Python pickle.load() Examples

The following are 30 code examples of pickle.load(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module pickle , or try the search function .
Example #1
Source File: cache.py    From vergeml with MIT License 10 votes vote down vote up
def _deserialize(self, data, type_):

        if self.compress:
        # decompress the data if needed
            data = lz4.frame.decompress(data)

        if type_ == _NUMPY:
        # deserialize numpy arrays
            buf = io.BytesIO(data)
            data = np.load(buf)

        elif type_ == _PICKLE:
        # deserialize other python objects
            data = pickle.loads(data)

        else:
        # Otherwise we just return data as it is (bytes)
            pass

        return data 
Example #2
Source File: server.py    From BASS with GNU General Public License v2.0 7 votes vote down vote up
def function_raw_hash_get():
    global Session
    session = Session()
    filename, file_ = request.files.items()[0]
    db = Database(pickle.load(file_))

    arch_name = db.architecture_name
    if arch_name == "metapc":
        arch_name = "x86"
    try:
        arch = session.query(Architecture).filter(Architecture.name == arch_name and \
                Architecture.bits == db.architecture_bits and \
                Architecture.little_endian == db.architecture_endianness == "little").one()
    except NoResultFound:
        return make_response(jsonify(message = "Architecture not found"), 404)
    
    try:
        func = next(db.functions)
    except StopIteration:
        return make_response(jsonify(message = "No function found in database"), 500)

    raw_hash = _function_calculate_raw_sha256(func)
    size = _function_get_size(func)

    try:
        function = session.query(Function).filter(Function.raw_sha256 == raw_hash and \
                Function.size == size and \
                Function.arch == arch.id).one()
        return make_response(jsonify(**json.loads(function.data)), 200)
    except NoResultFound:
        return make_response(jsonify(message = "Function not found"), 404) 
Example #3
Source File: workflow.py    From wechat-alfred-workflow with MIT License 6 votes vote down vote up
def register(self, name, serializer):
        """Register ``serializer`` object under ``name``.

        Raises :class:`AttributeError` if ``serializer`` in invalid.

        .. note::

            ``name`` will be used as the file extension of the saved files.

        :param name: Name to register ``serializer`` under
        :type name: ``unicode`` or ``str``
        :param serializer: object with ``load()`` and ``dump()``
            methods

        """
        # Basic validation
        getattr(serializer, 'load')
        getattr(serializer, 'dump')

        self._serializers[name] = serializer 
Example #4
Source File: train_val.py    From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License 6 votes vote down vote up
def from_snapshot(self, sfile, nfile):
    print('Restoring model snapshots from {:s}'.format(sfile))
    self.net.load_state_dict(torch.load(str(sfile)))
    print('Restored.')
    # Needs to restore the other hyper-parameters/states for training, (TODO xinlei) I have
    # tried my best to find the random states so that it can be recovered exactly
    # However the Tensorflow state is currently not available
    with open(nfile, 'rb') as fid:
      st0 = pickle.load(fid)
      cur = pickle.load(fid)
      perm = pickle.load(fid)
      cur_val = pickle.load(fid)
      perm_val = pickle.load(fid)
      last_snapshot_iter = pickle.load(fid)

      np.random.set_state(st0)
      self.data_layer._cur = cur
      self.data_layer._perm = perm
      self.data_layer_val._cur = cur_val
      self.data_layer_val._perm = perm_val

    return last_snapshot_iter 
Example #5
Source File: pascal_voc.py    From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License 6 votes vote down vote up
def gt_roidb(self):
    """
    Return the database of ground-truth regions of interest.

    This function loads/saves from/to a cache file to speed up future calls.
    """
    cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl')
    if os.path.exists(cache_file):
      with open(cache_file, 'rb') as fid:
        try:
          roidb = pickle.load(fid)
        except:
          roidb = pickle.load(fid, encoding='bytes')
      print('{} gt roidb loaded from {}'.format(self.name, cache_file))
      return roidb

    gt_roidb = [self._load_pascal_labels(index)
                for index in self.image_index]
    with open(cache_file, 'wb') as fid:
      pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL)
    print('wrote gt roidb to {}'.format(cache_file))

    return gt_roidb 
Example #6
Source File: coco.py    From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License 6 votes vote down vote up
def gt_roidb(self):
    """
    Return the database of ground-truth regions of interest.
    This function loads/saves from/to a cache file to speed up future calls.
    """
    cache_file = osp.join(self.cache_path, self.name + '_gt_roidb.pkl')
    if osp.exists(cache_file):
      with open(cache_file, 'rb') as fid:
        roidb = pickle.load(fid)
      print('{} gt roidb loaded from {}'.format(self.name, cache_file))
      return roidb

    gt_roidb = [self._load_coco_annotation(index)
                for index in self._image_index]

    with open(cache_file, 'wb') as fid:
      pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL)
    print('wrote gt roidb to {}'.format(cache_file))
    return gt_roidb 
Example #7
Source File: sessions.py    From cherrypy with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def _load(self, path=None):
        assert self.locked, ('The session load without being locked.  '
                             "Check your tools' priority levels.")
        if path is None:
            path = self._get_file_path()
        try:
            f = open(path, 'rb')
            try:
                return pickle.load(f)
            finally:
                f.close()
        except (IOError, EOFError):
            e = sys.exc_info()[1]
            if self.debug:
                cherrypy.log('Error loading the session pickle: %s' %
                             e, 'TOOLS.SESSIONS')
            return None 
Example #8
Source File: update_cache_compatibility.py    From gated-graph-transformer-network with MIT License 6 votes vote down vote up
def main(cache_dir):
    files_list = list(os.listdir(cache_dir))
    for file in files_list:
        full_filename = os.path.join(cache_dir, file)
        if os.path.isfile(full_filename):
            print("Processing {}".format(full_filename))
            m, stored_kwargs = pickle.load(open(full_filename, 'rb'))
            updated_kwargs = util.get_compatible_kwargs(model.Model, stored_kwargs)

            model_hash = util.object_hash(updated_kwargs)
            print("New hash -> " + model_hash)
            model_filename = os.path.join(cache_dir, "model_{}.p".format(model_hash))
            sys.setrecursionlimit(100000)
            pickle.dump((m,updated_kwargs), open(model_filename,'wb'), protocol=pickle.HIGHEST_PROTOCOL)

            os.remove(full_filename) 
Example #9
Source File: ggtnn_train.py    From gated-graph-transformer-network with MIT License 6 votes vote down vote up
def assemble_batch(story_fns, num_answer_words, format_spec):
    stories = []
    for sfn in story_fns:
        with gzip.open(sfn,'rb') as f:
            cvtd_story, _, _, _ = pickle.load(f)
        stories.append(cvtd_story)
    sents, graphs, queries, answers = zip(*stories)
    cvtd_sents = np.array(sents, np.int32)
    cvtd_queries = np.array(queries, np.int32)
    max_ans_len = max(len(a) for a in answers)
    cvtd_answers = np.stack([convert_answer(answer, num_answer_words, format_spec, max_ans_len) for answer in answers])
    num_new_nodes, new_node_strengths, new_node_ids, next_edges = zip(*graphs)
    num_new_nodes = np.stack(num_new_nodes)
    new_node_strengths = np.stack(new_node_strengths)
    new_node_ids = np.stack(new_node_ids)
    next_edges = np.stack(next_edges)
    return cvtd_sents, cvtd_queries, cvtd_answers, num_new_nodes, new_node_strengths, new_node_ids, next_edges 
Example #10
Source File: learn.py    From flappybird-qlearning-bot with MIT License 6 votes vote down vote up
def main():
    global HITMASKS, ITERATIONS, VERBOSE, bot

    parser = argparse.ArgumentParser("learn.py")
    parser.add_argument("--iter", type=int, default=1000, help="number of iterations to run")
    parser.add_argument(
        "--verbose", action="store_true", help="output [iteration | score] to stdout"
    )
    args = parser.parse_args()
    ITERATIONS = args.iter
    VERBOSE = args.verbose

    # load dumped HITMASKS
    with open("data/hitmasks_data.pkl", "rb") as input:
        HITMASKS = pickle.load(input)

    while True:
        movementInfo = showWelcomeAnimation()
        crashInfo = mainGame(movementInfo)
        showGameOverScreen(crashInfo) 
Example #11
Source File: dataset_tool.py    From disentangling_conditional_gans with MIT License 6 votes vote down vote up
def create_cifar100(tfrecord_dir, cifar100_dir):
    print('Loading CIFAR-100 from "%s"' % cifar100_dir)
    import pickle
    with open(os.path.join(cifar100_dir, 'train'), 'rb') as file:
        data = pickle.load(file, encoding='latin1')
    images = data['data'].reshape(-1, 3, 32, 32)
    labels = np.array(data['fine_labels'])
    assert images.shape == (50000, 3, 32, 32) and images.dtype == np.uint8
    assert labels.shape == (50000,) and labels.dtype == np.int32
    assert np.min(images) == 0 and np.max(images) == 255
    assert np.min(labels) == 0 and np.max(labels) == 99
    onehot = np.zeros((labels.size, np.max(labels) + 1), dtype=np.float32)
    onehot[np.arange(labels.size), labels] = 1.0

    with TFRecordExporter(tfrecord_dir, images.shape[0]) as tfr:
        order = tfr.choose_shuffled_order()
        for idx in range(order.size):
            tfr.add_image(images[order[idx]])
        tfr.add_labels(onehot[order])

#---------------------------------------------------------------------------- 
Example #12
Source File: custom_datasets.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self, transform=None, target_transform=None, filename="adv_set_e_2.p", transp = False):
        """

        :param transform:
        :param target_transform:
        :param filename:
        :param transp: Set shuff= False for PGD based attacks
        :return:
        """
        self.transform = transform
        self.target_transform = target_transform
        self.adv_dict=pickle.load(open(filename,"rb"))
        self.adv_flat=self.adv_dict["adv_input"]
        self.num_adv=np.shape(self.adv_flat)[0]
        self.shuff = transp
        self.sample_num = 0 
Example #13
Source File: custom_datasets.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self, transform=None, target_transform=None, filename="adv_set_e_2.p", transp = False):
        """

        :param transform:
        :param target_transform:
        :param filename:
        :param transp: Set shuff= False for PGD based attacks
        :return:
        """
        self.transform = transform
        self.target_transform = target_transform
        self.adv_dict=pickle.load(open(filename,"rb"))
        self.adv_flat=self.adv_dict["adv_input"]
        self.num_adv=np.shape(self.adv_flat)[0]
        self.shuff = transp
        self.sample_num = 0 
Example #14
Source File: custom_datasets.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def __init__(self, transform=None, target_transform=None, filename="adv_set_e_2.p", transp = False):
        """

        :param transform:
        :param target_transform:
        :param filename:
        :param transp: Set shuff= False for PGD based attacks
        :return:
        """
        self.transform = transform
        self.target_transform = target_transform
        self.adv_dict=pickle.load(open(filename,"rb"))
        self.adv_flat=self.adv_dict["adv_input"]
        self.num_adv=np.shape(self.adv_flat)[0]
        self.transp = transp
        self.sample_num = 0 
Example #15
Source File: training.py    From mlimages with MIT License 6 votes vote down vote up
def __load_mean(self):
        mean = None
        if self.mean_image_file:
            if os.path.isfile(self.mean_image_file):
                _, ext = os.path.splitext(os.path.basename(self.mean_image_file))
                if ext.lower() == ".npy":
                    mean = pickle.load(open(self.mean_image_file, "rb"))
                else:
                    m_image = LabeledImage(self.mean_image_file)  # mean image is already `converted` when calculation.
                    m_image.load()
                    mean = m_image.to_array(np, self.color)
            else:
                raise Exception("Mean image is not exist at {0}.".format(self.mean_image_file))
        else:
            self.label_file._logger.warning("Mean image is not set. So if you train the model, it will be difficult to converge.")
        return mean 
Example #16
Source File: dataloader.py    From models with MIT License 6 votes vote down vote up
def __init__(self, pos_features, pipeline_obj_path):
        """
        Args:
          pos_features: list of positional features to use
          pipeline_obj_path: path to the serialized pipeline obj_path
        """
        self.pos_features = pos_features
        self.pipeline_obj_path = pipeline_obj_path

        # deserialize the pickle file
        with open(self.pipeline_obj_path, "rb") as f:
            pipeline_obj = pickle.load(f)
        self.POS_FEATURES = pipeline_obj[0]
        self.minmax_scaler = pipeline_obj[1]
        self.imp = pipeline_obj[2]

        self.funct_transform = FunctionTransformer(func=sign_log_func,
                                                   inverse_func=sign_log_func_inverse)
        # for simplicity, assume all current pos_features are the
        # same as from before
        assert self.POS_FEATURES == self.pos_features 
Example #17
Source File: dump_dataloader_files.py    From models with MIT License 6 votes vote down vote up
def __init__(self, pos_features, pipeline_obj_path):
        """
        Args:
          pos_features: list of positional features to use
          pipeline_obj_path: path to the serialized pipeline obj_path
        """
        self.pos_features = pos_features
        self.pipeline_obj_path = pipeline_obj_path

        # deserialize the pickle file
        with open(self.pipeline_obj_path, "rb") as f:
            pipeline_obj = pickle.load(f)
        self.POS_FEATURES = pipeline_obj[0]
        self.preproc_pipeline = pipeline_obj[1]
        self.imp = pipeline_obj[2]

        # for simplicity, assume all current pos_features are the
        # same as from before
        assert self.POS_FEATURES == self.pos_features 
Example #18
Source File: model.py    From VSE-C with MIT License 6 votes vote down vote up
def __init__(self, vocab_size, word_dim, embed_size, num_layers, pooling='last',
                 use_abs=False, bid=False, glove_path='data/glove.pkl'):
        super(EncoderTextGRU, self).__init__()
        self.use_abs = use_abs
        self.embed_size = embed_size
        self.combiner = Combiner(pooling, embed_size)

        # word embedding
        self.word_dim = word_dim
        if word_dim > 300:
            self.embed = nn.Embedding(vocab_size, word_dim-300)
        _, embed_weight = pickle.load(open(glove_path, 'rb'))
        self.glove = Variable(torch.cuda.FloatTensor(embed_weight), requires_grad=False)

        # caption embedding
        self.rnn = nn.GRU(word_dim, embed_size//(2 if bid else 1), num_layers, batch_first=True, bidirectional=bid)

        self.init_weights() 
Example #19
Source File: model.py    From VSE-C with MIT License 6 votes vote down vote up
def __init__(self, vocab_size, word_dim, embed_size, use_abs=False, glove_path='data/glove.pkl'):
        super(EncoderTextCNN, self).__init__()
        self.use_abs = use_abs
        self.embed_size = embed_size

        # word embedding
        self.embed = nn.Embedding(vocab_size, word_dim-300, padding_idx=0)  # 0 for <pad>
        _, embed_weight = pickle.load(open(glove_path, 'rb'))
        self.glove = Variable(torch.cuda.FloatTensor(embed_weight), requires_grad=False)

        channel_num = embed_size // 4
        self.conv2 = nn.Conv1d(word_dim, channel_num, 2)
        self.conv3 = nn.Conv1d(word_dim, channel_num, 3)
        self.conv4 = nn.Conv1d(word_dim, channel_num, 4)
        self.conv5 = nn.Conv1d(word_dim, channel_num, 5)
        self.drop = nn.Dropout(p=0.5)
        self.relu = nn.ReLU()

#        self.mlp = nn.Linear(embed_size, embed_size)

        self.init_weights() 
Example #20
Source File: model.py    From VSE-C with MIT License 6 votes vote down vote up
def __init__(self, vocab_size, word_dim, embed_size, use_abs=False,
                 glove_path='data/glove.pkl'):
        super(EncoderTextDeepCNN, self).__init__()
        self.use_abs = use_abs
        self.embed_size = embed_size

        # word embedding
        self.embed = nn.Embedding(vocab_size, word_dim-300, padding_idx=0)
        _, embed_weight = pickle.load(open(glove_path, 'rb'))
        self.glove = Variable(torch.cuda.FloatTensor(embed_weight), requires_grad=False)

        channel_num = embed_size

        self.conv1 = nn.Conv1d(word_dim, embed_size, 2, stride=2)   # [batch_size, dim, 30]
        self.conv2 = nn.Conv1d(embed_size, embed_size, 4, stride=2)  # [batch_size, dim, 14]
        self.conv3 = nn.Conv1d(embed_size, embed_size, 5, stride=2)  # [batch_size, dim, 5]
        self.conv4 = nn.Conv1d(embed_size, channel_num, 5)
        self.drop = nn.Dropout(p=0.5)
        self.relu = nn.ReLU()

#        self.mlp = nn.Linear(embed_size, embed_size)

        self.init_weights() 
Example #21
Source File: cache.py    From vergeml with MIT License 5 votes vote down vote up
def read(self, file, path):
        """Read the content index from file.
        """
        pos, = struct.unpack('<Q', file.read(8))
        if pos == 0:
            raise VergeMLError("Invalid cache file: {}".format(path))
        file.seek(pos)
        self.index, self.meta, self.info = pickle.load(file) 
Example #22
Source File: dataloader.py    From LipNet-PyTorch with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def __getitem__(self, index):
        # images: bs x chan x T x H x W
        x = torch.zeros(3, self.opt.max_timesteps, 50, 100)
        # load video using read_data() and shove into x
        d = self.dataset[index]
        # targets: bs-length tensor of targets (each one is the length of the target seq)
        frames, y, sub = read_data(d, self.opt, self.vocab_mapping)
        x[:, : frames.size(1), :, :] = frames
        # input lengths: bs-length tensor of integers, representing
        # the number of input timesteps/frames for the given batch element
        length = frames.size(1)

        return x, y, length, index 
Example #23
Source File: nq_eval.py    From natural-questions with Apache License 2.0 5 votes vote down vote up
def main(_):
  cache_path = os.path.join(os.path.dirname(FLAGS.gold_path), 'cache')
  if FLAGS.cache_gold_data and os.path.exists(cache_path):
    logging.info('Reading from cache: %s', format(cache_path))
    nq_gold_dict = pickle.load(open(cache_path, 'r'))
  else:
    nq_gold_dict = util.read_annotation(
        FLAGS.gold_path, n_threads=FLAGS.num_threads)
    if FLAGS.cache_gold_data:
      logging.info('Caching gold data for next time to: %s', format(cache_path))
      pickle.dump(nq_gold_dict, open(cache_path, 'w'))

  nq_pred_dict = util.read_prediction_json(FLAGS.predictions_path)

  long_answer_stats, short_answer_stats = score_answers(nq_gold_dict,
                                                        nq_pred_dict)

  if FLAGS.pretty_print:
    print('*' * 20)
    print('LONG ANSWER R@P TABLE:')
    print_r_at_p_table(long_answer_stats)
    print('*' * 20)
    print('SHORT ANSWER R@P TABLE:')
    print_r_at_p_table(short_answer_stats)

    scores = compute_final_f1(long_answer_stats, short_answer_stats)
    print('*' * 20)
    print('METRICS IGNORING SCORES (n={}):'.format(scores['long-answer-n']))
    print('              F1     /  P      /  R')
    print('Long answer  {: >7.2%} / {: >7.2%} / {: >7.2%}'.format(
        scores['long-answer-f1'], scores['long-answer-precision'],
        scores['long-answer-recall']))
    print('Short answer {: >7.2%} / {: >7.2%} / {: >7.2%}'.format(
        scores['short-answer-f1'], scores['short-answer-precision'],
        scores['short-answer-recall']))
  else:
    metrics = get_metrics_with_answer_stats(long_answer_stats,
                                            short_answer_stats)
    print(json.dumps(metrics)) 
Example #24
Source File: binary_database.py    From BASS with GNU General Public License v2.0 5 votes vote down vote up
def load(clazz, path):
        with open(path, "rb") as f:
            return clazz(pickle.load(f)) 
Example #25
Source File: server.py    From BASS with GNU General Public License v2.0 5 votes vote down vote up
def function_mnem_hash_get():
    global Session
    session = Session()
    filename, file_ = request.files.items()[0]
    db = Database(pickle.load(file_))

    arch_name = db.architecture_name
    if arch_name == "metapc":
        arch_name = "x86"
    try:
        arch = session.query(Architecture).filter(Architecture.name == arch_name and \
                Architecture.bits == db.architecture_bits and \
                Architecture.little_endian == db.architecture_endianness == "little").one()
    except NoResultFound:
        return make_response(jsonify(message = "Architecture not found"), 404)
    
    try:
        func = next(db.functions)
    except StopIteration:
        return make_response(jsonify(message = "No function found in database"), 500)

    mnem_hash = _function_calculate_mnem_sha256(func)

    try:
        function = session.query(Function).filter(Function.mnem_sha256 == mnem_hash and \
                Function.arch == arch.id).one()
        return make_response(jsonify(**json.loads(function.data)), 200)
    except NoResultFound:
        return make_response(jsonify(message = "Function not found"), 404) 
Example #26
Source File: binary_database.py    From BASS with GNU General Public License v2.0 5 votes vote down vote up
def load(clazz, path):
        with open(path, "rb") as f:
            return clazz(pickle.load(f)) 
Example #27
Source File: workflow.py    From wechat-alfred-workflow with MIT License 5 votes vote down vote up
def load(cls, file_obj):
        """Load serialized object from open JSON file.

        .. versionadded:: 1.8

        :param file_obj: file handle
        :type file_obj: ``file`` object
        :returns: object loaded from JSON file
        :rtype: object

        """
        return json.load(file_obj) 
Example #28
Source File: workflow.py    From wechat-alfred-workflow with MIT License 5 votes vote down vote up
def load(cls, file_obj):
        """Load serialized object from open pickle file.

        .. versionadded:: 1.8

        :param file_obj: file handle
        :type file_obj: ``file`` object
        :returns: object loaded from pickle file
        :rtype: object

        """
        return cPickle.load(file_obj) 
Example #29
Source File: workflow.py    From wechat-alfred-workflow with MIT License 5 votes vote down vote up
def _load(self):
        """Load cached settings from JSON file `self._filepath`."""
        data = {}
        with LockFile(self._filepath, 0.5):
            with open(self._filepath, 'rb') as fp:
                data.update(json.load(fp))

        self._original = deepcopy(data)

        self._nosave = True
        self.update(data)
        self._nosave = False 
Example #30
Source File: workflow.py    From wechat-alfred-workflow with MIT License 5 votes vote down vote up
def cached_data(self, name, data_func=None, max_age=60):
        """Return cached data if younger than ``max_age`` seconds.

        Retrieve data from cache or re-generate and re-cache data if
        stale/non-existant. If ``max_age`` is 0, return cached data no
        matter how old.

        :param name: name of datastore
        :param data_func: function to (re-)generate data.
        :type data_func: ``callable``
        :param max_age: maximum age of cached data in seconds
        :type max_age: ``int``
        :returns: cached data, return value of ``data_func`` or ``None``
            if ``data_func`` is not set

        """
        serializer = manager.serializer(self.cache_serializer)

        cache_path = self.cachefile('%s.%s' % (name, self.cache_serializer))
        age = self.cached_data_age(name)

        if (age < max_age or max_age == 0) and os.path.exists(cache_path):

            with open(cache_path, 'rb') as file_obj:
                self.logger.debug('loading cached data: %s', cache_path)
                return serializer.load(file_obj)

        if not data_func:
            return None

        data = data_func()
        self.cache_data(name, data)

        return data