Python math.floor() Examples
The following are 30
code examples of math.floor().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
math
, or try the search function
.
Example #1
Source File: senet.py From argus-freesound with MIT License | 6 votes |
def __init__(self, inplanes, planes, groups, reduction, stride=1, downsample=None, base_width=4): super(SEResNeXtBottleneck, self).__init__() width = math.floor(planes * (base_width / 64)) * groups self.conv1 = nn.Conv2d(inplanes, width, kernel_size=1, bias=False, stride=1) self.bn1 = nn.BatchNorm2d(width) self.conv2 = nn.Conv2d(width, width, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False) self.bn2 = nn.BatchNorm2d(width) self.conv3 = nn.Conv2d(width, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.se_module = SEModule(planes * 4, reduction=reduction) self.downsample = downsample self.stride = stride
Example #2
Source File: sand.py From indras_net with GNU General Public License v3.0 | 6 votes |
def __init__(self, name, width, height, model_nm=None, props=None): super().__init__(name, width, height, torus=False, model_nm=model_nm, postact=True, props=props) self.center_agent = None self.set_var_color('0', disp.BLACK) self.set_var_color('1', disp.MAGENTA) self.set_var_color('2', disp.BLUE) self.set_var_color('3', disp.CYAN) self.set_var_color('4', disp.RED) self.set_var_color('5', disp.YELLOW) self.set_var_color('6', disp.GREEN) center_x = floor(self.width // 2) center_y = floor(self.height // 2) print("center = %i, %i" % (center_x, center_y)) for cell in self: (x, y) = cell.coords agent = SandAgent("Grainy", "Hold sand", cell) self.add_agent(agent, position=False) if x == center_x and y == center_y: self.center_agent = agent
Example #3
Source File: fractions.py From jawfish with MIT License | 6 votes |
def __round__(self, ndigits=None): """Will be round(self, ndigits) in 3.0. Rounds half toward even. """ if ndigits is None: floor, remainder = divmod(self.numerator, self.denominator) if remainder * 2 < self.denominator: return floor elif remainder * 2 > self.denominator: return floor + 1 # Deal with the half case: elif floor % 2 == 0: return floor else: return floor + 1 shift = 10**abs(ndigits) # See _operator_fallbacks.forward to check that the results of # these operations will always be Fraction and therefore have # round(). if ndigits > 0: return Fraction(round(self * shift), shift) else: return Fraction(round(self / shift) * shift)
Example #4
Source File: demo.py From unicorn-hat-hd with MIT License | 6 votes |
def checker(x, y, step): x -= (u_width / 2) y -= (u_height / 2) angle = (step / 10.0) s = math.sin(angle) c = math.cos(angle) xs = x * c - y * s ys = x * s + y * c xs -= math.sin(step / 200.0) * 40.0 ys -= math.cos(step / 200.0) * 40.0 scale = step % 20 scale /= 20 scale = (math.sin(step / 50.0) / 8.0) + 0.25 xs *= scale ys *= scale xo = abs(xs) - int(abs(xs)) yo = abs(ys) - int(abs(ys)) v = 0 if (math.floor(xs) + math.floor(ys)) % 2 else 1 if xo > .1 and yo > .1 else .5 r, g, b = hue_to_rgb[step % 255] return (r * (v * 255), g * (v * 255), b * (v * 255)) # weeee waaaah
Example #5
Source File: GXDLMSRegister.py From Gurux.DLMS.Python with GNU General Public License v2.0 | 6 votes |
def getValue(self, settings, e): if e.index == 1: return _GXCommon.logicalNameToBytes(self.logicalName) if e.index == 2: return self.value if e.index == 3: data = GXByteBuffer() data.setUInt8(DataType.STRUCTURE) data.setUInt8(2) _GXCommon.setData(settings, data, DataType.INT8, math.floor(math.log(self.scaler, 10))) _GXCommon.setData(settings, data, DataType.ENUM, int(self.unit)) return data.array() e.error = ErrorCode.READ_WRITE_DENIED return None # # Set value of given attribute. # #pylint: disable=broad-except
Example #6
Source File: GXDLMSExtendedRegister.py From Gurux.DLMS.Python with GNU General Public License v2.0 | 6 votes |
def getValue(self, settings, e): if e.index == 1: return _GXCommon.logicalNameToBytes(self.logicalName) if e.index == 2: return self.value if e.index == 3: data = GXByteBuffer() data.setUInt8(DataType.STRUCTURE) data.setUInt8(2) _GXCommon.setData(settings, data, DataType.INT8, math.floor(math.log(self.scaler, 10))) _GXCommon.setData(settings, data, DataType.ENUM, int(self.unit)) return data.array() if e.index == 4: return self.status if e.index == 5: return self.captureTime e.error = ErrorCode.READ_WRITE_DENIED return None # # Set value of given attribute. #
Example #7
Source File: lr_scheduler.py From argus-freesound with MIT License | 6 votes |
def step(self, epoch=None): """Step could be called after every update, i.e. if one epoch has 10 iterations (number_of_train_examples / batch_size), we should call SGDR.step(0.1), SGDR.step(0.2), etc. This function can be called in an interleaved way. Example: >>> scheduler = SGDR(optimizer, T_0, T_mult) >>> for epoch in range(20): >>> scheduler.step() >>> scheduler.step(26) >>> scheduler.step() # scheduler.step(27), instead of scheduler(20) """ if epoch is None: epoch = self.last_epoch + 1 self.T_cur = self.T_cur + 1 if self.T_cur >= self.T_i: self.T_cur = self.T_cur - self.T_i self.T_i = self.T_i * self.T_mult else: if epoch >= self.T_0: if self.T_mult == 1: self.T_cur = epoch % self.T_0 else: n = int(math.log((epoch / self.T_0 * (self.T_mult - 1) + 1), self.T_mult)) self.T_cur = epoch - self.T_0 * (self.T_mult ** n - 1) / (self.T_mult - 1) self.T_i = self.T_0 * self.T_mult ** (n) else: self.T_i = self.T_0 self.T_cur = epoch self.last_epoch = math.floor(epoch) for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()): param_group['lr'] = lr
Example #8
Source File: noduleCADEvaluationLUNA16.py From DeepLung with GNU General Public License v3.0 | 6 votes |
def compute_mean_ci(interp_sens, confidence = 0.95): sens_mean = np.zeros((interp_sens.shape[1]),dtype = 'float32') sens_lb = np.zeros((interp_sens.shape[1]),dtype = 'float32') sens_up = np.zeros((interp_sens.shape[1]),dtype = 'float32') Pz = (1.0-confidence)/2.0 print(interp_sens.shape) for i in range(interp_sens.shape[1]): # get sorted vector vec = interp_sens[:,i] vec.sort() sens_mean[i] = np.average(vec) sens_lb[i] = vec[int(math.floor(Pz*len(vec)))] sens_up[i] = vec[int(math.floor((1.0-Pz)*len(vec)))] return sens_mean,sens_lb,sens_up
Example #9
Source File: utils.py From TVQAplus with MIT License | 6 votes |
def get_bbox_target_single_box(single_box, spatial_dim=7, img_w=640., img_h=360., thd=0.5): """ :param single_box: a single box :param spatial_dim: :param img_w: :param img_h: :param thd: round thd :return: """ top = single_box["top"] left = single_box["left"] bottom = top + single_box["height"] right = left + single_box["width"] # map to 224x224 to 7x7 top = int(math.floor((top * spatial_dim) / img_h + thd)) bottom = int(math.ceil((bottom * spatial_dim) / img_h - thd)) left = int(math.floor((left * spatial_dim) / img_w + thd)) right = int(math.ceil((right * spatial_dim) / img_w - thd)) gt_att_map = np.zeros([spatial_dim, spatial_dim]).astype(np.float32) gt_att_map[top: bottom+1, left:right+1] = 1 # print(top, bottom, left, right) return gt_att_map
Example #10
Source File: editor.py From sixcells with GNU General Public License v3.0 | 6 votes |
def _place(self, p, kind=Cell.unknown): if not self.preview: self.preview = Cell() self.preview.kind = kind self.preview.setOpacity(0.4) self.addItem(self.preview) x, y = convert_pos(p.x(), p.y()) x = round(x) for yy in [round(y), int(math.floor(y - 1e-4)), int(math.ceil(y + 1e-4))]: self.preview.coord = (x, yy) if not any(isinstance(it, Cell) for it in self.preview.overlapping): break else: self.preview.coord = (round(x), round(y)) self.preview.upd() self.preview._text.setText('')
Example #11
Source File: HalvesRainbow.py From BiblioPixelAnimations with MIT License | 6 votes |
def step(self, amt=1): center = float(self._maxLed) / 2 center_floor = math.floor(center) center_ceil = math.ceil(center) if self._centerOut: self.layout.fill( self.palette(self._step), int(center_floor - self._current), int(center_floor - self._current)) self.layout.fill( self.palette(self._step), int(center_ceil + self._current), int(center_ceil + self._current)) else: self.layout.fill( self.palette(self._step), int(self._current), int(self._current)) self.layout.fill( self.palette(self._step), int(self._maxLed - self._current), int(self._maxLed - self._current)) self._step += amt + self._rainbowInc if self._current == center_floor: self._current = self._minLed else: self._current += amt
Example #12
Source File: utils.py From progressive_growing_of_GANs with MIT License | 6 votes |
def grid_batch_images(self, images): n, h, w, c = images.shape a = int(math.floor(np.sqrt(n))) # images = (((images - images.min()) * 255) / (images.max() - images.min())).astype(np.uint8) images = images.astype(np.uint8) images_in_square = np.reshape(images[:a * a], (a, a, h, w, c)) new_img = np.zeros((h * a, w * a, c), dtype=np.uint8) for col_i, col_images in enumerate(images_in_square): for row_i, image in enumerate(col_images): new_img[col_i * h: (1 + col_i) * h, row_i * w: (1 + row_i) * w] = image resolution = self.cfg.resolution if self.cfg.resolution != h: scale = resolution / h new_img = cv2.resize(new_img, None, fx=scale, fy=scale, interpolation=cv2.INTER_NEAREST) return new_img
Example #13
Source File: parameters.py From python-panavatar with MIT License | 6 votes |
def _get_octave(seed, coord): x = coord.real y = coord.imag cellx = math.floor(x) celly = math.floor(y) value00 = _perlin_random(seed, cellx, celly) value10 = _perlin_random(seed, cellx + 1, celly) value01 = _perlin_random(seed, cellx, celly + 1) value11 = _perlin_random(seed, cellx + 1, celly + 1) offsetx = x % 1.0 offsety = y % 1.0 value0 = offsetx * value10 + (1 - offsetx) * value00 value1 = offsetx * value11 + (1 - offsetx) * value01 result = offsety * value1 + (1 - offsety) * value0 return result * INV_MAX_VALUE
Example #14
Source File: parameters.py From python-panavatar with MIT License | 6 votes |
def __init__(self, seed, octaves=None, detail=None, min_value=0, max_value=1, size=1.0): if not octaves: octaves = max(1, int(math.floor(math.log(size / detail, 2)))) scales = [.5 ** o for o in range(octaves)] inv_total_scale = 1.0 / sum(scales) self.min_value = min_value self.max_value = max_value self.inv_size = 1.0 / size self.octaves = [ (inv_total_scale * scale, 1.0 / (inv_total_scale * scale), (seed ^ o * 541) & 0x3FFFFFFF) for (o, scale) in enumerate(scales)]
Example #15
Source File: node.py From pyflowgraph with BSD 3-Clause "New" or "Revised" License | 6 votes |
def mouseMoveEvent(self, event): if self.__dragging: newPos = self.mapToScene(event.pos()) graph = self.getGraph() if graph.getSnapToGrid() is True: gridSize = graph.getGridSize() newNodePos = newPos - self._mouseDelta snapPosX = math.floor(newNodePos.x() / gridSize) * gridSize; snapPosY = math.floor(newNodePos.y() / gridSize) * gridSize; snapPos = QtCore.QPointF(snapPosX, snapPosY) newPosOffset = snapPos - newNodePos newPos = newPos + newPosOffset delta = newPos - self._lastDragPoint self.__graph.moveSelectedNodes(delta) self._lastDragPoint = newPos self._nodesMoved = True else: super(Node, self).mouseMoveEvent(event)
Example #16
Source File: fractions.py From jawfish with MIT License | 5 votes |
def __rfloordiv__(b, a): """a // b""" return math.floor(a / b)
Example #17
Source File: fractions.py From jawfish with MIT License | 5 votes |
def __floor__(a): """Will be math.floor(a) in 3.0.""" return a.numerator // a.denominator
Example #18
Source File: stats.py From simon with MIT License | 5 votes |
def bytes2human(n): # Credits to /u/cyberspacecowboy on reddit # https://www.reddit.com/r/Python/comments/5xukpd/-/dem5k12/ symbols = (' B', ' KiB', ' MiB', ' GiB', ' TiB', ' PiB', ' EiB', ' ZiB', ' YiB') i = math.floor(math.log(abs(n)+1, 2) / 10) return '%.1f%s' % (n/2**(i*10), symbols[int(i)])
Example #19
Source File: TensorFlowInterface.py From IntroToDeepLearning with MIT License | 5 votes |
def plotOutput(layer,feed_dict,fieldShape=None,channel=None,figOffset=1,cmap=None): # Output summary W = layer.output wp = W.eval(feed_dict=feed_dict); if len(np.shape(wp)) < 4: # Fully connected layer, has no shape temp = np.zeros(np.product(fieldShape)); temp[0:np.shape(wp.ravel())[0]] = wp.ravel() fields = np.reshape(temp,[1]+fieldShape) else: # Convolutional layer already has shape wp = np.rollaxis(wp,3,0) features, channels, iy,ix = np.shape(wp) if channel is not None: fields = wp[:,channel,:,:] else: fields = np.reshape(wp,[features*channels,iy,ix]) perRow = int(math.floor(math.sqrt(fields.shape[0]))) perColumn = int(math.ceil(fields.shape[0]/float(perRow))) fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))]) tiled = [] for i in range(0,perColumn*perRow,perColumn): tiled.append(np.hstack(fields2[i:i+perColumn])) tiled = np.vstack(tiled) if figOffset is not None: mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Output' % layer.name); mpl.colorbar();
Example #20
Source File: TensorFlowInterface.py From IntroToDeepLearning with MIT License | 5 votes |
def plotFields(layer,fieldShape=None,channel=None,maxFields=25,figName='ReceptiveFields',cmap=None,padding=0.01): # Receptive Fields Summary W = layer.W wp = W.eval().transpose(); if len(np.shape(wp)) < 4: # Fully connected layer, has no shape fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape) else: # Convolutional layer already has shape features, channels, iy, ix = np.shape(wp) if channel is not None: fields = wp[:,channel,:,:] else: fields = np.reshape(wp,[features*channels,iy,ix]) fieldsN = min(fields.shape[0],maxFields) perRow = int(math.floor(math.sqrt(fieldsN))) perColumn = int(math.ceil(fieldsN/float(perRow))) fig = mpl.figure(figName); mpl.clf() # Using image grid from mpl_toolkits.axes_grid1 import ImageGrid grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single') for i in range(0,fieldsN): im = grid[i].imshow(fields[i],cmap=cmap); grid.cbar_axes[0].colorbar(im) mpl.title('%s Receptive Fields' % layer.name) # old way # fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))]) # tiled = [] # for i in range(0,perColumn*perRow,perColumn): # tiled.append(np.hstack(fields2[i:i+perColumn])) # # tiled = np.vstack(tiled) # mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar(); mpl.figure(figName+' Total'); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar()
Example #21
Source File: TensorFlowInterface.py From IntroToDeepLearning with MIT License | 5 votes |
def plotOutput(layer,feed_dict,fieldShape=None,channel=None,figOffset=1,cmap=None): # Output summary try: W = layer.output except: W = layer wp = W.eval(feed_dict=feed_dict); if len(np.shape(wp)) < 4: # Fully connected layer, has no shape temp = np.zeros(np.product(fieldShape)); temp[0:np.shape(wp.ravel())[0]] = wp.ravel() fields = np.reshape(temp,[1]+fieldShape) else: # Convolutional layer already has shape wp = np.rollaxis(wp,3,0) features, channels, iy,ix = np.shape(wp) if channel is not None: fields = wp[:,channel,:,:] else: fields = np.reshape(wp,[features*channels,iy,ix]) perRow = int(math.floor(math.sqrt(fields.shape[0]))) perColumn = int(math.ceil(fields.shape[0]/float(perRow))) fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))]) tiled = [] for i in range(0,perColumn*perRow,perColumn): tiled.append(np.hstack(fields2[i:i+perColumn])) tiled = np.vstack(tiled) if figOffset is not None: mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Output' % layer.name); mpl.colorbar();
Example #22
Source File: TensorFlowInterface.py From IntroToDeepLearning with MIT License | 5 votes |
def plotFields(layer,fieldShape=None,channel=None,figOffset=1,cmap=None,padding=0.01): # Receptive Fields Summary try: W = layer.W except: W = layer wp = W.eval().transpose(); if len(np.shape(wp)) < 4: # Fully connected layer, has no shape fields = np.reshape(wp,list(wp.shape[0:-1])+fieldShape) else: # Convolutional layer already has shape features, channels, iy, ix = np.shape(wp) if channel is not None: fields = wp[:,channel,:,:] else: fields = np.reshape(wp,[features*channels,iy,ix]) perRow = int(math.floor(math.sqrt(fields.shape[0]))) perColumn = int(math.ceil(fields.shape[0]/float(perRow))) fig = mpl.figure(figOffset); mpl.clf() # Using image grid from mpl_toolkits.axes_grid1 import ImageGrid grid = ImageGrid(fig,111,nrows_ncols=(perRow,perColumn),axes_pad=padding,cbar_mode='single') for i in range(0,np.shape(fields)[0]): im = grid[i].imshow(fields[i],cmap=cmap); grid.cbar_axes[0].colorbar(im) mpl.title('%s Receptive Fields' % layer.name) # old way # fields2 = np.vstack([fields,np.zeros([perRow*perColumn-fields.shape[0]] + list(fields.shape[1:]))]) # tiled = [] # for i in range(0,perColumn*perRow,perColumn): # tiled.append(np.hstack(fields2[i:i+perColumn])) # # tiled = np.vstack(tiled) # mpl.figure(figOffset); mpl.clf(); mpl.imshow(tiled,cmap=cmap); mpl.title('%s Receptive Fields' % layer.name); mpl.colorbar(); mpl.figure(figOffset+1); mpl.clf(); mpl.imshow(np.sum(np.abs(fields),0),cmap=cmap); mpl.title('%s Total Absolute Input Dependency' % layer.name); mpl.colorbar()
Example #23
Source File: encoding.py From XFLTReaT with MIT License | 5 votes |
def get_maximum_length(self, cap): full = int(math.floor(cap / 8))*7 remn = int(math.floor(((cap % 8)/8.0)*7)) return full + remn
Example #24
Source File: encoding.py From XFLTReaT with MIT License | 5 votes |
def get_maximum_length(self, cap): return int(math.floor(cap/2))
Example #25
Source File: encoding.py From XFLTReaT with MIT License | 5 votes |
def get_maximum_length(self, cap): full = int(math.floor(cap / 8))*5 remn = int(math.floor(((cap % 8)/8.0)*5)) return full + remn
Example #26
Source File: encoding.py From XFLTReaT with MIT License | 5 votes |
def get_maximum_length(self, cap): full = int(math.floor(cap / 4))*3 remn = int(math.floor(((cap % 4)/4.0)*3)) return full + remn
Example #27
Source File: encoding.py From XFLTReaT with MIT License | 5 votes |
def get_maximum_length(self, cap): full = int(math.floor(cap / 4))*3 remn = int(math.floor(((cap % 4)/4.0)*3)) return full + remn
Example #28
Source File: encoding.py From XFLTReaT with MIT License | 5 votes |
def get_maximum_length(self, cap): full = int(math.floor(cap / 4))*3 remn = int(math.floor(((cap % 4)/4.0)*3)) return full + remn
Example #29
Source File: fractions.py From jawfish with MIT License | 5 votes |
def __floordiv__(a, b): """a // b""" return math.floor(a / b)
Example #30
Source File: mutators.py From comport with BSD 3-Clause "New" or "Revised" License | 5 votes |
def alter_data(self, incident): for x in range(0, math.floor(len(incident) * self.percent)): field_to_drop = random.choice(list(incident.keys())) if field_to_drop not in self.do_not_mutate and incident[field_to_drop] is not None: incident[field_to_drop] = ''.join(random.choice((str.upper, str.lower))(x) for x in incident[field_to_drop]) return incident