenate((adv_y_samples, y_batch), axis = 0)
    if(args.attack == 'xent'):
      atck = 'pgd'
      f = open(os.path.join(args.log_dir, 'Adv_%s_%s.p' % (dataset, atck)), "w")
    elif(args.attack == 'cw_pgd'):
      atck = 'cw_pgd'
      f = open(os.path.join(args.log_dir, 'Adv_%s_%s.p' % (dataset, atck)), "w")
    else:
      f = open(os.path.join(args.log_dir, "custom.p"), "w")
    pickle.dump({"adv_input":adv_x_samples,"adv_labels":adv_y_samples},f)
    f.close() 
Example #26
Source File: gen_whitebox_adv.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def evaluate_checkpoint(sess,model):
    dataset = 'mnist'

    #with tf.Session() as sess:
    # Iterate over the samples batch-by-batch
    num_batches = int(math.ceil(num_eval_examples / eval_batch_size))
    adv_x_samples=[]
    adv_y_samples=[]
    for ibatch in range(num_batches):
      bstart = ibatch * eval_batch_size
      bend = min(bstart + eval_batch_size, num_eval_examples)

      x_batch = mnist.test.images[bstart:bend,:]
      y_batch = mnist.test.labels[bstart:bend]

      dict_nat = {model.x_input: x_batch,
                  model.y_input: y_batch}

      x_batch_adv = attack.perturb(x_batch, y_batch, sess)
      if(ibatch == 0):
          adv_x_samples = x_batch_adv
          adv_y_samples = y_batch
      else:
          adv_x_samples = np.concatenate((adv_x_samples, x_batch_adv), axis = 0)
          adv_y_samples = np.concatenate((adv_y_samples, y_batch), axis = 0)
    if(args.attack == 'xent'):
      atck = 'pgd'
      f = open(os.path.join(args.log_dir, 'Adv_%s_%s.p' % (dataset, atck)), "w")
    elif(args.attack == 'cw_pgd'):
      atck = 'cw_pgd'
      f = open(os.path.join(args.log_dir, 'Adv_%s_%s.p' % (dataset, atck)), "w")
    else:
      f = open(os.path.join(args.log_dir, "custom.p"), "w")
    pickle.dump({"adv_input":adv_x_samples,"adv_labels":adv_y_samples},f)
    f.close() 
Example #27
Source File: utils.py    From pinax-documents with MIT License 5 votes vote down vote up
def convert_bytes(bytes):
    bytes = float(bytes)
    if bytes >= 1099511627776:
        size, srepr = bytes / 1099511627776, "TB"
    elif bytes >= 1073741824:
        size, srepr = bytes / 1073741824, "GB"
    elif bytes >= 1048576:
        size, srepr = bytes / 1048576, "MB"
    elif bytes >= 1024:
        size, srepr = bytes / 1024, "KB"
    else:
        size, srepr = bytes, " bytes"
    return "%d%s" % (math.ceil(size), srepr) 
Example #28
Source File: models.py    From pinax-documents with MIT License 5 votes vote down vote up
def percentage(self):
        return int(math.ceil((float(self.bytes_used) / self.bytes_total) * 100)) 
Example #29
Source File: audio_transfer_learning.py    From sklearn-audio-transfer-learning with ISC License 5 votes vote down vote up
def extract_features_wrapper(paths, path2gt, model='vggish', save_as=False):
    """Wrapper function for extracting features (MusiCNN, VGGish or OpenL3) per batch.
       If a save_as string argument is passed, the features wiil be saved in 
       the specified file.
    """
    if model == 'vggish':
        feature_extractor = extract_vggish_features
    elif model == 'openl3' or model == 'musicnn':
        feature_extractor = extract_other_features
    else:
        raise NotImplementedError('Current implementation only supports MusiCNN, VGGish and OpenL3 features')

    batch_size = config['batch_size']
    first_batch = True
    for batch_id in tqdm(range(ceil(len(paths)/batch_size))):
        batch_paths = paths[(batch_id)*batch_size:(batch_id+1)*batch_size]
        [x, y, refs] = feature_extractor(batch_paths, path2gt, model)
        if first_batch:
            [X, Y, IDS] = [x, y, refs]
            first_batch = False
        else:
            X = np.concatenate((X, x), axis=0)
            Y = np.concatenate((Y, y), axis=0)
            IDS = np.concatenate((IDS, refs), axis=0)
    
    if save_as:  # save data to file
        # create a directory where to store the extracted training features
        audio_representations_folder = DATA_FOLDER + 'audio_representations/'
        if not os.path.exists(audio_representations_folder):
            os.makedirs(audio_representations_folder)
        np.savez(audio_representations_folder + save_as, X=X, Y=Y, IDS=IDS)
        print('Audio features stored: ', save_as)

    return [X, Y, IDS] 
Example #30
Source File: __init__.py    From Random-Erasing with Apache License 2.0 5 votes vote down vote up
def eta(self):
        return int(ceil(self.avg * self.remaining))