Python pickle.dump() Examples
The following are 30
code examples of pickle.dump().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
pickle
, or try the search function
.
Example #1
Source File: imagenet.py From cascade-rcnn_Pytorch with MIT License | 6 votes |
def gt_roidb(self): """ Return the database of ground-truth regions of interest. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = pickle.load(fid) print('{} gt roidb loaded from {}'.format(self.name, cache_file)) return roidb gt_roidb = [self._load_imagenet_annotation(index) for index in self.image_index] with open(cache_file, 'wb') as fid: pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL) print('wrote gt roidb to {}'.format(cache_file)) return gt_roidb
Example #2
Source File: pascal_voc_rbg.py From cascade-rcnn_Pytorch with MIT License | 6 votes |
def gt_roidb(self): """ Return the database of ground-truth regions of interest. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: try: roidb = pickle.load(fid) except: roidb = pickle.load(fid, encoding='bytes') print('{} gt roidb loaded from {}'.format(self.name, cache_file)) return roidb gt_roidb = [self._load_pascal_annotation(index) for index in self.image_index] with open(cache_file, 'wb') as fid: pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL) print('wrote gt roidb to {}'.format(cache_file)) return gt_roidb
Example #3
Source File: data.py From comet-commonsense with Apache License 2.0 | 6 votes |
def save_eval_file(opt, stats, eval_type="losses", split="dev", ext="pickle"): if cfg.test_save: name = "{}/{}.{}".format(utils.make_name( opt, prefix="garbage/{}/".format(eval_type), is_dir=True, eval_=True), split, ext) else: name = "{}/{}.{}".format(utils.make_name( opt, prefix="results/{}/".format(eval_type), is_dir=True, eval_=True), split, ext) print("Saving {} {} to {}".format(split, eval_type, name)) if ext == "pickle": with open(name, "wb") as f: pickle.dump(stats, f) elif ext == "txt": with open(name, "w") as f: f.write(stats) elif ext == "json": with open(name, "w") as f: json.dump(stats, f) else: raise
Example #4
Source File: coco.py From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License | 6 votes |
def _write_coco_results_file(self, all_boxes, res_file): # [{"image_id": 42, # "category_id": 18, # "bbox": [258.15,41.29,348.26,243.78], # "score": 0.236}, ...] results = [] for cls_ind, cls in enumerate(self.classes): if cls == '__background__': continue print('Collecting {} results ({:d}/{:d})'.format(cls, cls_ind, self.num_classes - 1)) coco_cat_id = self._class_to_coco_cat_id[cls] results.extend(self._coco_results_one_category(all_boxes[cls_ind], coco_cat_id)) print('Writing results json to {}'.format(res_file)) with open(res_file, 'w') as fid: json.dump(results, fid)
Example #5
Source File: pascal_voc.py From cascade-rcnn_Pytorch with MIT License | 6 votes |
def gt_roidb(self): """ Return the database of ground-truth regions of interest. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = pickle.load(fid) print('{} gt roidb loaded from {}'.format(self.name, cache_file)) return roidb gt_roidb = [self._load_pascal_annotation(index) for index in self.image_index] with open(cache_file, 'wb') as fid: pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL) print('wrote gt roidb to {}'.format(cache_file)) return gt_roidb
Example #6
Source File: experiment.py From Neural-LP with MIT License | 6 votes |
def train(self): while (self.epoch < self.option.max_epoch and not self.early_stopped): self.one_epoch_train() self.one_epoch_valid() self.one_epoch_test() self.epoch += 1 model_path = self.saver.save(self.sess, self.option.model_path, global_step=self.epoch) print("Model saved at %s" % model_path) if self.early_stop(): self.early_stopped = True print("Early stopped at epoch %d" % (self.epoch)) all_test_in_top = [np.mean(x[1]) for x in self.test_stats] best_test_epoch = np.argmax(all_test_in_top) best_test = all_test_in_top[best_test_epoch] msg = "Best test in top: %0.4f at epoch %d." % (best_test, best_test_epoch + 1) print(msg) self.log_file.write(msg + "\n") pickle.dump([self.train_stats, self.valid_stats, self.test_stats], open(os.path.join(self.option.this_expsdir, "results.pckl"), "w"))
Example #7
Source File: pd_storage.py From Paradrop with Apache License 2.0 | 6 votes |
def saveToDisk(self): """Saves the data to disk.""" out.info('Saving to disk (%s)\n' % (self.filename)) # Make sure they want to save if(not self.attrSaveable()): return # Get whatever the data is pyld = self.exportAttr(self.getAttr()) # Write the file to disk, truncate if it exists try: with open(self.filename, 'wb') as output: pickle.dump(pyld, output) os.fsync(output.fileno()) except Exception as e: out.err('Error writing to disk %s\n' % (str(e))) try: with open(self.filename + ".yaml", "w") as output: yaml.dump(pyld, output) except Exception as error: out.err("Error writing yaml file: {}".format(error))
Example #8
Source File: coco.py From cascade-rcnn_Pytorch with MIT License | 6 votes |
def _write_coco_results_file(self, all_boxes, res_file): # [{"image_id": 42, # "category_id": 18, # "bbox": [258.15,41.29,348.26,243.78], # "score": 0.236}, ...] results = [] for cls_ind, cls in enumerate(self.classes): if cls == '__background__': continue print('Collecting {} results ({:d}/{:d})'.format(cls, cls_ind, self.num_classes - 1)) coco_cat_id = self._class_to_coco_cat_id[cls] results.extend(self._coco_results_one_category(all_boxes[cls_ind], coco_cat_id)) print('Writing results json to {}'.format(res_file)) with open(res_file, 'w') as fid: json.dump(results, fid)
Example #9
Source File: pascal_voc.py From Collaborative-Learning-for-Weakly-Supervised-Object-Detection with MIT License | 6 votes |
def gt_roidb(self): """ Return the database of ground-truth regions of interest. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: try: roidb = pickle.load(fid) except: roidb = pickle.load(fid, encoding='bytes') print('{} gt roidb loaded from {}'.format(self.name, cache_file)) return roidb gt_roidb = [self._load_pascal_labels(index) for index in self.image_index] with open(cache_file, 'wb') as fid: pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL) print('wrote gt roidb to {}'.format(cache_file)) return gt_roidb
Example #10
Source File: workflow.py From wechat-alfred-workflow with MIT License | 6 votes |
def cache_data(self, name, data): """Save ``data`` to cache under ``name``. If ``data`` is ``None``, the corresponding cache file will be deleted. :param name: name of datastore :param data: data to store. This may be any object supported by the cache serializer """ serializer = manager.serializer(self.cache_serializer) cache_path = self.cachefile('%s.%s' % (name, self.cache_serializer)) if data is None: if os.path.exists(cache_path): os.unlink(cache_path) self.logger.debug('deleted cache file: %s', cache_path) return with atomic_writer(cache_path, 'wb') as file_obj: serializer.dump(data, file_obj) self.logger.debug('cached data: %s', cache_path)
Example #11
Source File: vg.py From cascade-rcnn_Pytorch with MIT License | 6 votes |
def gt_roidb(self): """ Return the database of ground-truth regions of interest. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl') if os.path.exists(cache_file): fid = gzip.open(cache_file,'rb') roidb = pickle.load(fid) fid.close() print('{} gt roidb loaded from {}'.format(self.name, cache_file)) return roidb gt_roidb = [self._load_vg_annotation(index) for index in self.image_index] fid = gzip.open(cache_file,'wb') pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL) fid.close() print('wrote gt roidb to {}'.format(cache_file)) return gt_roidb
Example #12
Source File: miscTools.py From graph-neural-networks with GNU General Public License v3.0 | 6 votes |
def saveSeed(randomStates, saveDir): """ Takes a list of dictionaries of random generator states of different modules and saves them in a .pkl format. Inputs: randomStates (list): The length of this list is equal to the number of modules whose states want to be saved (torch, numpy, etc.). Each element in this list is a dictionary. The dictionary has three keys: 'module' with the name of the module in string format ('numpy' or 'torch', for example), 'state' with the saved generator state and, if corresponds, 'seed' with the specific seed for the generator (note that torch has both state and seed, but numpy only has state) saveDir (path): where to save the seed, it will be saved under the filename 'randomSeedUsed.pkl' """ pathToSeed = os.path.join(saveDir, 'randomSeedUsed.pkl') with open(pathToSeed, 'wb') as seedFile: pickle.dump({'randomStates': randomStates}, seedFile)
Example #13
Source File: update_cache_compatibility.py From gated-graph-transformer-network with MIT License | 6 votes |
def main(cache_dir): files_list = list(os.listdir(cache_dir)) for file in files_list: full_filename = os.path.join(cache_dir, file) if os.path.isfile(full_filename): print("Processing {}".format(full_filename)) m, stored_kwargs = pickle.load(open(full_filename, 'rb')) updated_kwargs = util.get_compatible_kwargs(model.Model, stored_kwargs) model_hash = util.object_hash(updated_kwargs) print("New hash -> " + model_hash) model_filename = os.path.join(cache_dir, "model_{}.p".format(model_hash)) sys.setrecursionlimit(100000) pickle.dump((m,updated_kwargs), open(model_filename,'wb'), protocol=pickle.HIGHEST_PROTOCOL) os.remove(full_filename)
Example #14
Source File: workflow.py From wechat-alfred-workflow with MIT License | 6 votes |
def register(self, name, serializer): """Register ``serializer`` object under ``name``. Raises :class:`AttributeError` if ``serializer`` in invalid. .. note:: ``name`` will be used as the file extension of the saved files. :param name: Name to register ``serializer`` under :type name: ``unicode`` or ``str`` :param serializer: object with ``load()`` and ``dump()`` methods """ # Basic validation getattr(serializer, 'load') getattr(serializer, 'dump') self._serializers[name] = serializer
Example #15
Source File: app.py From svviz with MIT License | 6 votes |
def saveState(dataHub): import pickle as pickle import gzip pickle.dump(dataHub, gzip.open(dataHub.args.save_state, "wb")) logging.warn("^"*20 + " saving state to pickle and exiting " + "^"*20)
Example #16
Source File: study.py From OpenFermion-Cirq with Apache License 2.0 | 5 votes |
def save(self) -> None: """Save the study to disk.""" filename = '{}.study'.format(self.name) if self.datadir is not None: filename = os.path.join(self.datadir, filename) if not os.path.isdir(self.datadir): os.mkdir(self.datadir) with open(filename, 'wb') as f: pickle.dump((type(self), self._init_kwargs(), self.trial_results), f)
Example #17
Source File: helper.py From Deep_Learning_Weather_Forecasting with Apache License 2.0 | 5 votes |
def save_pkl(pkl_file, file_path, file_name, min_v=None, max_v=None): pk.dump(pkl_file, open(os.path.join(file_path, file_name), "wb")) print(file_name,' is dumped in: ', file_path) if((min_v is not None) and (max_v is not None)): pk.dump(min_v, open(os.path.join(file_path,file_name+"min"), "wb")) print(file_name+".min",' is dumped in: ', file_path) pk.dump(max_v, open(os.path.join(file_path,file_name+"max"), "wb")) print(file_name+".max",' is dumped in: ', file_path)
Example #18
Source File: rollout.py From lirpg with MIT License | 5 votes |
def save_policy(self, path): """Pickles the current policy for later inspection. """ with open(path, 'wb') as f: pickle.dump(self.policy, f)
Example #19
Source File: make_dataset_from_nc2df.py From Deep_Learning_Weather_Forecasting with Apache License 2.0 | 5 votes |
def save_pkl(pkl_file, file_path, file_name, min_v=None, max_v=None): pk.dump(pkl_file, open(os.path.join(file_path, file_name), "wb")) print(file_name,' is dumped in: ', file_path) if((min_v is not None) and (max_v is not None)): pk.dump(min_v, open(os.path.join(file_path,file_name+"min"), "wb")) print(file_name+".min",' is dumped in: ', file_path) pk.dump(max_v, open(os.path.join(file_path,file_name+"max"), "wb")) print(file_name+".max",' is dumped in: ', file_path)
Example #20
Source File: mappers.py From bioservices with GNU General Public License v3.0 | 5 votes |
def load_all_kegg_entries(self, filename="kegg_gene.dat"): if os.path.isfile(filename): import pickle results = pickle.load(open(filename, "r")) return results # TODO: # donwload from a URL print("could not find kegg data. fetching data from website if possible") # Fetches the KEGG results using multicore to send several requests at the same time found = self.alldata.keys() names = [x for x in self.names if x not in found] print("Fetching %s enties" % len(names)) mc = test_func(names) self.mcresults = mc.results.copy() # here are the entries to be used as keys try: entries = ["hsa:"+x['entry'].split()[0] for x in self.mcresults if x] for entry, result in zip(entries, self.mcresults): self.alldata[entry] = result except: print("something wrng happened while scaning mcresults") #import pickle #pickle.dump(results, open("kegg_gene.dat","w"))
Example #21
Source File: data_io.py From Kaggler with MIT License | 5 votes |
def save_obj(filename, obj): with open(filename, 'wb') as file: pickle.dump(obj, file, protocol=pickle.HIGHEST_PROTOCOL) logger.info('saved : {}\t{}'.format(filename, type(obj)))
Example #22
Source File: logz.py From cs294-112_hws with MIT License | 5 votes |
def pickle_tf_vars(): """ Saves tensorflow variables Requires them to be initialized first, also a default session must exist """ _dict = {v.name : v.eval() for v in tf.global_variables()} with open(osp.join(G.output_dir, "vars.pkl"), 'wb') as f: pickle.dump(_dict, f)
Example #23
Source File: utils.py From DOTA_models with Apache License 2.0 | 5 votes |
def bod2pascal(self): pascalLabel_path = os.path.join(self.basepath, r'pascalLabel') for basename in self.namelist: objects = parse_bod_poly(os.path.join(self.labelpath, basename + '.txt')) tree_root = ET.Element('annotation') folder = ET.SubElement(tree_root, 'secondjpg') filename = ET.SubElement(tree_root, basename) size = ET.SubElement(tree_root, 'size') width = ET.SubElement(size, 'width') height = ET.SubElement(size, 'height') ## TODO: read imagesize from img or info imgname = os.path.join(self.basepath, 'images', basename + '.jpg') # img = cv2.imread(imgname) width.text = str(1024) height.text = str(1024) for obj in objects: object = ET.SubElement(tree_root, 'object') ET.dump(tree_root) name = ET.SubElement(object, 'name') name.text = datamap[obj['name']] difficult = ET.SubElement(object, 'difficult') print('difficult:', obj['difficult']) difficult.text = str(obj['difficult']) print('type difficult.text:', type(difficult.text)) bndbox = ET.SubElement(object, 'bndbox') xmin = ET.SubElement(bndbox, 'xmin') xmax = ET.SubElement(bndbox, 'xmax') ymin = ET.SubElement(bndbox, 'ymin') ymax = ET.SubElement(bndbox, 'ymax') poly = obj['poly'] bbox = dots4ToRec4(poly) xmin.text = str(bbox[0]) ymin.text = str(bbox[1]) xmax.text = str(bbox[2]) ymax.text = str(bbox[3]) tree = ET.ElementTree(tree_root) tree.write(os.path.join(pascalLabel_path, basename + '.xml'))
Example #24
Source File: utils.py From DOTA_models with Apache License 2.0 | 5 votes |
def getcategory( basepath, label, ): classedict = {} def initdic(): for clsname in classname_15: wordname = datamap_15[clsname] classedict[wordname] = [] initdic() picklepath = os.path.join(basepath, 'pickle') pickledir = os.path.join(picklepath, 'category-file.pickle') if not os.path.isfile(pickledir): labelpath = os.path.join(basepath, label) filelist = GetFileFromThisRootDir(labelpath) for fullname in filelist: name = mybasename(fullname) objects = parse_bod_poly(fullname) for obj in objects: #wordname = datamap[obj['name']] wordname = obj['name'] if name not in classedict[wordname]: classedict[wordname].append(name) with open(pickledir, 'wb') as f: pickle.dump(classedict, f, pickle.HIGHEST_PROTOCOL) else: with open(pickledir, 'rb') as f: classedict = pickle.load(f) return classedict
Example #25
Source File: model.py From numpynet with BSD 3-Clause "New" or "Revised" License | 5 votes |
def execute_at_exit(self): if self.save_best is not None: log.out.info("Saving numpynet object to a pickle") with open(self.save_best, "wb") as output_handle: pickle.dump(best_self, output_handle, pickle.HIGHEST_PROTOCOL)
Example #26
Source File: imdb.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def _get_cached(self, cache_item, fn): cache_path = os.path.join(self._root_path, 'cache', '{}_{}.pkl'.format(self._name, cache_item)) if os.path.exists(cache_path): logger.info('loading cache {}'.format(cache_path)) with open(cache_path, 'rb') as fid: cached = pickle.load(fid) return cached else: logger.info('computing cache {}'.format(cache_path)) cached = fn() logger.info('saving cache {}'.format(cache_path)) with open(cache_path, 'wb') as fid: pickle.dump(cached, fid, pickle.HIGHEST_PROTOCOL) return cached
Example #27
Source File: imdb.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def evaluate_detections(self, detections, **kwargs): cache_path = os.path.join(self._root_path, 'cache', '{}_{}.pkl'.format(self._name, 'detections')) logger.info('saving cache {}'.format(cache_path)) with open(cache_path, 'wb') as fid: pickle.dump(detections, fid, pickle.HIGHEST_PROTOCOL) self._evaluate_detections(detections, **kwargs)
Example #28
Source File: model.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def save(self, fname): args_save = {key: v.asnumpy() for key, v in self.args.items()} with open(fname, 'wb') as fout: pickle.dump(args_save, fout)
Example #29
Source File: ner.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def save_obj(obj, name): with open(name + '.pkl', 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
Example #30
Source File: model.py From dynamic-training-with-apache-mxnet-on-aws with Apache License 2.0 | 5 votes |
def save(self, fname): args_save = {key: v.asnumpy() for key, v in self.args.items()} with open(fname, 'wb') as fout: pickle.dump(args_save, fout)