Python torch.sub() Examples

The following are 15 code examples of torch.sub(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module torch , or try the search function .
Example #1
Source File: test_private.py    From PySyft with Apache License 2.0 6 votes vote down vote up
def test_torch_sub():
    x = torch.tensor([0.5, 0.8, 1.3]).fix_prec()
    y = torch.tensor([0.1, 0.2, 0.3]).fix_prec()

    # ADD Private Tensor at wrapper stack
    x = x.private_tensor(allowed_users=["User"])
    y = y.private_tensor(allowed_users=["User"])

    z = torch.sub(x, y)

    # Test if it preserves the parent user credentials.
    assert z.allow("User")
    assert not z.allow("NonRegisteredUser")

    assert (z.child.child.child == torch.LongTensor([400, 600, 1000])).all()
    z_fp = z.float_prec()

    assert (z_fp == torch.tensor([0.4, 0.6, 1.0])).all() 
Example #2
Source File: training.py    From occupancy_networks with MIT License 6 votes vote down vote up
def give_edges(self, pred, block_id):
        r''' Returns the edges for given block.

        Arguments:
            pred (tensor): vertex predictions of dim
                            (batch_size, n_vertices, 3)
            block_id (int): deformation block id (1,2 or 3)
        '''
        batch_size = pred.shape[0]  # (batch_size, n_vertices, 3)
        num_edges = self.edges[block_id-1].shape[0]
        edges = self.edges[block_id-1]
        nod1 = torch.index_select(pred, 1, edges[:, 0].long())
        nod2 = torch.index_select(pred, 1, edges[:, 1].long())
        assert(
            nod1.shape == (batch_size, num_edges, 3) and
            nod2.shape == (batch_size, num_edges, 3))
        final_edges = torch.sub(nod1, nod2)
        assert(final_edges.shape == (batch_size, num_edges, 3))
        return final_edges 
Example #3
Source File: training.py    From occupancy_networks with MIT License 6 votes vote down vote up
def laplacian_loss(self, pred1, pred2, block_id):
        r''' Returns the Laplacian loss and move loss for given block.

        Arguments:
            pred (tensor): vertex predictions from previous block
            pred (tensor): vertex predictions from current block
            block_id (int): deformation block id (1,2 or 3)
        '''
        lap1 = self.give_laplacian_coordinates(pred1, block_id)
        lap2 = self.give_laplacian_coordinates(pred2, block_id)
        l_l = torch.sub(lap1, lap2).pow(2).sum(dim=2).mean()

        # move loss from the authors' implementation
        move_loss = 0
        if block_id != 1:
            move_loss = torch.sub(pred1, pred2).pow(2).sum(dim=2).mean()
        return l_l, move_loss 
Example #4
Source File: functional.py    From catalyst with Apache License 2.0 6 votes vote down vote up
def margin_loss(
    embeddings: torch.Tensor,
    labels: torch.Tensor,
    alpha: float = 0.2,
    beta: float = 1.0,
    skip_labels: Union[int, List[int]] = -1,
) -> torch.Tensor:
    """@TODO: Docs. Contribution is welcome."""
    embeddings = F.normalize(embeddings, p=2.0, dim=1)
    distances = euclidean_distance(embeddings, embeddings)

    margin_mask = _create_margin_mask(labels)
    skip_mask = _skip_labels_mask(labels, skip_labels).float()
    loss = torch.mul(
        skip_mask,
        F.relu(alpha + torch.mul(margin_mask, torch.sub(distances, beta))),
    )
    return loss.sum() / (skip_mask.sum() + _EPS) 
Example #5
Source File: FM_PyTorch.py    From Awesome-RecSystem-Models with MIT License 5 votes vote down vote up
def forward(self, feat_index, feat_value):
        # Step1: 先计算得到线性的那一部分
        feat_value = torch.unsqueeze(feat_value, dim=2)  # None * F * 1
        first_weights = self.first_weights(feat_index)   # None * F * 1
        first_weight_value = torch.mul(first_weights, feat_value)  # None * F * 1
        first_weight_value = torch.squeeze(first_weight_value, dim=2)  # None * F
        y_first_order = torch.sum(first_weight_value, dim=1)  # None

        # Step2: 再计算二阶部分
        secd_feat_emb = self.feat_embeddings(feat_index)                      # None * F * K
        feat_emd_value = torch.mul(secd_feat_emb, feat_value)                 # None * F * K(广播)

        # sum_square part
        summed_feat_emb = torch.sum(feat_emd_value, 1)                        # None * K
        interaction_part1 = torch.pow(summed_feat_emb, 2)                     # None * K

        # squared_sum part
        squared_feat_emd_value = torch.pow(feat_emd_value, 2)                 # None * K
        interaction_part2 = torch.sum(squared_feat_emd_value, dim=1)          # None * K

        y_secd_order = 0.5 * torch.sub(interaction_part1, interaction_part2)
        y_secd_order = torch.sum(y_secd_order, dim=1)

        output = self.bias + y_first_order + y_secd_order
        output = torch.unsqueeze(output, dim=1)
        return output 
Example #6
Source File: DeepFM_PyTorch.py    From Awesome-RecSystem-Models with MIT License 5 votes vote down vote up
def forward(self, feat_index, feat_value, use_dropout=True):
        feat_value = torch.unsqueeze(feat_value, dim=2)                       # None * F * 1

        # Step1: 先计算一阶线性的部分 sum_square part
        first_weights = self.first_weights(feat_index)                        # None * F * 1
        first_weight_value = torch.mul(first_weights, feat_value)
        y_first_order = torch.sum(first_weight_value, dim=2)                  # None * F
        if use_dropout:
            y_first_order = nn.Dropout(self.dropout_fm[0])(y_first_order)         # None * F

        # Step2: 再计算二阶部分
        secd_feat_emb = self.feat_embeddings(feat_index)                      # None * F * K
        feat_emd_value = secd_feat_emb * feat_value                           # None * F * K(广播)

        # sum_square part
        summed_feat_emb = torch.sum(feat_emd_value, 1)                        # None * K
        interaction_part1 = torch.pow(summed_feat_emb, 2)                     # None * K

        # squared_sum part
        squared_feat_emd_value = torch.pow(feat_emd_value, 2)                 # None * K
        interaction_part2 = torch.sum(squared_feat_emd_value, dim=1)          # None * K

        y_secd_order = 0.5 * torch.sub(interaction_part1, interaction_part2)
        if use_dropout:
            y_secd_order = nn.Dropout(self.dropout_fm[1])(y_secd_order)

        # Step3: Deep部分
        y_deep = feat_emd_value.reshape(-1, self.num_field * self.embedding_size)  # None * (F * K)
        if use_dropout:
            y_deep = nn.Dropout(self.dropout_deep[0])(y_deep)

        for i in range(1, len(self.layer_sizes) + 1):
            y_deep = getattr(self, 'linear_' + str(i))(y_deep)
            y_deep = getattr(self, 'batchNorm_' + str(i))(y_deep)
            y_deep = F.relu(y_deep)
            if use_dropout:
                y_deep = getattr(self, 'dropout_' + str(i))(y_deep)

        concat_input = torch.cat((y_first_order, y_secd_order, y_deep), dim=1)
        output = self.fc(concat_input)
        return output 
Example #7
Source File: loss_modules.py    From ESRNN-GPU with MIT License 5 votes vote down vote up
def forward(self, predictions, actuals):
        cond = torch.zeros_like(predictions).to(self.device)
        loss = torch.sub(actuals, predictions).to(self.device)

        less_than = torch.mul(loss, torch.mul(torch.gt(loss, cond).type(torch.FloatTensor).to(self.device),
                                              self.training_tau))

        greater_than = torch.mul(loss, torch.mul(torch.lt(loss, cond).type(torch.FloatTensor).to(self.device),
                                                 (self.training_tau - 1)))

        final_loss = torch.add(less_than, greater_than)
        # losses = []
        # for i in range(self.output_size):
        #     prediction = predictions[i]
        #     actual = actuals[i]
        #     if actual > prediction:
        #         losses.append((actual - prediction) * self.training_tau)
        #     else:
        #         losses.append((actual - prediction) * (self.training_tau - 1))
        # loss = torch.Tensor(losses)
        return torch.sum(final_loss) / self.output_size * 2


# test1 = torch.rand(100)
# test2 = torch.rand(100)
# pb = PinballLoss(0.5, 100)
# pb(test1, test2)


### sMAPE

# float sMAPE(vector<float>& out_vect, vector<float>& actuals_vect) {
#   float sumf = 0;
#   for (unsigned int indx = 0; indx<OUTPUT_SIZE; indx++) {
#     auto forec = out_vect[indx];
#     auto actual = actuals_vect[indx];
#     sumf+=abs(forec-actual)/(abs(forec)+abs(actual));
#   }
#   return sumf / OUTPUT_SIZE * 200;
# } 
Example #8
Source File: arithmetics.py    From heat with MIT License 5 votes vote down vote up
def sub(t1, t2):
    """
    Element-wise subtraction of values of operand t2 from values of operands t1 (i.e t1 - t2), not commutative.
    Takes the two operands (scalar or tensor) whose elements are to be subtracted (operand 2 from operand 1)
    as argument.

    Parameters
    ----------
    t1: tensor or scalar
        The first operand from which values are subtracted
    t2: tensor or scalar
        The second operand whose values are subtracted

    Returns
    -------
    result: ht.DNDarray
        A tensor containing the results of element-wise subtraction of t1 and t2.

    Examples:
    ---------
    >>> import heat as ht
    >>> ht.sub(4.0, 1.0)
    tensor([3.])

    >>> T1 = ht.float32([[1, 2], [3, 4]])
    >>> T2 = ht.float32([[2, 2], [2, 2]])
    >>> ht.sub(T1, T2)
    tensor([[-1., 0.],
            [1., 2.]])

    >>> s = 2.0
    >>> ht.sub(s, T1)
    tensor([[ 1.,  0.],
            [-1., -2.]])
    """
    return operations.__binary_op(torch.sub, t1, t2)


# Alias in compliance with numpy API 
Example #9
Source File: training.py    From occupancy_networks with MIT License 5 votes vote down vote up
def give_laplacian_coordinates(self, pred, block_id):
        r''' Returns the laplacian coordinates for the predictions and given block.

            The helper matrices are used to detect neighbouring vertices and
            the number of neighbours which are relevant for the weight matrix.
            The maximal number of neighbours is 8, and if a vertex has less,
            the index -1 is used which points to the added zero vertex.

        Arguments:
            pred (tensor): vertex predictions
            block_id (int): deformation block id (1,2 or 3)
        '''
        batch_size = pred.shape[0]
        num_vert = pred.shape[1]
        # Add "zero vertex" for vertices with less than 8 neighbours
        vertex = torch.cat(
            [pred, torch.zeros(batch_size, 1, 3).to(self.device)], 1)
        assert(vertex.shape == (batch_size, num_vert+1, 3))
        # Get 8 neighbours for each vertex; if a vertex has less, the
        # remaining indices are -1
        indices = torch.from_numpy(
            self.lape_idx[block_id-1][:, :8]).to(self.device)
        assert(indices.shape == (num_vert, 8))
        weights = torch.from_numpy(
            self.lape_idx[block_id-1][:, -1]).float().to(self.device)
        weights = torch.reciprocal(weights)
        weights = weights.view(-1, 1).expand(-1, 3)
        vertex_select = vertex[:, indices.long(), :]
        assert(vertex_select.shape == (batch_size, num_vert, 8, 3))
        laplace = vertex_select.sum(dim=2)  # Add neighbours
        laplace = torch.mul(laplace, weights)  # Multiply by weights
        laplace = torch.sub(pred, laplace)  # Subtract from prediction
        assert(laplace.shape == (batch_size, num_vert, 3))
        return laplace 
Example #10
Source File: functional.py    From catalyst with Apache License 2.0 5 votes vote down vote up
def cosine_distance(
    x: torch.Tensor, z: Optional[torch.Tensor] = None,
) -> torch.Tensor:
    """Calculate cosine distance between x and z.
    @TODO: Docs. Contribution is welcome.
    """
    x = F.normalize(x)

    if z is not None:
        z = F.normalize(z)
    else:
        z = x.clone()

    return torch.sub(1, torch.mm(x, z.transpose(0, 1))) 
Example #11
Source File: model.py    From DL-Seq2Seq with MIT License 5 votes vote down vote up
def skrnn_loss(gmm_params, kl_params, data, mask=[], device =None):
       
    def get_2d_normal(x1,x2,mu1,mu2,s1,s2,rho):
      ##### implementing Eqn. 24 and 25 of the paper ###########
        norm1 = torch.sub(x1,mu1)
        norm2 = torch.sub(x2,mu2)
        s1s2 = torch.mul(s1,s2)
        z = torch.div(norm1**2,s1**2) + torch.div(norm2**2,s2**2) - 2*torch.div(torch.mul(rho, torch.mul(norm1,norm2)),s1s2)
        deno = 2*np.pi*s1s2*torch.sqrt(1-rho**2)
        numer = torch.exp(torch.div(-z,2*(1-rho**2)))
      ##########################################################
        return numer / deno
    
    eos = torch.stack([torch.Tensor([0,0,0,0,1])]*data.size()[0], device = device).unsqueeze(1)
    data = torch.cat([data, eos], 1) 
    
    target = data.view(-1, 5)
    x1, x2, eos = target[:,0].unsqueeze(1), target[:,1].unsqueeze(1), target[:,2:]

    q_t, pi_t = gmm_params[0], gmm_params[1]
    res = get_2d_normal(x1,x2,gmm_params[2],gmm_params[3],gmm_params[4],gmm_params[5],gmm_params[6])
    epsilon = torch.tensor(1e-5, dtype=torch.float)  # to prevent overflow

    Ls = torch.sum(torch.mul(pi_t,res),dim=1).unsqueeze(1)
    Ls = -torch.log(Ls + epsilon)
    mask_zero_out = 1-eos[:,2]
    
    Ls = torch.mul(Ls, mask_zero_out.view(-1,1))
    Lp = -torch.sum(eos*torch.log(q_t), -1).view(-1,1)
    Lr = Ls + Lp
    mu, sigma = kl_params[0], kl_params[1]

    L_kl = -(0.5)*torch.mean(1 + sigma - mu**2 - torch.exp(sigma))

    return Lr.mean(), L_kl 
Example #12
Source File: model.py    From DL-Seq2Seq with MIT License 5 votes vote down vote up
def mdn_loss(mdn_params, data, mask=[]):

    def get_2d_normal(x1,x2,mu1,mu2,s1,s2,rho):
        
      ##### implementing Eqn. 24 and 25 of the paper ###########
      norm1 = torch.sub(x1.view(-1,1),mu1)
      norm2 = torch.sub(x2.view(-1,1),mu2)
      s1s2 = torch.mul(s1,s2)
      z = torch.div(norm1**2,s1**2) + torch.div(norm2**2,s2**2) - 2*torch.div(torch.mul(rho, torch.mul(norm1,norm2)),s1s2)
      deno = 2*np.pi*s1s2*torch.sqrt(1-rho**2)
      numer = torch.exp(torch.div(-z,2*(1-rho**2)))
      ##########################################################
      return numer / deno

    eos, x1, x2 = data[:,0], data[:,1], data[:,2]
    e_t, pi_t = mdn_params[0], mdn_params[1]
    res = get_2d_normal(x1,x2,mdn_params[2],mdn_params[3],mdn_params[4],mdn_params[5],mdn_params[6])
    
    epsilon = torch.tensor(1e-20, dtype=torch.float, device=device)  # to prevent overflow

    res1 = torch.sum(torch.mul(pi_t,res),dim=1)
    res1 = -torch.log(torch.max(res1,epsilon))
    res2 = torch.mul(eos, e_t.t()) + torch.mul(1-eos,1-e_t.t())
    res2 = -torch.log(res2)
    
    if len(mask)!=0:        # using masking in case of padding
        res1 = torch.mul(res1,mask)
        res2 = torch.mul(res2,mask)
    return torch.sum(res1+res2) 
Example #13
Source File: test_precision.py    From PySyft with Apache License 2.0 4 votes vote down vote up
def test_torch_sub(workers):
    bob, alice, james = (workers["bob"], workers["alice"], workers["james"])

    x = torch.tensor([0.5, 0.8, 1.3]).fix_prec()
    y = torch.tensor([0.1, 0.2, 0.3]).fix_prec()

    z = torch.sub(x, y)

    assert (z.child.child == torch.LongTensor([400, 600, 1000])).all()
    z = z.float_prec()

    assert (z == torch.tensor([0.4, 0.6, 1.0])).all()

    # with AdditiveSharingTensor
    tx = torch.tensor([1.0, -2.0, 3.0])
    ty = torch.tensor([0.1, 0.2, 0.3])
    x = tx.fix_prec()
    y = ty.fix_prec().share(bob, alice, crypto_provider=james)

    z1 = torch.sub(y, x).get().float_prec()
    z2 = torch.sub(x, y).get().float_prec()

    assert (z1 == torch.sub(ty, tx)).all()
    assert (z2 == torch.sub(tx, ty)).all()

    # with constant integer
    t = torch.tensor([1.0, -2.0, 3.0])
    x = t.fix_prec()
    c = 4

    z = (x - c).float_prec()
    assert (z == (t - c)).all()

    z = (c - x).float_prec()
    assert (z == (c - t)).all()

    # with constant float
    t = torch.tensor([1.0, -2.0, 3.0])
    x = t.fix_prec()
    c = 4.2

    z = (x - c).float_prec()
    assert ((z - (t - c)) < 10e-3).all()

    z = (c - x).float_prec()
    assert ((z - (c - t)) < 10e-3).all()

    # with dtype int
    x = torch.tensor([1.0, 2.0, 3.0]).fix_prec(dtype="int")
    y = torch.tensor([0.1, 0.2, 0.3]).fix_prec(dtype="int")

    z = x - y
    assert (z.float_prec() == torch.tensor([0.9, 1.8, 2.7])).all() 
Example #14
Source File: kitti_evaluation.py    From Attentional-PointNet with GNU General Public License v3.0 4 votes vote down vote up
def load_velodyne_points_torch(points, rg, N):

    cloud = pcl.PointCloud()
    cloud.from_array(points)
    clipper = cloud.make_cropbox()
    clipper.set_MinMax(*rg)
    out_cloud = clipper.filter()

    if(out_cloud.size > 15000):
        leaf_size = 0.05
        vox = out_cloud.make_voxel_grid_filter()
        vox.set_leaf_size(leaf_size, leaf_size, leaf_size)
        out_cloud = vox.filter()

    if(out_cloud.size > 0):
        cloud = torch.from_numpy(np.asarray(out_cloud)).float().cuda()

        points_count = cloud.shape[0]
        # pdb.set_trace()
        # print("indices", len(ind))
        if(points_count > 1):
            prob = torch.randperm(points_count)
            if(points_count > N):
                idx = prob[:N]
                crop = cloud[idx]
                # print(len(crop))
            else:
                r = int(N/points_count)
                cloud = cloud.repeat(r+1,1)
                crop = cloud[:N]
                # print(len(crop))

            x_shift = (rg[0] + rg[4])/2.0
            y_shift = (rg[1] + rg[5])/2.0
            z_shift = -1.8
            shift = torch.tensor([x_shift, y_shift, z_shift]).cuda()
            crop = torch.sub(crop, shift)

        else:
            crop = torch.ones(N,3).cuda()
            # print("points count zero")

    else:
        crop = torch.ones(N,3).cuda()
        # print("points count zero")


    return crop 
Example #15
Source File: model.py    From DL-Seq2Seq with MIT License 4 votes vote down vote up
def forward(self, inp, char_vec, old_k, old_w, text_len, hidden1, hidden2, bias = 0):
        
        if len(inp.size()) == 2:
            inp=inp.unsqueeze(1)
            
        embed = torch.cat([inp, old_w], dim=-1)   # adding attention window to the input of rnn
        
        output1, hidden1 = self.rnn1(embed, hidden1)
        if self.bi_mode == 1:
            output1 = output1[:,:,0:self.hidden_size] + output1[:,:,self.hidden_size:]            
        
        ##### implementing Eqn. 48 - 51 of the paper ###########
        abk_t = self.window(output1.squeeze(1)).exp()
        a_t, b_t, k_t = abk_t.split(self.num_attn_gaussian, dim=1)
        k_t = old_k + k_t        
        #######################################################
        
        
        ##### implementing Eqn. 46 and 47 of the paper ###########
        u = torch.linspace(1, char_vec.shape[1], char_vec.shape[1], device=device)
        phi_bku = torch.exp(torch.mul(torch.sub(k_t.unsqueeze(2).repeat((1,1,len(u))),u)**2,
                                      -b_t.unsqueeze(2)))
        phi = torch.sum(torch.mul(a_t.unsqueeze(2),phi_bku),dim=1)* (char_vec.shape[1]/text_len)
        win_t = torch.sum(torch.mul(phi.unsqueeze(2), char_vec),dim=1)
        ##########################################################
        
        
        inp_skip = torch.cat([output1, inp, win_t.unsqueeze(1)], dim=-1)  # implementing skip connection
        output2, hidden2 = self.rnn2(inp_skip, hidden2)        
        if self.bi_mode == 1:
            output2 = output2[:,:,0:self.hidden_size] + output2[:,:,self.hidden_size:]          
        output = torch.cat([output1,output2], dim=-1)

        ##### implementing Eqn. 17 to 22 of the paper ###########
        y_t = self.mdn(output.squeeze(1))  

        e_t = y_t[:,0:1]
        pi_t, mu1_t, mu2_t, s1_t, s2_t, rho_t = torch.split(y_t[:,1:], self.num_gaussian, dim=1)
        e_t = F.sigmoid(e_t)
        pi_t = F.softmax(pi_t*(1+bias))  # bias would be used during inference
        s1_t, s2_t = torch.exp(s1_t), torch.exp(s2_t)
        rho_t = torch.tanh(rho_t)
        ##########################################################
        
        mdn_params = [e_t, pi_t, mu1_t, mu2_t, s1_t, s2_t, rho_t, phi, win_t, k_t]       
        return mdn_params, hidden1, hidden2