Python numpy.nextafter() Examples
The following are 30 code examples for showing how to use numpy.nextafter(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: recruit Author: Frank-qlu File: test_half.py License: Apache License 2.0 | 6 votes |
def test_spacing_nextafter(self): """Test np.spacing and np.nextafter""" # All non-negative finite #'s a = np.arange(0x7c00, dtype=uint16) hinf = np.array((np.inf,), dtype=float16) a_f16 = a.view(dtype=float16) assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:]) assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1]) # switch to negatives a |= 0x8000 assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1])) assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:]) assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
Example 2
Project: zhusuan Author: thu-ml File: univariate.py License: MIT License | 6 votes |
def _sample(self, n_samples): # samples must be sampled from (-1, 1) rather than [-1, 1) loc, scale = self.loc, self.scale if not self.is_reparameterized: loc = tf.stop_gradient(loc) scale = tf.stop_gradient(scale) shape = tf.concat([[n_samples], self.batch_shape], 0) uniform_samples = tf.random_uniform( shape=shape, minval=np.nextafter(self.dtype.as_numpy_dtype(-1.), self.dtype.as_numpy_dtype(0.)), maxval=1., dtype=self.dtype) samples = loc - scale * tf.sign(uniform_samples) * \ tf.log1p(-tf.abs(uniform_samples)) static_n_samples = n_samples if isinstance(n_samples, int) else None samples.set_shape( tf.TensorShape([static_n_samples]).concatenate( self.get_batch_shape())) return samples
Example 3
Project: lambda-packs Author: ryfeus File: common.py License: MIT License | 6 votes |
def make_strictly_feasible(x, lb, ub, rstep=1e-10): """Shift a point to the interior of a feasible region. Each element of the returned vector is at least at a relative distance `rstep` from the closest bound. If ``rstep=0`` then `np.nextafter` is used. """ x_new = x.copy() active = find_active_constraints(x, lb, ub, rstep) lower_mask = np.equal(active, -1) upper_mask = np.equal(active, 1) if rstep == 0: x_new[lower_mask] = np.nextafter(lb[lower_mask], ub[lower_mask]) x_new[upper_mask] = np.nextafter(ub[upper_mask], lb[upper_mask]) else: x_new[lower_mask] = (lb[lower_mask] + rstep * np.maximum(1, np.abs(lb[lower_mask]))) x_new[upper_mask] = (ub[upper_mask] - rstep * np.maximum(1, np.abs(ub[upper_mask]))) tight_bounds = (x_new < lb) | (x_new > ub) x_new[tight_bounds] = 0.5 * (lb[tight_bounds] + ub[tight_bounds]) return x_new
Example 4
Project: lambda-packs Author: ryfeus File: exponential.py License: MIT License | 6 votes |
def _sample_n(self, n, seed=None): shape = array_ops.concat([[n], array_ops.shape(self._rate)], 0) # Uniform variates must be sampled from the open-interval `(0, 1)` rather # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny` # because it is the smallest, positive, "normal" number. A "normal" number # is such that the mantissa has an implicit leading 1. Normal, positive # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In # this case, a subnormal number (i.e., np.nextafter) can cause us to sample # 0. sampled = random_ops.random_uniform( shape, minval=np.finfo(self.dtype.as_numpy_dtype).tiny, maxval=1., seed=seed, dtype=self.dtype) return -math_ops.log(sampled) / self._rate
Example 5
Project: lambda-packs Author: ryfeus File: laplace.py License: MIT License | 6 votes |
def _sample_n(self, n, seed=None): shape = array_ops.concat([[n], self.batch_shape_tensor()], 0) # Uniform variates must be sampled from the open-interval `(-1, 1)` rather # than `[-1, 1)`. In the case of `(0, 1)` we'd use # `np.finfo(self.dtype.as_numpy_dtype).tiny` because it is the smallest, # positive, "normal" number. However, the concept of subnormality exists # only at zero; here we need the smallest usable number larger than -1, # i.e., `-1 + eps/2`. uniform_samples = random_ops.random_uniform( shape=shape, minval=np.nextafter(self.dtype.as_numpy_dtype(-1.), self.dtype.as_numpy_dtype(0.)), maxval=1., dtype=self.dtype, seed=seed) return (self.loc - self.scale * math_ops.sign(uniform_samples) * math_ops.log1p(-math_ops.abs(uniform_samples)))
Example 6
Project: lambda-packs Author: ryfeus File: logistic.py License: MIT License | 6 votes |
def _sample_n(self, n, seed=None): # Uniform variates must be sampled from the open-interval `(0, 1)` rather # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny` # because it is the smallest, positive, "normal" number. A "normal" number # is such that the mantissa has an implicit leading 1. Normal, positive # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In # this case, a subnormal number (i.e., np.nextafter) can cause us to sample # 0. uniform = random_ops.random_uniform( shape=array_ops.concat([[n], self.batch_shape_tensor()], 0), minval=np.finfo(self.dtype.as_numpy_dtype).tiny, maxval=1., dtype=self.dtype, seed=seed) sampled = math_ops.log(uniform) - math_ops.log1p(-1. * uniform) return sampled * self.scale + self.loc
Example 7
Project: lambda-packs Author: ryfeus File: gumbel.py License: MIT License | 6 votes |
def _sample_n(self, n, seed=None): # Uniform variates must be sampled from the open-interval `(0, 1)` rather # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny` # because it is the smallest, positive, "normal" number. A "normal" number # is such that the mantissa has an implicit leading 1. Normal, positive # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In # this case, a subnormal number (i.e., np.nextafter) can cause us to sample # 0. uniform = random_ops.random_uniform( shape=array_ops.concat([[n], self.batch_shape_tensor()], 0), minval=np.finfo(self.dtype.as_numpy_dtype).tiny, maxval=1., dtype=self.dtype, seed=seed) sampled = -math_ops.log(-math_ops.log(uniform)) return sampled * self.scale + self.loc
Example 8
Project: lambda-packs Author: ryfeus File: relaxed_onehot_categorical.py License: MIT License | 6 votes |
def _sample_n(self, n, seed=None): sample_shape = array_ops.concat([[n], array_ops.shape(self.logits)], 0) logits = self.logits * array_ops.ones(sample_shape) logits_2d = array_ops.reshape(logits, [-1, self.event_size]) # Uniform variates must be sampled from the open-interval `(0, 1)` rather # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny` # because it is the smallest, positive, "normal" number. A "normal" number # is such that the mantissa has an implicit leading 1. Normal, positive # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In # this case, a subnormal number (i.e., np.nextafter) can cause us to sample # 0. uniform = random_ops.random_uniform( shape=array_ops.shape(logits_2d), minval=np.finfo(self.dtype.as_numpy_dtype).tiny, maxval=1., dtype=self.dtype, seed=seed) gumbel = -math_ops.log(-math_ops.log(uniform)) noisy_logits = math_ops.div(gumbel + logits_2d, self._temperature_2d) samples = nn_ops.log_softmax(noisy_logits) ret = array_ops.reshape(samples, sample_shape) return ret
Example 9
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_half.py License: MIT License | 6 votes |
def test_spacing_nextafter(self): """Test np.spacing and np.nextafter""" # All non-negative finite #'s a = np.arange(0x7c00, dtype=uint16) hinf = np.array((np.inf,), dtype=float16) a_f16 = a.view(dtype=float16) assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:]) assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1]) # switch to negatives a |= 0x8000 assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1])) assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:]) assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
Example 10
Project: auto-alt-text-lambda-api Author: abhisuri97 File: relaxed_onehot_categorical.py License: MIT License | 6 votes |
def _sample_n(self, n, seed=None): sample_shape = array_ops.concat(([n], array_ops.shape(self.logits)), 0) logits = self.logits * array_ops.ones(sample_shape) if logits.get_shape().ndims == 2: logits_2d = logits else: logits_2d = array_ops.reshape(logits, [-1, self.num_classes]) np_dtype = self.dtype.as_numpy_dtype() minval = np.nextafter(np_dtype(0), np_dtype(1)) uniform = random_ops.random_uniform(shape=array_ops.shape(logits_2d), minval=minval, maxval=1, dtype=self.dtype, seed=seed) gumbel = - math_ops.log(- math_ops.log(uniform)) noisy_logits = math_ops.div(gumbel + logits_2d, self.temperature) samples = nn_ops.log_softmax(noisy_logits) ret = array_ops.reshape(samples, sample_shape) return ret
Example 11
Project: vnpy_crypto Author: birforce File: test_half.py License: MIT License | 6 votes |
def test_spacing_nextafter(self): """Test np.spacing and np.nextafter""" # All non-negative finite #'s a = np.arange(0x7c00, dtype=uint16) hinf = np.array((np.inf,), dtype=float16) a_f16 = a.view(dtype=float16) assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:]) assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1]) # switch to negatives a |= 0x8000 assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1])) assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:]) assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
Example 12
Project: vnpy_crypto Author: birforce File: count_model.py License: MIT License | 6 votes |
def _predict_prob(self, params, exog, exog_infl, exposure, offset): params_infl = params[:self.k_inflate] params_main = params[self.k_inflate:] p = self.model_main.parameterization counts = np.atleast_2d(np.arange(0, np.max(self.endog)+1)) if len(exog_infl.shape) < 2: transform = True w = np.atleast_2d( self.model_infl.predict(params_infl, exog_infl))[:, None] else: transform = False w = self.model_infl.predict(params_infl, exog_infl)[:, None] w[w == 1.] = np.nextafter(1, 0) mu = self.model_main.predict(params_main, exog, exposure=exposure, offset=offset)[:, None] result = self.distribution.pmf(counts, mu, params_main[-1], p, w) return result[0] if transform else result
Example 13
Project: Computable Author: ktraunmueller File: test_half.py License: MIT License | 6 votes |
def test_spacing_nextafter(self): """Test np.spacing and np.nextafter""" # All non-negative finite #'s a = np.arange(0x7c00, dtype=uint16) hinf = np.array((np.inf,), dtype=float16) a_f16 = a.view(dtype=float16) assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:]) assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1]) # switch to negatives a |= 0x8000 assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1])) assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:]) assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
Example 14
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_half.py License: MIT License | 6 votes |
def test_spacing_nextafter(self): """Test np.spacing and np.nextafter""" # All non-negative finite #'s a = np.arange(0x7c00, dtype=uint16) hinf = np.array((np.inf,), dtype=float16) a_f16 = a.view(dtype=float16) assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:]) assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1]) # switch to negatives a |= 0x8000 assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1])) assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:]) assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
Example 15
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_half.py License: MIT License | 6 votes |
def test_spacing_nextafter(self): """Test np.spacing and np.nextafter""" # All non-negative finite #'s a = np.arange(0x7c00, dtype=uint16) hinf = np.array((np.inf,), dtype=float16) a_f16 = a.view(dtype=float16) assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:]) assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1]) # switch to negatives a |= 0x8000 assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1])) assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:]) assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
Example 16
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_mpmath.py License: MIT License | 6 votes |
def test_wrightomega_branch(): x = -np.logspace(10, 0, 25) picut_above = [np.nextafter(np.pi, np.inf)] picut_below = [np.nextafter(np.pi, -np.inf)] npicut_above = [np.nextafter(-np.pi, np.inf)] npicut_below = [np.nextafter(-np.pi, -np.inf)] for i in range(50): picut_above.append(np.nextafter(picut_above[-1], np.inf)) picut_below.append(np.nextafter(picut_below[-1], -np.inf)) npicut_above.append(np.nextafter(npicut_above[-1], np.inf)) npicut_below.append(np.nextafter(npicut_below[-1], -np.inf)) y = np.hstack((picut_above, picut_below, npicut_above, npicut_below)) x, y = np.meshgrid(x, y) z = (x + 1j*y).flatten() dataset = [] for z0 in z: dataset.append((z0, complex(_mpmath_wrightomega(z0, 25)))) dataset = np.asarray(dataset) FuncData(sc.wrightomega, dataset, 0, 1, rtol=1e-8).check()
Example 17
Project: predictive-maintenance-using-machine-learning Author: awslabs File: test_half.py License: Apache License 2.0 | 6 votes |
def test_spacing_nextafter(self): """Test np.spacing and np.nextafter""" # All non-negative finite #'s a = np.arange(0x7c00, dtype=uint16) hinf = np.array((np.inf,), dtype=float16) a_f16 = a.view(dtype=float16) assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:]) assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1]) # switch to negatives a |= 0x8000 assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1])) assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:]) assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1]) assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1]) assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:])
Example 18
Project: recruit Author: Frank-qlu File: test_random.py License: Apache License 2.0 | 5 votes |
def test_uniform_range_bounds(self): fmin = np.finfo('float').min fmax = np.finfo('float').max func = np.random.uniform assert_raises(OverflowError, func, -np.inf, 0) assert_raises(OverflowError, func, 0, np.inf) assert_raises(OverflowError, func, fmin, fmax) assert_raises(OverflowError, func, [-np.inf], [0]) assert_raises(OverflowError, func, [0], [np.inf]) # (fmax / 1e17) - fmin is within range, so this should not throw # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX > # DBL_MAX by increasing fmin a bit np.random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17)
Example 19
Project: recruit Author: Frank-qlu File: test_umath.py License: Apache License 2.0 | 5 votes |
def test_float_remainder_corner_cases(self): # Check remainder magnitude. for dt in np.typecodes['Float']: b = np.array(1.0, dtype=dt) a = np.nextafter(np.array(0.0, dtype=dt), -b) rem = np.remainder(a, b) assert_(rem <= b, 'dt: %s' % dt) rem = np.remainder(-a, -b) assert_(rem >= -b, 'dt: %s' % dt) # Check nans, inf with suppress_warnings() as sup: sup.filter(RuntimeWarning, "invalid value encountered in remainder") for dt in np.typecodes['Float']: fone = np.array(1.0, dtype=dt) fzer = np.array(0.0, dtype=dt) finf = np.array(np.inf, dtype=dt) fnan = np.array(np.nan, dtype=dt) rem = np.remainder(fone, fzer) assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem)) # MSVC 2008 returns NaN here, so disable the check. #rem = np.remainder(fone, finf) #assert_(rem == fone, 'dt: %s, rem: %s' % (dt, rem)) rem = np.remainder(fone, fnan) assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem)) rem = np.remainder(finf, fone) assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
Example 20
Project: recruit Author: Frank-qlu File: test_umath.py License: Apache License 2.0 | 5 votes |
def _test_nextafter(t): one = t(1) two = t(2) zero = t(0) eps = np.finfo(t).eps assert_(np.nextafter(one, two) - one == eps) assert_(np.nextafter(one, zero) - one < 0) assert_(np.isnan(np.nextafter(np.nan, one))) assert_(np.isnan(np.nextafter(one, np.nan))) assert_(np.nextafter(one, one) == one)
Example 21
Project: recruit Author: Frank-qlu File: test_umath.py License: Apache License 2.0 | 5 votes |
def test_nextafter_vs_spacing(): # XXX: spacing does not handle long double yet for t in [np.float32, np.float64]: for _f in [1, 1e-5, 1000]: f = t(_f) f1 = t(_f + 1) assert_(np.nextafter(f, f1) - f == np.spacing(f))
Example 22
Project: recruit Author: Frank-qlu File: test_scalarmath.py License: Apache License 2.0 | 5 votes |
def test_float_modulus_corner_cases(self): # Check remainder magnitude. for dt in np.typecodes['Float']: b = np.array(1.0, dtype=dt) a = np.nextafter(np.array(0.0, dtype=dt), -b) rem = operator.mod(a, b) assert_(rem <= b, 'dt: %s' % dt) rem = operator.mod(-a, -b) assert_(rem >= -b, 'dt: %s' % dt) # Check nans, inf with suppress_warnings() as sup: sup.filter(RuntimeWarning, "invalid value encountered in remainder") for dt in np.typecodes['Float']: fone = np.array(1.0, dtype=dt) fzer = np.array(0.0, dtype=dt) finf = np.array(np.inf, dtype=dt) fnan = np.array(np.nan, dtype=dt) rem = operator.mod(fone, fzer) assert_(np.isnan(rem), 'dt: %s' % dt) # MSVC 2008 returns NaN here, so disable the check. #rem = operator.mod(fone, finf) #assert_(rem == fone, 'dt: %s' % dt) rem = operator.mod(fone, fnan) assert_(np.isnan(rem), 'dt: %s' % dt) rem = operator.mod(finf, fone) assert_(np.isnan(rem), 'dt: %s' % dt)
Example 23
Project: recruit Author: Frank-qlu File: test_analytics.py License: Apache License 2.0 | 5 votes |
def test_boundary_float(self, nselect_method, float_dtype): # GH 21426 dtype_info = np.finfo(float_dtype) min_val, max_val = dtype_info.min, dtype_info.max min_2nd, max_2nd = np.nextafter( [min_val, max_val], 0, dtype=float_dtype) vals = [min_val, min_2nd, max_2nd, max_val] assert_check_nselect_boundary(vals, float_dtype, nselect_method)
Example 24
Project: recruit Author: Frank-qlu File: interval.py License: Apache License 2.0 | 5 votes |
def _get_next_label(label): dtype = getattr(label, 'dtype', type(label)) if isinstance(label, (Timestamp, Timedelta)): dtype = 'datetime64' if is_datetime_or_timedelta_dtype(dtype) or is_datetime64tz_dtype(dtype): return label + np.timedelta64(1, 'ns') elif is_integer_dtype(dtype): return label + 1 elif is_float_dtype(dtype): return np.nextafter(label, np.infty) else: raise TypeError('cannot determine next label for type {typ!r}' .format(typ=type(label)))
Example 25
Project: recruit Author: Frank-qlu File: interval.py License: Apache License 2.0 | 5 votes |
def _get_prev_label(label): dtype = getattr(label, 'dtype', type(label)) if isinstance(label, (Timestamp, Timedelta)): dtype = 'datetime64' if is_datetime_or_timedelta_dtype(dtype) or is_datetime64tz_dtype(dtype): return label - np.timedelta64(1, 'ns') elif is_integer_dtype(dtype): return label - 1 elif is_float_dtype(dtype): return np.nextafter(label, -np.infty) else: raise TypeError('cannot determine next label for type {typ!r}' .format(typ=type(label)))
Example 26
Project: mars Author: mars-project File: nextafter.py License: Apache License 2.0 | 5 votes |
def nextafter(x1, x2, out=None, where=None, **kwargs): """ Return the next floating-point value after x1 towards x2, element-wise. Parameters ---------- x1 : array_like Values to find the next representable value of. x2 : array_like The direction where to look for the next representable value of `x1`. out : Tensor, None, or tuple of Tensor and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated tensor is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional Values of True indicate to calculate the ufunc at that position, values of False indicate to leave the value in the output alone. **kwargs Returns ------- out : array_like The next representable values of `x1` in the direction of `x2`. Examples -------- >>> import mars.tensor as mt >>> eps = mt.finfo(mt.float64).eps >>> (mt.nextafter(1, 2) == eps + 1).execute() True >>> (mt.nextafter([1, 2], [2, 1]) == [eps + 1, 2 - eps]).execute() array([ True, True]) """ op = TensorNextafter(**kwargs) return op(x1, x2, out=out, where=where)
Example 27
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_umath.py License: MIT License | 5 votes |
def test_float_remainder_corner_cases(self): # Check remainder magnitude. for dt in np.typecodes['Float']: b = np.array(1.0, dtype=dt) a = np.nextafter(np.array(0.0, dtype=dt), -b) rem = np.remainder(a, b) assert_(rem <= b, 'dt: %s' % dt) rem = np.remainder(-a, -b) assert_(rem >= -b, 'dt: %s' % dt) # Check nans, inf with warnings.catch_warnings(): warnings.simplefilter('always') warnings.simplefilter('ignore', RuntimeWarning) for dt in np.typecodes['Float']: fone = np.array(1.0, dtype=dt) fzer = np.array(0.0, dtype=dt) finf = np.array(np.inf, dtype=dt) fnan = np.array(np.nan, dtype=dt) rem = np.remainder(fone, fzer) assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem)) # MSVC 2008 returns NaN here, so disable the check. #rem = np.remainder(fone, finf) #assert_(rem == fone, 'dt: %s, rem: %s' % (dt, rem)) rem = np.remainder(fone, fnan) assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem)) rem = np.remainder(finf, fone) assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
Example 28
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_umath.py License: MIT License | 5 votes |
def _test_nextafter(t): one = t(1) two = t(2) zero = t(0) eps = np.finfo(t).eps assert_(np.nextafter(one, two) - one == eps) assert_(np.nextafter(one, zero) - one < 0) assert_(np.isnan(np.nextafter(np.nan, one))) assert_(np.isnan(np.nextafter(one, np.nan))) assert_(np.nextafter(one, one) == one)
Example 29
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_umath.py License: MIT License | 5 votes |
def test_nextafter_vs_spacing(): # XXX: spacing does not handle long double yet for t in [np.float32, np.float64]: for _f in [1, 1e-5, 1000]: f = t(_f) f1 = t(_f + 1) assert_(np.nextafter(f, f1) - f == np.spacing(f))
Example 30
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_scalarmath.py License: MIT License | 5 votes |
def test_float_modulus_corner_cases(self): # Check remainder magnitude. for dt in np.typecodes['Float']: b = np.array(1.0, dtype=dt) a = np.nextafter(np.array(0.0, dtype=dt), -b) rem = self.mod(a, b) assert_(rem <= b, 'dt: %s' % dt) rem = self.mod(-a, -b) assert_(rem >= -b, 'dt: %s' % dt) # Check nans, inf with warnings.catch_warnings(): warnings.simplefilter('always') warnings.simplefilter('ignore', RuntimeWarning) for dt in np.typecodes['Float']: fone = np.array(1.0, dtype=dt) fzer = np.array(0.0, dtype=dt) finf = np.array(np.inf, dtype=dt) fnan = np.array(np.nan, dtype=dt) rem = self.mod(fone, fzer) assert_(np.isnan(rem), 'dt: %s' % dt) # MSVC 2008 returns NaN here, so disable the check. #rem = self.mod(fone, finf) #assert_(rem == fone, 'dt: %s' % dt) rem = self.mod(fone, fnan) assert_(np.isnan(rem), 'dt: %s' % dt) rem = self.mod(finf, fone) assert_(np.isnan(rem), 'dt: %s' % dt)