Python numpy.e() Examples

The following are 30 code examples for showing how to use numpy.e(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.

You may check out the related API usage on the sidebar.

You may also want to check out all available functions/classes of the module numpy , or try the search function .

Example 1
Project: neuropythy   Author: noahbenson   File: core.py    License: GNU Affero General Public License v3.0 6 votes vote down vote up
def to_potential(f):
    '''
    to_potential(f) yields f if f is a potential function; if f is not, but f can be converted to
      a potential function, that conversion is performed then the result is yielded.
    to_potential(Ellipsis) yields a potential function whose output is simply its input (i.e., the
      identity function).
    to_potential(None) is equivalent to to_potential(0).

    The following can be converted into potential functions:
      * Anything for which pimms.is_array(x, 'number') yields True (i.e., arrays of constants).
      * Any tuple (g, h) where g(x) yields a potential value and h(x) yields a jacobian matrix for
        the parameter vector x.
    '''
    if   is_potential(f): return f
    elif f is Ellipsis:   return identity
    elif pimms.is_array(f, 'number'): return const_potential(f)
    elif isinstance(f, tuple) and len(f) == 2: return PotentialLambda(f[0], f[1])
    else: raise ValueError('Could not convert object of type %s to potential function' % type(f)) 
Example 2
Project: neuropythy   Author: noahbenson   File: core.py    License: GNU Affero General Public License v3.0 6 votes vote down vote up
def sigmoid(f=Ellipsis, mu=0, sigma=1, scale=1, invert=False, normalize=False):
    '''
    sigmoid() yields a potential function that is equivalent to the integral of gaussian(), i.e.,
      the error function, but scaled to match gaussian().
    sigmoid(f) is equivalent to compose(sigmoid(), f).

    All options that are accepted by the gaussian() function are accepted by sigmoid() with the same
    default values and are handled in an equivalent manner with the exception of the invert option;
    when a sigmoid is inverted, the function approaches its maximum value at -inf and approaches 0
    at inf.

    Note that because sigmoid() explicitly matches gaussian(), the base formula used is as follows:
      f(x) = scale * sigma * sqrt(pi/2) * erf((x - mu) / (sqrt(2) * sigma))
      k*sig*Sqrt[Pi/2] Erf[(x - mu)/sig/Sqrt[2]]
    '''
    f = to_potential(f)
    F = erf((f - mu) / (sigma * np.sqrt(2.0)))
    if invert: F = 1 - F
    F = np.sqrt(np.pi / 2) * scale * F
    if normalize: F = F / (np.sqrt(2.0*np.pi) * sigma)
    return F 
Example 3
Project: recruit   Author: Frank-qlu   File: test_io.py    License: Apache License 2.0 6 votes vote down vote up
def test_closing_fid(self):
        # Test that issue #1517 (too many opened files) remains closed
        # It might be a "weak" test since failed to get triggered on
        # e.g. Debian sid of 2012 Jul 05 but was reported to
        # trigger the failure on Ubuntu 10.04:
        # http://projects.scipy.org/numpy/ticket/1517#comment:2
        with temppath(suffix='.npz') as tmp:
            np.savez(tmp, data='LOVELY LOAD')
            # We need to check if the garbage collector can properly close
            # numpy npz file returned by np.load when their reference count
            # goes to zero.  Python 3 running in debug mode raises a
            # ResourceWarning when file closing is left to the garbage
            # collector, so we catch the warnings.  Because ResourceWarning
            # is unknown in Python < 3.x, we take the easy way out and
            # catch all warnings.
            with suppress_warnings() as sup:
                sup.filter(Warning)  # TODO: specify exact message
                for i in range(1, 1025):
                    try:
                        np.load(tmp)["data"]
                    except Exception as e:
                        msg = "Failed to load data from a file: %s" % e
                        raise AssertionError(msg) 
Example 4
Project: recruit   Author: Frank-qlu   File: test_io.py    License: Apache License 2.0 6 votes vote down vote up
def test_complex_negative_exponent(self):
        # Previous to 1.15, some formats generated x+-yj, gh 7895
        ncols = 2
        nrows = 2
        a = np.zeros((ncols, nrows), dtype=np.complex128)
        re = np.pi
        im = np.e
        a[:] = re - 1.0j * im
        c = BytesIO()
        np.savetxt(c, a, fmt='%.3e')
        c.seek(0)
        lines = c.readlines()
        assert_equal(
            lines,
            [b' (3.142e+00-2.718e+00j)  (3.142e+00-2.718e+00j)\n',
             b' (3.142e+00-2.718e+00j)  (3.142e+00-2.718e+00j)\n']) 
Example 5
Project: recruit   Author: Frank-qlu   File: test_io.py    License: Apache License 2.0 6 votes vote down vote up
def test_complex_misformatted(self):
        # test for backward compatibility
        # some complex formats used to generate x+-yj
        a = np.zeros((2, 2), dtype=np.complex128)
        re = np.pi
        im = np.e
        a[:] = re - 1.0j * im
        c = BytesIO()
        np.savetxt(c, a, fmt='%.16e')
        c.seek(0)
        txt = c.read()
        c.seek(0)
        # misformat the sign on the imaginary part, gh 7895
        txt_bad = txt.replace(b'e+00-', b'e00+-')
        assert_(txt_bad != txt)
        c.write(txt_bad)
        c.seek(0)
        res = np.loadtxt(c, dtype=complex)
        assert_equal(res, a) 
Example 6
Project: lambda-packs   Author: ryfeus   File: _multivariate.py    License: MIT License 6 votes vote down vote up
def entropy(self, mean=None, cov=1):
        """
        Compute the differential entropy of the multivariate normal.

        Parameters
        ----------
        %(_mvn_doc_default_callparams)s

        Returns
        -------
        h : scalar
            Entropy of the multivariate normal distribution

        Notes
        -----
        %(_mvn_doc_callparams_note)s

        """
        dim, mean, cov = self._process_parameters(None, mean, cov)
        _, logdet = np.linalg.slogdet(2 * np.pi * np.e * cov)
        return 0.5 * logdet 
Example 7
Project: lambda-packs   Author: ryfeus   File: test_io.py    License: MIT License 6 votes vote down vote up
def test_closing_fid(self):
        # Test that issue #1517 (too many opened files) remains closed
        # It might be a "weak" test since failed to get triggered on
        # e.g. Debian sid of 2012 Jul 05 but was reported to
        # trigger the failure on Ubuntu 10.04:
        # http://projects.scipy.org/numpy/ticket/1517#comment:2
        with temppath(suffix='.npz') as tmp:
            np.savez(tmp, data='LOVELY LOAD')
            # We need to check if the garbage collector can properly close
            # numpy npz file returned by np.load when their reference count
            # goes to zero.  Python 3 running in debug mode raises a
            # ResourceWarning when file closing is left to the garbage
            # collector, so we catch the warnings.  Because ResourceWarning
            # is unknown in Python < 3.x, we take the easy way out and
            # catch all warnings.
            with suppress_warnings() as sup:
                sup.filter(Warning)  # TODO: specify exact message
                for i in range(1, 1025):
                    try:
                        np.load(tmp)["data"]
                    except Exception as e:
                        msg = "Failed to load data from a file: %s" % e
                        raise AssertionError(msg) 
Example 8
Project: lambda-packs   Author: ryfeus   File: test_io.py    License: MIT License 6 votes vote down vote up
def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True) 
Example 9
Project: auto-alt-text-lambda-api   Author: abhisuri97   File: test_io.py    License: MIT License 6 votes vote down vote up
def test_closing_fid(self):
        # Test that issue #1517 (too many opened files) remains closed
        # It might be a "weak" test since failed to get triggered on
        # e.g. Debian sid of 2012 Jul 05 but was reported to
        # trigger the failure on Ubuntu 10.04:
        # http://projects.scipy.org/numpy/ticket/1517#comment:2
        with temppath(suffix='.npz') as tmp:
            np.savez(tmp, data='LOVELY LOAD')
            # We need to check if the garbage collector can properly close
            # numpy npz file returned by np.load when their reference count
            # goes to zero.  Python 3 running in debug mode raises a
            # ResourceWarning when file closing is left to the garbage
            # collector, so we catch the warnings.  Because ResourceWarning
            # is unknown in Python < 3.x, we take the easy way out and
            # catch all warnings.
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                for i in range(1, 1025):
                    try:
                        np.load(tmp)["data"]
                    except Exception as e:
                        msg = "Failed to load data from a file: %s" % e
                        raise AssertionError(msg) 
Example 10
Project: auto-alt-text-lambda-api   Author: abhisuri97   File: test_io.py    License: MIT License 6 votes vote down vote up
def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True) 
Example 11
Project: vnpy_crypto   Author: birforce   File: test_io.py    License: MIT License 6 votes vote down vote up
def test_closing_fid(self):
        # Test that issue #1517 (too many opened files) remains closed
        # It might be a "weak" test since failed to get triggered on
        # e.g. Debian sid of 2012 Jul 05 but was reported to
        # trigger the failure on Ubuntu 10.04:
        # http://projects.scipy.org/numpy/ticket/1517#comment:2
        with temppath(suffix='.npz') as tmp:
            np.savez(tmp, data='LOVELY LOAD')
            # We need to check if the garbage collector can properly close
            # numpy npz file returned by np.load when their reference count
            # goes to zero.  Python 3 running in debug mode raises a
            # ResourceWarning when file closing is left to the garbage
            # collector, so we catch the warnings.  Because ResourceWarning
            # is unknown in Python < 3.x, we take the easy way out and
            # catch all warnings.
            with suppress_warnings() as sup:
                sup.filter(Warning)  # TODO: specify exact message
                for i in range(1, 1025):
                    try:
                        np.load(tmp)["data"]
                    except Exception as e:
                        msg = "Failed to load data from a file: %s" % e
                        raise AssertionError(msg) 
Example 12
Project: vnpy_crypto   Author: birforce   File: test_io.py    License: MIT License 6 votes vote down vote up
def test_invalid_raise(self):
        # Test invalid raise
        data = ["1, 1, 1, 1, 1"] * 50
        for i in range(5):
            data[10 * i] = "2, 2, 2, 2 2"
        data.insert(0, "a, b, c, d, e")
        mdata = TextIO("\n".join(data))
        #
        kwargs = dict(delimiter=",", dtype=None, names=True)
        # XXX: is there a better way to get the return value of the
        # callable in assert_warns ?
        ret = {}

        def f(_ret={}):
            _ret['mtest'] = np.ndfromtxt(mdata, invalid_raise=False, **kwargs)
        assert_warns(ConversionWarning, f, _ret=ret)
        mtest = ret['mtest']
        assert_equal(len(mtest), 45)
        assert_equal(mtest, np.ones(45, dtype=[(_, int) for _ in 'abcde']))
        #
        mdata.seek(0)
        assert_raises(ValueError, np.ndfromtxt, mdata,
                      delimiter=",", names=True) 
Example 13
Project: vnpy_crypto   Author: birforce   File: infotheo.py    License: MIT License 6 votes vote down vote up
def gencrossentropy(px,py,pxpy,alpha=1,logbase=2, measure='T'):
    """
    Generalized cross-entropy measures.

    Parameters
    ----------
    px : array-like
        Discrete probability distribution of random variable X
    py : array-like
        Discrete probability distribution of random variable Y
    pxpy : 2d array-like, optional
        Joint probability distribution of X and Y.  If pxpy is None, X and Y
        are assumed to be independent.
    logbase : int or np.e, optional
        Default is 2 (bits)
    measure : str, optional
        The measure is the type of generalized cross-entropy desired. 'T' is
        the cross-entropy version of the Tsallis measure.  'CR' is Cressie-Read
        measure.

    """ 
Example 14
Project: garage   Author: rlworkgroup   File: diagonal_gaussian.py    License: MIT License 6 votes vote down vote up
def entropy_sym(self, dist_info_vars, name='entropy_sym'):
        """Symbolic entropy of a distribution.

        Args:
            dist_info_vars (dict): Symbolic parameters of a distribution.
            name (str): TensorFlow scope name.

        Returns:
            tf.Tensor: Symbolic entropy of the distribution.

        """
        with tf.name_scope(name):
            log_std_var = dist_info_vars['log_std']
            return tf.reduce_sum(log_std_var +
                                 np.log(np.sqrt(2 * np.pi * np.e)),
                                 axis=-1) 
Example 15
Project: RaptorX-Contact   Author: j3xugit   File: DistanceUtils.py    License: GNU General Public License v3.0 6 votes vote down vote up
def CalcDistProb(data=None, bins=None, invalidDistanceSeparated=False):

	labelMatrices = [ ]
	for distm in data:
                #m, _, _ = DiscretizeDistMatrix(distm, subType=subType)
                m, _, _ = DiscretizeDistMatrix(distm, bins=bins, invalidDistanceSeparated=invalidDistanceSeparated)
		labelMatrices.append(m)

	## need fix here
	#probs = CalcLabelProb( labelMatrices, config.responseProbDims['Discrete' + subType] )
	if invalidDistanceSeparated:
		probs = CalcLabelProb( labelMatrices, len(bins) + 1 )
	else:
		probs = CalcLabelProb( labelMatrices, len(bins) )

        return probs

## d needs to be positive, cannot be -1
## cutoffs is the distance boundary array
## return the largest index position such that cutoffs[position] <= d, i.e.,  d< cutoffs[position+1] 
Example 16
Project: GCNet   Author: xvjiarui   File: balanced_l1_loss.py    License: Apache License 2.0 6 votes vote down vote up
def balanced_l1_loss(pred,
                     target,
                     beta=1.0,
                     alpha=0.5,
                     gamma=1.5,
                     reduction='mean'):
    assert beta > 0
    assert pred.size() == target.size() and target.numel() > 0

    diff = torch.abs(pred - target)
    b = np.e**(gamma / alpha) - 1
    loss = torch.where(
        diff < beta, alpha / b *
        (b * diff + 1) * torch.log(b * diff / beta + 1) - alpha * diff,
        gamma * diff + gamma / b - alpha * beta)

    return loss 
Example 17
Project: mmdetection   Author: open-mmlab   File: balanced_l1_loss.py    License: Apache License 2.0 5 votes vote down vote up
def balanced_l1_loss(pred,
                     target,
                     beta=1.0,
                     alpha=0.5,
                     gamma=1.5,
                     reduction='mean'):
    """Calculate balanced L1 loss.

    Please see the `Libra R-CNN <https://arxiv.org/pdf/1904.02701.pdf>`_

    Args:
        pred (torch.Tensor): The prediction with shape (N, 4).
        target (torch.Tensor): The learning target of the prediction with
            shape (N, 4).
        beta (float): The loss is a piecewise function of prediction and target
            and ``beta`` serves as a threshold for the difference between the
            prediction and target. Defaults to 1.0.
        alpha (float): The denominator ``alpha`` in the balanced L1 loss.
            Defaults to 0.5.
        gamma (float): The ``gamma`` in the balanced L1 loss.
            Defaults to 1.5.
        reduction (str, optional): The method that reduces the loss to a
            scalar. Options are "none", "mean" and "sum".

    Returns:
        torch.Tensor: The calculated loss
    """
    assert beta > 0
    assert pred.size() == target.size() and target.numel() > 0

    diff = torch.abs(pred - target)
    b = np.e**(gamma / alpha) - 1
    loss = torch.where(
        diff < beta, alpha / b *
        (b * diff + 1) * torch.log(b * diff / beta + 1) - alpha * diff,
        gamma * diff + gamma / b - alpha * beta)

    return loss 
Example 18
Project: neuropythy   Author: noahbenson   File: core.py    License: GNU Affero General Public License v3.0 5 votes vote down vote up
def part(f, ii=None, input_len=None):
    '''
    part(u, ii) for constant or constant potential u yields a constant-potential form of u[ii].
    part(f, ii) for potential function f yields a potential function g(x) that is equivalent to
      f(x)[ii].
    part(ii) is equivalent to part(identity, ii); i.e., pat of the input parameters to the function.
    '''
    if ii is None: return PotentialPart(f, input_len=input_len)
    f = to_potential(f)
    if is_const_potential(f): return PotentialConstant(f.c[ii])
    else:                     return compose(PotentialPart(ii, input_len=input_len), f) 
Example 19
Project: neuropythy   Author: noahbenson   File: core.py    License: GNU Affero General Public License v3.0 5 votes vote down vote up
def exp(x):
    x = to_potential(x)
    if is_const_potential(x): return PotentialConstant(np.exp(x.c))
    else:                     return ConstantPowerPotential(np.e, x) 
Example 20
Project: neuropythy   Author: noahbenson   File: core.py    License: GNU Affero General Public License v3.0 5 votes vote down vote up
def gaussian(f=Ellipsis, mu=0, sigma=1, scale=1, invert=False, normalize=False):
    '''
    gaussian() yields a potential function f(x) that calculates a Gaussian function over x; the
      formula used is given below.
    gaussian(g) yields a function h(x) such that, if f(x) is yielded by gaussian(), h(x) = f(g(x)).

    The formula employed by the Gaussian function is as follows, with mu, sigma, and scale all being
    parameters that one can provide via optional arguments:
      scale * exp(0.5 * ((x - mu) / sigma)**2)
    
    The following optional arguments may be given:
      * mu (default: 0) specifies the mean of the Gaussian.
      * sigma (default: 1) specifies the standard deviation (sigma) parameger of the Gaussian.
      * scale (default: 1) specifies the scale to use.
      * invert (default: False) specifies whether the Gaussian should be inverted. If inverted, then
        the formula, scale * exp(...), is replaced with scale * (1 - exp(...)).
      * normalize (default: False) specifies whether the result should be multiplied by the inverse
        of the area under the uninverted and unscaled curve; i.e., if normalize is True, the entire
        result is multiplied by 1/sqrt(2*pi*sigma**2).
    '''
    f = to_potential(f)
    F = exp(-0.5 * ((f - mu) / sigma)**2)
    if invert: F = 1 - F
    F = F * scale
    if normalize: F = F / (np.sqrt(2.0*np.pi) * sigma)
    return F 
Example 21
Project: lirpg   Author: Hwhitetooth   File: distributions.py    License: MIT License 5 votes vote down vote up
def entropy(self):
        return tf.reduce_sum(self.logstd + .5 * np.log(2.0 * np.pi * np.e), axis=-1) 
Example 22
Project: pywr   Author: pywr   File: test_license.py    License: GNU General Public License v3.0 5 votes vote down vote up
def test_simple_model_with_exponential_license(simple_linear_model):
    m = simple_linear_model
    si = ScenarioIndex(0, np.array([0], dtype=np.int32))

    annual_total = 365
    # Expoential licence with max_value of e should give a hard constraint of 1.0 when on track
    lic = AnnualExponentialLicense(m, m.nodes["Input"], annual_total, np.e)
    # Apply licence to the model
    m.nodes["Input"].max_flow = lic
    m.nodes["Output"].max_flow = 10.0
    m.nodes["Output"].cost = -10.0
    m.setup()

    m.step()

    # Licence is a hard constraint of 1.0
    # timestepper.current is now end of the first day
    assert_allclose(m.nodes["Output"].flow, 1.0)
    # Check the constraint for the next timestep.
    assert_allclose(lic.value(m.timestepper._next, si), 1.0)

    # Now constrain the demand so that licence is not fully used
    m.nodes["Output"].max_flow = 0.5
    m.step()

    assert_allclose(m.nodes["Output"].flow, 0.5)
    # Check the constraint for the next timestep. The available amount should now be larger
    # due to the reduced use
    remaining = (annual_total-1.5)
    assert_allclose(lic.value(m.timestepper._next, si), np.exp(-remaining / (365 - 2) + 1))

    # Unconstrain the demand
    m.nodes["Output"].max_flow = 10.0
    m.step()
    assert_allclose(m.nodes["Output"].flow, np.exp(-remaining / (365 - 2) + 1))
    # Licence should now be on track for an expected value of 1.0
    remaining -= np.exp(-remaining / (365 - 2) + 1)
    assert_allclose(lic.value(m.timestepper._next, si), np.exp(-remaining / (365 - 3) + 1)) 
Example 23
Project: pywr   Author: pywr   File: test_license.py    License: GNU General Public License v3.0 5 votes vote down vote up
def test_simple_model_with_hyperbola_license(simple_linear_model):
    m = simple_linear_model
    si = ScenarioIndex(0, np.array([0], dtype=np.int32))

    annual_total = 365
    # Expoential licence with max_value of e should give a hard constraint of 1.0 when on track
    lic = AnnualHyperbolaLicense(m, m.nodes["Input"], annual_total, 1.0)
    # Apply licence to the model
    m.nodes["Input"].max_flow = lic
    m.nodes["Output"].max_flow = 10.0
    m.nodes["Output"].cost = -10.0
    m.setup()

    m.step()

    # Licence is a hard constraint of 1.0
    # timestepper.current is now end of the first day
    assert_allclose(m.nodes["Output"].flow, 1.0)
    # Check the constraint for the next timestep.
    assert_allclose(lic.value(m.timestepper._next, si), 1.0)

    # Now constrain the demand so that licence is not fully used
    m.nodes["Output"].max_flow = 0.5
    m.step()

    assert_allclose(m.nodes["Output"].flow, 0.5)
    # Check the constraint for the next timestep. The available amount should now be larger
    # due to the reduced use
    remaining = (annual_total-1.5)
    assert_allclose(lic.value(m.timestepper._next, si), (365 - 2) / remaining)

    # Unconstrain the demand
    m.nodes["Output"].max_flow = 10.0
    m.step()
    assert_allclose(m.nodes["Output"].flow, (365 - 2) / remaining)
    # Licence should now be on track for an expected value of 1.0
    remaining -= (365 - 2) / remaining
    assert_allclose(lic.value(m.timestepper._next, si), (365 - 3) / remaining) 
Example 24
Project: HardRLWithYoutube   Author: MaxSobolMark   File: distributions.py    License: MIT License 5 votes vote down vote up
def entropy(self):
        return tf.reduce_sum(self.logstd + .5 * np.log(2.0 * np.pi * np.e), axis=-1) 
Example 25
Project: AerialDetection   Author: dingjiansw101   File: losses.py    License: Apache License 2.0 5 votes vote down vote up
def balanced_l1_loss(pred,
                     target,
                     beta=1.0,
                     alpha=0.5,
                     gamma=1.5,
                     reduction='none'):
    assert beta > 0
    assert pred.size() == target.size() and target.numel() > 0

    diff = torch.abs(pred - target)
    b = np.e**(gamma / alpha) - 1
    loss = torch.where(
        diff < beta, alpha / b *
        (b * diff + 1) * torch.log(b * diff / beta + 1) - alpha * diff,
        gamma * diff + gamma / b - alpha * beta)

    reduction_enum = F._Reduction.get_enum(reduction)
    # none: 0, elementwise_mean:1, sum: 2
    if reduction_enum == 0:
        return loss
    elif reduction_enum == 1:
        return loss.sum() / pred.numel()
    elif reduction_enum == 2:
        return loss.sum()

    return loss 
Example 26
def entropy(self):
        return tf.reduce_sum(self.logstd + .5 * np.log(2.0 * np.pi * np.e), axis=-1) 
Example 27
def entropy(self):
        return tf.reduce_sum(self.logstd + .5 * np.log(2.0 * np.pi * np.e), axis=-1) 
Example 28
def entropy(self):
        return tf.reduce_sum(self.logstd + .5 * np.log(2.0 * np.pi * np.e), axis=-1) 
Example 29
Project: video-caption-openNMT.pytorch   Author: xiadingZ   File: ciderD_scorer.py    License: MIT License 5 votes vote down vote up
def __iadd__(self, other):
        '''add an instance (e.g., from another sentence).'''

        if type(other) is tuple:
            ## avoid creating new CiderScorer instances
            self.cook_append(other[0], other[1])
        else:
            self.ctest.extend(other.ctest)
            self.crefs.extend(other.crefs)

        return self 
Example 30
Project: video-caption-openNMT.pytorch   Author: xiadingZ   File: cider_scorer.py    License: MIT License 5 votes vote down vote up
def __iadd__(self, other):
        '''add an instance (e.g., from another sentence).'''

        if type(other) is tuple:
            ## avoid creating new CiderScorer instances
            self.cook_append(other[0], other[1])
        else:
            self.ctest.extend(other.ctest)
            self.crefs.extend(other.crefs)

        return self