Python numpy.array_repr() Examples
The following are 30 code examples for showing how to use numpy.array_repr(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: lingvo Author: tensorflow File: encoder_test.py License: Apache License 2.0 | 6 votes |
def testBiEncoderForwardPassWithDropout(self): with self.session(use_gpu=False): tf.random.set_seed(8372749040) p = self._BiEncoderParams() p.dropout_prob = 0.5 mt_enc = encoder.MTEncoderBiRNN(p) batch = py_utils.NestedMap() batch.ids = tf.transpose(tf.reshape(tf.range(0, 8, 1), [4, 2])) batch.paddings = tf.zeros([2, 4]) enc_out = mt_enc.FPropDefaultTheta(batch).encoded self.evaluate(tf.global_variables_initializer()) actual_enc_out = enc_out.eval() print('bi_enc_actual_enc_out_with_dropout', np.array_repr(actual_enc_out)) expected_enc_out = [[[-1.8358192e-05, 1.2103478e-05], [2.9347059e-06, -3.0652325e-06]], [[-8.1282624e-06, 4.5443494e-06], [3.0826509e-06, -5.2950490e-06]], [[-4.6669629e-07, 2.4246765e-05], [-1.5221613e-06, -1.9654153e-06]], [[-1.1511075e-05, 1.9061190e-05], [-5.7250163e-06, 9.2785704e-06]]] self.assertAllClose(expected_enc_out, actual_enc_out)
Example 2
Project: lingvo Author: tensorflow File: model_test.py License: Apache License 2.0 | 6 votes |
def testFProp(self, dtype=tf.float32, fprop_dtype=tf.float32): with self.session(): tf.random.set_seed(_TF_RANDOM_SEED) p = self._testParams() p.dtype = dtype if fprop_dtype: p.fprop_dtype = fprop_dtype p.input.dtype = fprop_dtype mdl = p.Instantiate() mdl.FPropDefaultTheta() loss = mdl.loss logp = mdl.eval_metrics['log_pplx'][0] self.evaluate(tf.global_variables_initializer()) vals = [] for _ in range(5): vals += [self.evaluate((loss, logp))] print('actual vals = %s' % np.array_repr(np.array(vals))) self.assertAllClose(vals, [[233.57518, 10.381119], [236.10052, 10.378047], [217.99896, 10.380901], [217.94647, 10.378406], [159.5997, 10.380468]])
Example 3
Project: lingvo Author: tensorflow File: model_test.py License: Apache License 2.0 | 6 votes |
def testFProp(self, dtype=tf.float32): with self.session(): tf.random.set_seed(_TF_RANDOM_SEED) p = self._testParams() p.dtype = dtype mdl = p.Instantiate() mdl.FPropDefaultTheta() loss = mdl.loss logp = mdl.eval_metrics['log_pplx'][0] self.evaluate(tf.global_variables_initializer()) vals = [] for _ in range(3): vals += [self.evaluate((loss, logp))] print('actual vals = %s' % np.array_repr(np.array(vals))) expected_vals = [ [326.765106, 10.373495], [306.018066, 10.373494], [280.08429, 10.373492], ] self.assertAllClose(vals, expected_vals)
Example 4
Project: lingvo Author: tensorflow File: beam_search_helper_test.py License: Apache License 2.0 | 6 votes |
def testBeamSearchHelperWithSeqLengths(self): with self.session(use_gpu=False) as sess: topk_ids, topk_lens, topk_scores = GetBeamSearchHelperResults( sess, num_hyps_per_beam=3, pass_seq_lengths=True) print(np.array_repr(topk_ids)) print(np.array_repr(topk_lens)) print(np.array_repr(topk_scores)) expected_topk_ids = [[4, 3, 4, 3, 2, 0, 0], [4, 3, 11, 2, 0, 0, 0], [4, 3, 6, 2, 0, 0, 0], [6, 0, 4, 6, 6, 11, 2], [6, 0, 4, 6, 1, 2, 0], [6, 0, 4, 6, 6, 2, 0]] expected_topk_lens = [5, 4, 4, 7, 6, 6] expected_topk_scores = [[8.27340603, 6.26949024, 5.59490776], [9.74691486, 8.46679497, 7.14809656]] self.assertEqual(expected_topk_ids, topk_ids.tolist()) self.assertEqual(expected_topk_lens, topk_lens.tolist()) self.assertAllClose(expected_topk_scores, topk_scores)
Example 5
Project: lingvo Author: tensorflow File: batch_major_attention_test.py License: Apache License 2.0 | 6 votes |
def testTransformerAttentionLayerFPropMaskedSelfAttention(self): with self.session(use_gpu=True) as sess: query_vec, paddings, _, _ = self._TransformerAttentionLayerInputs() p = attention.TransformerAttentionLayer.Params().Set( name='transformer_masked_self_atten', input_dim=4, is_masked=True, num_heads=2) p.params_init = py_utils.WeightInit.Xavier(scale=1.0, seed=0) l = p.Instantiate() ctx_vec, _ = l.FProp(l.theta, query_vec, None, paddings) tf.global_variables_initializer().run() actual_ctx = sess.run(ctx_vec) actual_ctx = np.reshape(actual_ctx, (10, 4)) tf.logging.info(np.array_repr(actual_ctx)) expected_ctx = [7.777687, 5.219166, 6.305151, 4.817311] self.assertAllClose(expected_ctx, np.sum(actual_ctx, axis=0))
Example 6
Project: lingvo Author: tensorflow File: batch_major_attention_test.py License: Apache License 2.0 | 6 votes |
def testTransformerAttentionLayerFPropCrossAttention(self): with self.session(use_gpu=True) as sess: (query_vec, _, aux_vec, aux_paddings) = self._TransformerAttentionLayerInputs() p = attention.TransformerAttentionLayer.Params().Set( name='transformer_cross_atten', input_dim=4, is_masked=False, num_heads=2) p.params_init = py_utils.WeightInit.Xavier(scale=1.0, seed=0) l = p.Instantiate() ctx_vec, _ = l.FProp(l.theta, query_vec, aux_vec, aux_paddings) tf.global_variables_initializer().run() actual_ctx = sess.run(ctx_vec) actual_ctx = np.reshape(actual_ctx, (10, 4)) tf.logging.info(np.array_repr(actual_ctx)) expected_ctx = [19.345360, 15.057412, 13.744134, 13.387347] self.assertAllClose(expected_ctx, np.sum(actual_ctx, axis=0))
Example 7
Project: lingvo Author: tensorflow File: batch_major_attention_test.py License: Apache License 2.0 | 6 votes |
def testTransformerLayerFPropWithCrossAttention(self, multiplier): with self.session(use_gpu=True) as sess: (query_vec, _, aux_vec, aux_paddings) = self._TransformerAttentionLayerInputs() query_vec = tf.tile(query_vec, [multiplier, 1, 1]) paddings = tf.zeros([2 * multiplier, 5]) p = attention.TransformerLayer.Params() p.name = 'transformer_layer' p.input_dim = 4 p.tr_fflayer_tpl.hidden_dim = 7 p.tr_atten_tpl.num_heads = 2 p.params_init = py_utils.WeightInit.Xavier(scale=1.0, seed=0) l = p.Instantiate() ctx_vec, _ = l.FProp(l.theta, query_vec, paddings, aux_vec, aux_paddings) tf.global_variables_initializer().run() actual_ctx = sess.run(ctx_vec) actual_ctx = np.reshape(actual_ctx, (10 * multiplier, 4)) tf.logging.info(np.array_repr(actual_ctx)) expected_ctx = [ 4.7839108, 4.5303655, 5.5551023, 5.065767, 5.0493064, 3.2142467, 2.8200178, 5.659971, 4.3814187, 2.60475 ] * multiplier self.assertAllClose(expected_ctx, np.sum(actual_ctx, axis=1))
Example 8
Project: lingvo Author: tensorflow File: batch_major_attention_test.py License: Apache License 2.0 | 6 votes |
def testTransformerDecoderLayerFProp(self): with self.session(use_gpu=True) as sess: (query_vec, paddings, aux_vec, aux_paddings) = self._TransformerAttentionLayerInputs() l = self._ConstructTransformerDecoderLayer() layer_output, _ = l.FProp(l.theta, query_vec, paddings, aux_vec, aux_paddings) tf.global_variables_initializer().run() actual_layer_output = sess.run(layer_output) actual_layer_output = np.reshape(actual_layer_output, (10, 4)) tf.logging.info(np.array_repr(actual_layer_output)) expected_layer_output = [16.939590, 24.121685, 19.975197, 15.924350] self.assertAllClose(expected_layer_output, np.sum(actual_layer_output, axis=0))
Example 9
Project: lingvo Author: tensorflow File: batch_major_attention_test.py License: Apache License 2.0 | 6 votes |
def testTransformerDecoderLayerStackFProp(self): with self.session(use_gpu=True) as sess: (query_vec, paddings, aux_vec, aux_paddings) = self._TransformerAttentionLayerInputs() l = self._ConstructTransformerDecoderLayerStack() layer_output, _ = l.FProp( l.theta, query_vec=query_vec, paddings=paddings, aux_vec=aux_vec, aux_paddings=aux_paddings) tf.global_variables_initializer().run() actual_layer_output = sess.run(layer_output) actual_layer_output = np.reshape(actual_layer_output, (10, 4)) tf.logging.info(np.array_repr(actual_layer_output)) expected_layer_output = [9.926413, -4.491376, 27.051598, 2.112684] self.assertAllClose(expected_layer_output, np.sum(actual_layer_output, axis=0))
Example 10
Project: lingvo Author: tensorflow File: attention_test.py License: Apache License 2.0 | 6 votes |
def testPerStepSourcePaddingMultiHeadedAttention(self): params = attention.MultiHeadedAttention.Params() params.name = 'atten' params.params_init = py_utils.WeightInit.Gaussian(0.1, 877374) depth = 6 params.source_dim = depth params.query_dim = depth params.hidden_dim = depth params.vn.global_vn = False params.vn.per_step_vn = False atten = params.Instantiate() prob_out, vec_out = self._testPerStepSourcePaddingHelper(atten, depth) print('vec_out', np.array_repr(np.sum(vec_out, 1))) self.assertAllClose([-0.006338, -0.025153, 0.041647, -0.025153], np.sum(vec_out, 1)) self.assertAllClose([1.0, 1.0, 1.0, 1.0], np.sum(prob_out, 1))
Example 11
Project: lingvo Author: tensorflow File: attention_test.py License: Apache License 2.0 | 6 votes |
def testPerStepSourcePaddingLocationSensitiveAttention(self): params = attention.LocationSensitiveAttention.Params() params.name = 'atten' params.params_init = py_utils.WeightInit.Gaussian(0.1, 877374) depth = 6 params.source_dim = depth params.query_dim = depth params.hidden_dim = depth params.location_filter_size = 3 params.location_num_filters = 4 params.vn.global_vn = False params.vn.per_step_vn = False atten_state = tf.concat( [tf.ones([4, 1], tf.float32), tf.zeros([4, 5], tf.float32)], 1) atten_state = tf.expand_dims(atten_state, 1) atten = params.Instantiate() prob_out, vec_out = self._testPerStepSourcePaddingHelper( atten, depth, atten_state=atten_state) print('vec_out', np.array_repr(np.sum(vec_out, 1))) self.assertAllClose([2.001103, 3.293414, 2.306448, 3.293414], np.sum(vec_out, 1)) self.assertAllClose([1.0, 1.0, 1.0, 1.0], np.sum(prob_out, 1))
Example 12
Project: lingvo Author: tensorflow File: attention_test.py License: Apache License 2.0 | 6 votes |
def testPerStepSourcePaddingMonotonicAttention(self): params = attention.MonotonicAttention.Params() params.name = 'atten' params.params_init = py_utils.WeightInit.Gaussian(0.1, 877374) depth = 6 params.source_dim = depth params.query_dim = depth params.hidden_dim = depth params.vn.global_vn = False params.vn.per_step_vn = False atten = params.Instantiate() atten_state = atten.ZeroAttentionState(6, 4) atten_state.emit_probs = tf.concat( [tf.ones([4, 1], tf.float32), tf.zeros([4, 5], tf.float32)], 1) prob_out, vec_out = self._testPerStepSourcePaddingHelper( atten, depth, atten_state=atten_state) print('prob_out', np.array_repr(np.sum(prob_out, 1))) print('vec_out', np.array_repr(np.sum(vec_out, 1)))
Example 13
Project: lingvo Author: tensorflow File: rnn_cell_test.py License: Apache License 2.0 | 6 votes |
def testLSTMSimpleWithForgetGateInitBias(self, couple_input_forget_gates, b_expected): params = rnn_cell.LSTMCellSimple.Params().Set( name='lstm', params_init=py_utils.WeightInit.Constant(0.1), couple_input_forget_gates=couple_input_forget_gates, num_input_nodes=2, num_output_nodes=3, forget_gate_bias=2.0, bias_init=py_utils.WeightInit.Constant(0.1), dtype=tf.float64) lstm = rnn_cell.LSTMCellSimple(params) np.random.seed(_NUMPY_RANDOM_SEED) with self.session(use_gpu=False): self.evaluate(tf.global_variables_initializer()) b_value = lstm._GetBias(lstm.theta).eval() tf.logging.info('testLSTMSimpleWithForgetGateInitBias b = %s', np.array_repr(b_value)) self.assertAllClose(b_value, b_expected) # pyformat: disable
Example 14
Project: lingvo Author: tensorflow File: rnn_cell_test.py License: Apache License 2.0 | 6 votes |
def _testLNLSTMCellFPropBProp(self, params, num_hidden_nodes=None): tf.reset_default_graph() lstm, _, state1 = self._testLNLSTMCellHelper(params, num_hidden_nodes) loss = -tf.math.log( tf.sigmoid( tf.reduce_sum(tf.square(state1.m)) + tf.reduce_sum(state1.m * state1.c * state1.c))) grads = tf.gradients(loss, lstm.vars.Flatten()) with self.session(use_gpu=False): self.evaluate(tf.global_variables_initializer()) m_v, c_v, grads_v = self.evaluate([state1.m, state1.c, grads]) tf.logging.info('m_v = %s', np.array_repr(m_v)) tf.logging.info('c_v = %s', np.array_repr(c_v)) grads_val = py_utils.NestedMap() for (n, _), val in zip(lstm.vars.FlattenItems(), grads_v): tf.logging.info('%s : %s', n, np.array_repr(val)) grads_val[n] = val return m_v, c_v, grads_val # pyformat: disable
Example 15
Project: lingvo Author: tensorflow File: layers_test.py License: Apache License 2.0 | 6 votes |
def testConv2DLayerFProp(self): # pyformat: disable # pylint: disable=bad-whitespace expected_output1 = [ [[[ 0.36669245, 0.91488785], [ 0.07532132, 0. ]], [[ 0.34952009, 0. ], [ 1.91783941, 0. ]]], [[[ 0.28304493, 0. ], [ 0. , 0. ]], [[ 0. , 0.86575812], [ 0. , 1.60203481]]]] # pyformat: enable # pylint: enable=bad-whitespace actual = self._evalConvLayerFProp() print('actual = ', np.array_repr(actual)) self.assertAllClose(expected_output1, actual)
Example 16
Project: lingvo Author: tensorflow File: layers_test.py License: Apache License 2.0 | 6 votes |
def testSeparableConv2DLayerFProp(self): # pyformat: disable # pylint: disable=bad-whitespace expected_output1 =[ [[[ 0.39866772, 0. ], [ 1.36471784, 0. ]], [[ 0. , 0. ], [ 0. , 0. ]]], [[[ 1.15356529, 0.1036691 ], [ 0.12865055, 0.61244327]], [[ 0.03609803, 1.81620765], [ 0. , 0.23052886]]]] # pyformat: enable # pylint: enable=bad-whitespace actual = self._evalConvLayerFProp( params_builder=layers.SeparableConv2DLayer.Params) print('actual = ', np.array_repr(actual)) self.assertAllClose(expected_output1, actual)
Example 17
Project: lingvo Author: tensorflow File: layers_test.py License: Apache License 2.0 | 6 votes |
def testConv2DLayerFPropConvLast(self): # pyformat: disable # pylint: disable=bad-whitespace expected_output1 = [ [[[ 0.22165056, 0.20731729], [ 0.09577402, -0.15359652]], [[ 0.07151584, 0.03027298], [ 0.05370769, 0.0143405 ]]], [[[-0.08854639, 0.06143938], [-0.37708873, 0.00889082]], [[-0.58154356, 0.30798748], [-0.37575331, 0.54729235]]]] # pyformat: enable # pylint: enable=bad-whitespace actual = self._evalConvLayerFProp(conv_last=True) print(['ConvLast actual = ', np.array_repr(actual)]) self.assertAllClose(expected_output1, actual)
Example 18
Project: lingvo Author: tensorflow File: layers_test.py License: Apache License 2.0 | 6 votes |
def testConv2DLayerWeightNormFProp(self): # pyformat: disable # pylint: disable=bad-whitespace expected_output = [ [[[ 0.37172362, 0.92405349], [ 0.07635488, 0.]], [[ 0.35431579, 0.], [ 1.94415355, 0.]]], [[[ 0.28692839, 0.], [ 0. , 0.]], [[ 0. , 0.87443149], [ 0. , 1.61808443]]]] # pyformat: enable # pylint: enable=bad-whitespace actual = self._evalConvLayerFProp(weight_norm=True) print('actual1 = ', np.array_repr(actual)) self.assertAllClose(expected_output, actual)
Example 19
Project: lingvo Author: tensorflow File: layers_test.py License: Apache License 2.0 | 6 votes |
def testSeparableConv2DLayerWeightNormFProp(self): # pyformat: disable # pylint: disable=bad-whitespace expected_output = [ [[[ 0.41837293, 0. ], [ 1.39592457, 0. ]], [[ 0. , 0. ], [ 0. , 0. ]]], [[[ 1.20513153, 0.11938372], [ 0.1284119 , 0.6927582 ]], [[ 0.0227453 , 2.05591369], [ 0. , 0.26530063]]]] # pyformat: enable # pylint: enable=bad-whitespace actual = self._evalConvLayerFProp( weight_norm=True, params_builder=layers.SeparableConv2DLayer.Params) print('actual1 = ', np.array_repr(actual)) self.assertAllClose(expected_output, actual)
Example 20
Project: lingvo Author: tensorflow File: layers_test.py License: Apache License 2.0 | 6 votes |
def testConvSetLayerFProp(self): # pyformat: disable # pylint: disable=bad-whitespace,bad-continuation expected_output1 = [ [[[ 1.04307961, 0. , 1.27613628, 0. ], [ 0. , 0. , 0. , 1.21081829 ]], [[ 0. , 0.18475296, 0. , 0. ], [ 1.34087086 , 2.2726357 , 0. , 0. ]]], [[[ 0. , 0.25231963, 0. , 0. ], [ 1.13677704 , 0. , 0.996117 , 1.836285 ]], [[ 0. , 0. , 1.04101253, 0. ], [ 0.12628449 , 0.37599814, 0.3134549 , 0.51208746 ]]] ] # pyformat: enable # pylint: enable=bad-whitespace,bad-continuation actual = self._evalConvSetLayerFProp() print(['actual = ', np.array_repr(actual)]) self.assertAllClose(expected_output1, actual)
Example 21
Project: lingvo Author: tensorflow File: layers_test.py License: Apache License 2.0 | 6 votes |
def testConvSetLayerFPropQuantized(self): # pyformat: disable # pylint: disable=bad-whitespace,bad-continuation expected_output1 = [ [[[ 1.04016984, 0. , 1.28103447, 0. ], [ 0. , 0. , 0. , 1.20986581]], [[ 0. , 0.18681753, 0. , 0. ], [ 1.35328221, 2.26849842, 0. , 0. ]]], [[[ 0. , 0.24909003, 0. , 0. ], [ 1.14100266, 0. , 0.98746401, 1.83259094]], [[ 0. , 0. , 1.04084051, 0. ], [ 0.12736773, 0.38253111, 0.32025862, 0.5159722 ]]]] # pyformat: enable # pylint: enable=bad-whitespace,bad-continuation actual = self._evalConvSetLayerFProp(bn_fold_weights=True, quantized=True) # Note that we don't have many ways to verify in a unit test that the # quant nodes were added properly; however, if their placement changes, # it will very likely perturb the golden values above. If digging deeper, # add 'dump_graphdef=True' to the above call and inspect the graphdef: # There should be one layer of fake_quant* nodes before the ConcatV2. print('actual = ', np.array_repr(actual)) self.assertAllClose(expected_output1, actual) # TODO(yonghui): more test for convolution layer
Example 22
Project: lingvo Author: tensorflow File: layers_test.py License: Apache License 2.0 | 6 votes |
def testProjectionLayerFProp(self): # pylint: disable=bad-whitespace # pyformat: disable expected_output = [ [[ 0. , 0.33779466], [ 0.4527415 , 0.99911398], [ 0.44320837, 0. ], [ 0. , 0.04557215]], [[ 0.69273949, 0. ], [ 0.30908319, 0. ], [ 0. , 0. ], [ 0. , 1.54578114]]] # pyformat: enable # pylint: enable=bad-whitespace for reshape_to_2d in (False, True): actual = self._evalProjectionLayer( reshape_to_2d=reshape_to_2d, expect_bn_fold_weights=False) if reshape_to_2d: expected_output = np.reshape(np.array(expected_output), (-1, 2)) tf.logging.info('expected = %s', expected_output) tf.logging.info('actual = %s', np.array_repr(actual)) self.assertAllClose(expected_output, actual)
Example 23
Project: lingvo Author: tensorflow File: layers_test.py License: Apache License 2.0 | 6 votes |
def testProjectionLayerFPropWithBias(self): # pylint: disable=bad-whitespace # pyformat: disable expected_output = [ [[ 4.98987579, 5.03493643], [ 5.01192808, 5.0917592 ], [ 5.01156807, 4.99741936], [ 4.96849394, 5.00982761]], [[ 5.02098131, 4.98014927], [ 5.00650883, 4.87676954], [ 4.98995209, 4.91770315], [ 4.95948696, 5.138731 ]]] # pyformat: enable # pylint: enable=bad-whitespace # Tested without batch_norm because batch_norm will mostly cancel out the # affect of bias. actual = self._evalProjectionLayer( has_bias=True, batch_norm=False, expect_bn_fold_weights=False, activation='RELU6') tf.logging.info('expected = %s', expected_output) tf.logging.info('actual = %s', np.array_repr(actual)) self.assertAllClose(expected_output, actual)
Example 24
Project: lingvo Author: tensorflow File: layers_test.py License: Apache License 2.0 | 6 votes |
def testProjectionLayerWeightNorm(self): # pylint: disable=bad-whitespace # pyformat: disable expected_output = [ [[ 0. , 0.36285588], [ 0.82909501, 1.07323885], [ 0.81163716, 0. ], [ 0. , 0.04895319]], [[ 1.26859784, 0. ], [ 0.56601691, 0. ], [ 0. , 0. ], [ 0. , 1.66046333]]] # pyformat: enable # pylint: enable=bad-whitespace for reshape_to_2d in (False, True): actual = self._evalProjectionLayer( reshape_to_2d=reshape_to_2d, weight_norm=True) if reshape_to_2d: expected_output = np.reshape(np.array(expected_output), (-1, 2)) tf.logging.info('expected = %s', expected_output) tf.logging.info('actual = %s', np.array_repr(actual)) self.assertAllClose(expected_output, actual)
Example 25
Project: recruit Author: Frank-qlu File: arrayprint.py License: Apache License 2.0 | 5 votes |
def array_str(a, max_line_width=None, precision=None, suppress_small=None): """ Return a string representation of the data in an array. The data in the array is returned as a single string. This function is similar to `array_repr`, the difference being that `array_repr` also returns information on the kind of array and its data type. Parameters ---------- a : ndarray Input array. max_line_width : int, optional Inserts newlines if text is longer than `max_line_width`. The default is, indirectly, 75. precision : int, optional Floating point precision. Default is the current printing precision (usually 8), which can be altered using `set_printoptions`. suppress_small : bool, optional Represent numbers "very close" to zero as zero; default is False. Very close is defined by precision: if the precision is 8, e.g., numbers smaller (in absolute value) than 5e-9 are represented as zero. See Also -------- array2string, array_repr, set_printoptions Examples -------- >>> np.array_str(np.arange(3)) '[0 1 2]' """ return _array_str_implementation( a, max_line_width, precision, suppress_small) # needed if __array_function__ is disabled
Example 26
Project: recruit Author: Frank-qlu File: test_overrides.py License: Apache License 2.0 | 5 votes |
def test_repr(self): # gh-12162: should still be defined even if __array_function__ doesn't # implement np.array_repr() class MyArray(np.ndarray): def __array_function__(*args, **kwargs): return NotImplemented array = np.array(1).view(MyArray) assert_equal(repr(array), 'MyArray(1)') assert_equal(str(array), '1')
Example 27
Project: lingvo Author: tensorflow File: encoder_test.py License: Apache License 2.0 | 5 votes |
def testForwardPass(self): with self.session(use_gpu=False): vn_config = py_utils.VariationalNoiseParams(None, False, False) p = self._EncoderParams(vn_config) enc_out = self._ForwardPass(p).encoded enc_out_sum = tf.reduce_sum(enc_out, 0) self.evaluate(tf.global_variables_initializer()) # pyformat: disable # pylint: disable=bad-whitespace expected_enc_out = [ [-2.63900943e-02, -4.88980189e-02, 1.78375337e-02, -9.66763496e-03, -1.45432353e-02, 3.63842538e-03, -4.93378285e-03, 9.87463910e-03, -1.98941268e-02, -2.31636949e-02, -6.76718354e-03, -1.01988772e-02, 4.81432397e-03, 9.02220048e-03, 1.31793215e-03, -1.39696691e-02, -2.36637704e-02, -5.25583047e-04, -3.79295787e-03, 1.09998491e-02, 8.54234211e-03, -2.43989471e-02, -6.27756910e-03, -1.64192859e-02, 1.54568311e-02, 3.69091239e-03, 1.27634332e-02, 2.50437222e-02, 3.77510749e-02, 1.71656217e-02, 1.94890760e-02, 4.31961473e-03], [-1.61839426e-02, 1.27755934e-02, -1.96352396e-02, 1.04363225e-02, 6.10197056e-03, -5.08408714e-03, -9.20344493e-04, 2.55419128e-02, -3.58198807e-02, -4.18110676e-02, 9.45025682e-03, -7.00431701e-04, 2.31945589e-02, -6.53471798e-05, -1.94577798e-02, -1.53421704e-02, -1.50274234e-02, 1.06492080e-03, 8.32110923e-03, -1.38334394e-03, 2.02696323e-02, 2.13975199e-02, 2.23143250e-02, -1.54133392e-02, 1.83746461e-02, 8.25020485e-03, -1.64317098e-02, 1.46762179e-02, 1.89543713e-03, -3.36170895e-03, 3.14423591e-02, -2.64923554e-02 ]] # pylint: enable=bad-whitespace # pyformat: enable enc_out_sum_val = enc_out_sum.eval() print('enc_out_sum_val', np.array_repr(enc_out_sum_val)) self.assertAllClose(expected_enc_out, enc_out_sum_val)
Example 28
Project: lingvo Author: tensorflow File: encoder_test.py License: Apache License 2.0 | 5 votes |
def testForwardPassWithStackingAfterMiddleLayer(self): with self.session(use_gpu=False): vn_config = py_utils.VariationalNoiseParams(None, False, False) p = self._EncoderParams(vn_config) p.stacking_layer_tpl.left_context = 1 p.stacking_layer_tpl.right_context = 0 p.stacking_layer_tpl.stride = 2 p.layer_index_before_stacking = 0 enc_out = self._ForwardPass(p).encoded enc_out_sum = tf.reduce_sum(enc_out, 0) self.evaluate(tf.global_variables_initializer()) # pyformat: disable # pylint: disable=bad-whitespace expected_enc_out = [ [0.00102275, -0.02697385, 0.01709868, -0.00939053, -0.01576837, 0.0070826, -0.00626193, 0.01143604, -0.01742513, -0.00529445, 0.00284249, -0.01362027, -0.00490865, 0.0216262, -0.01344598, -0.00460993, -0.01329017, 0.01379208, -0.00850593, 0.0193335, 0.01134925, -0.00131254, 0.00375953, -0.00588882, 0.01347932, -0.00252493, 0.01274828, 0.01027388, 0.02657663, 0.02644286, 0.0286899, -0.00833998], [-0.01801126, 0.0115137, 0.01355767, 0.00113954, 0.00986663, -0.0128988, 0.00794239, -0.00524312, 0.00246279, -0.00575782, -0.00213567, -0.01528412, 0.00186096, 0.00253562, -0.00411006, -0.00390748, -0.01001569, -0.00344393, -0.01211706, 0.00387725, 0.02194905, 0.02578988, -0.00255773, 0.00690117, 0.00976908, 0.01935913, 0.01131854, 0.0013859, -0.01567556, 0.01858256, 0.02251371, -0.0185001]] # pylint: enable=bad-whitespace # pyformat: enable enc_out_sum_val = enc_out_sum.eval() print('enc_out_sum_val', np.array_repr(enc_out_sum_val)) self.assertAllClose(expected_enc_out, enc_out_sum_val)
Example 29
Project: lingvo Author: tensorflow File: spectrum_augmenter_test.py License: Apache License 2.0 | 5 votes |
def testSpectrumAugmenterWithFrequencyMask(self): with self.session(use_gpu=False, graph=tf.Graph()): tf.random.set_seed(1234) inputs = tf.ones([3, 5, 10, 1], dtype=tf.float32) paddings = tf.zeros([3, 5]) p = spectrum_augmenter.SpectrumAugmenter.Params() p.name = 'specAug_layers' p.freq_mask_max_bins = 6 p.freq_mask_count = 2 p.time_mask_max_frames = 0 p.random_seed = 34567 specaug_layer = p.Instantiate() # pyformat: disable # pylint: disable=bad-whitespace,bad-continuation expected_output = np.array( [[[[1.], [1.], [1.], [0.], [0.], [0.], [0.], [0.], [0.], [1.]], [[1.], [1.], [1.], [0.], [0.], [0.], [0.], [0.], [0.], [1.]], [[1.], [1.], [1.], [0.], [0.], [0.], [0.], [0.], [0.], [1.]], [[1.], [1.], [1.], [0.], [0.], [0.], [0.], [0.], [0.], [1.]], [[1.], [1.], [1.], [0.], [0.], [0.], [0.], [0.], [0.], [1.]]], [[[0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [1.], [1.]], [[0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [1.], [1.]], [[0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [1.], [1.]], [[0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [1.], [1.]], [[0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [1.], [1.]]], [[[1.], [1.], [0.], [0.], [1.], [1.], [0.], [1.], [1.], [1.]], [[1.], [1.], [0.], [0.], [1.], [1.], [0.], [1.], [1.], [1.]], [[1.], [1.], [0.], [0.], [1.], [1.], [0.], [1.], [1.], [1.]], [[1.], [1.], [0.], [0.], [1.], [1.], [0.], [1.], [1.], [1.]], [[1.], [1.], [0.], [0.], [1.], [1.], [0.], [1.], [1.], [1.]]]]) # pylint: enable=bad-whitespace,bad-continuation # pyformat: enable h, _ = specaug_layer.FPropDefaultTheta(inputs, paddings) actual_layer_output = self.evaluate(h) print(np.array_repr(actual_layer_output)) self.assertAllClose(actual_layer_output, expected_output)
Example 30
Project: lingvo Author: tensorflow File: spectrum_augmenter_test.py License: Apache License 2.0 | 5 votes |
def testSpectrumAugmenterWarpMatrixConstructor(self): with self.session(use_gpu=False, graph=tf.Graph()): inputs = tf.broadcast_to(tf.cast(tf.range(10), dtype=tf.float32), (4, 10)) origin = tf.cast([2, 4, 4, 5], dtype=tf.float32) destination = tf.cast([3, 2, 6, 8], dtype=tf.float32) choose_range = tf.cast([4, 8, 8, 10], dtype=tf.float32) p = spectrum_augmenter.SpectrumAugmenter.Params() p.name = 'specAug_layers' specaug_layer = p.Instantiate() # pyformat: disable # pylint: disable=bad-whitespace,bad-continuation expected_output = np.array( [[0.0000000, 0.6666667, 1.3333333, 2.0000000, 4.0000000, 5.0000000, 6.0000000, 7.0000000, 8.0000000, 9.0000000], [0.0000000, 2.0000000, 4.0000000, 4.6666667, 5.3333333, 6.0000000, 6.6666667, 7.3333333, 8.0000000, 9.0000000], [0.0000000, 0.6666667, 1.3333333, 2.0000000, 2.6666667, 3.3333333, 4.0000000, 6.0000000, 8.0000000, 9.0000000], [0.0000000, 0.6250000, 1.2500000, 1.8750000, 2.5000000, 3.1250000, 3.7500000, 4.3750000, 5.0000000, 7.5000000]]) # pylint: enable=bad-whitespace,bad-continuation # pyformat: enable warp_matrix = specaug_layer._ConstructWarpMatrix( batch_size=4, matrix_size=10, origin=origin, destination=destination, choose_range=choose_range, dtype=tf.float32) outputs = tf.einsum('bij,bj->bi', warp_matrix, inputs) actual_layer_output = self.evaluate(outputs) print(np.array_repr(actual_layer_output)) self.assertAllClose(actual_layer_output, expected_output)