Python numpy.nextafter() Examples

The following are 30 code examples for showing how to use numpy.nextafter(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.

You may check out the related API usage on the sidebar.

You may also want to check out all available functions/classes of the module numpy , or try the search function .

Example 1
Project: recruit   Author: Frank-qlu   File: test_half.py    License: Apache License 2.0 6 votes vote down vote up
def test_spacing_nextafter(self):
        """Test np.spacing and np.nextafter"""
        # All non-negative finite #'s
        a = np.arange(0x7c00, dtype=uint16)
        hinf = np.array((np.inf,), dtype=float16)
        a_f16 = a.view(dtype=float16)

        assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1])

        assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:])
        assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1])

        # switch to negatives
        a |= 0x8000

        assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1]))
        assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:])

        assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1])
        assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:]) 
Example 2
Project: zhusuan   Author: thu-ml   File: univariate.py    License: MIT License 6 votes vote down vote up
def _sample(self, n_samples):
        # samples must be sampled from (-1, 1) rather than [-1, 1)
        loc, scale = self.loc, self.scale
        if not self.is_reparameterized:
            loc = tf.stop_gradient(loc)
            scale = tf.stop_gradient(scale)
        shape = tf.concat([[n_samples], self.batch_shape], 0)
        uniform_samples = tf.random_uniform(
            shape=shape,
            minval=np.nextafter(self.dtype.as_numpy_dtype(-1.),
                                self.dtype.as_numpy_dtype(0.)),
            maxval=1.,
            dtype=self.dtype)
        samples = loc - scale * tf.sign(uniform_samples) * \
            tf.log1p(-tf.abs(uniform_samples))
        static_n_samples = n_samples if isinstance(n_samples, int) else None
        samples.set_shape(
            tf.TensorShape([static_n_samples]).concatenate(
                self.get_batch_shape()))
        return samples 
Example 3
Project: lambda-packs   Author: ryfeus   File: common.py    License: MIT License 6 votes vote down vote up
def make_strictly_feasible(x, lb, ub, rstep=1e-10):
    """Shift a point to the interior of a feasible region.
    
    Each element of the returned vector is at least at a relative distance
    `rstep` from the closest bound. If ``rstep=0`` then `np.nextafter` is used.
    """
    x_new = x.copy()

    active = find_active_constraints(x, lb, ub, rstep)
    lower_mask = np.equal(active, -1)
    upper_mask = np.equal(active, 1)

    if rstep == 0:
        x_new[lower_mask] = np.nextafter(lb[lower_mask], ub[lower_mask])
        x_new[upper_mask] = np.nextafter(ub[upper_mask], lb[upper_mask])
    else:
        x_new[lower_mask] = (lb[lower_mask] +
                             rstep * np.maximum(1, np.abs(lb[lower_mask])))
        x_new[upper_mask] = (ub[upper_mask] -
                             rstep * np.maximum(1, np.abs(ub[upper_mask])))

    tight_bounds = (x_new < lb) | (x_new > ub)
    x_new[tight_bounds] = 0.5 * (lb[tight_bounds] + ub[tight_bounds])

    return x_new 
Example 4
Project: lambda-packs   Author: ryfeus   File: exponential.py    License: MIT License 6 votes vote down vote up
def _sample_n(self, n, seed=None):
    shape = array_ops.concat([[n], array_ops.shape(self._rate)], 0)
    # Uniform variates must be sampled from the open-interval `(0, 1)` rather
    # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny`
    # because it is the smallest, positive, "normal" number. A "normal" number
    # is such that the mantissa has an implicit leading 1. Normal, positive
    # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In
    # this case, a subnormal number (i.e., np.nextafter) can cause us to sample
    # 0.
    sampled = random_ops.random_uniform(
        shape,
        minval=np.finfo(self.dtype.as_numpy_dtype).tiny,
        maxval=1.,
        seed=seed,
        dtype=self.dtype)
    return -math_ops.log(sampled) / self._rate 
Example 5
Project: lambda-packs   Author: ryfeus   File: laplace.py    License: MIT License 6 votes vote down vote up
def _sample_n(self, n, seed=None):
    shape = array_ops.concat([[n], self.batch_shape_tensor()], 0)
    # Uniform variates must be sampled from the open-interval `(-1, 1)` rather
    # than `[-1, 1)`. In the case of `(0, 1)` we'd use
    # `np.finfo(self.dtype.as_numpy_dtype).tiny` because it is the smallest,
    # positive, "normal" number. However, the concept of subnormality exists
    # only at zero; here we need the smallest usable number larger than -1,
    # i.e., `-1 + eps/2`.
    uniform_samples = random_ops.random_uniform(
        shape=shape,
        minval=np.nextafter(self.dtype.as_numpy_dtype(-1.),
                            self.dtype.as_numpy_dtype(0.)),
        maxval=1.,
        dtype=self.dtype,
        seed=seed)
    return (self.loc - self.scale * math_ops.sign(uniform_samples) *
            math_ops.log1p(-math_ops.abs(uniform_samples))) 
Example 6
Project: lambda-packs   Author: ryfeus   File: logistic.py    License: MIT License 6 votes vote down vote up
def _sample_n(self, n, seed=None):
    # Uniform variates must be sampled from the open-interval `(0, 1)` rather
    # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny`
    # because it is the smallest, positive, "normal" number. A "normal" number
    # is such that the mantissa has an implicit leading 1. Normal, positive
    # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In
    # this case, a subnormal number (i.e., np.nextafter) can cause us to sample
    # 0.
    uniform = random_ops.random_uniform(
        shape=array_ops.concat([[n], self.batch_shape_tensor()], 0),
        minval=np.finfo(self.dtype.as_numpy_dtype).tiny,
        maxval=1.,
        dtype=self.dtype,
        seed=seed)
    sampled = math_ops.log(uniform) - math_ops.log1p(-1. * uniform)
    return sampled * self.scale + self.loc 
Example 7
Project: lambda-packs   Author: ryfeus   File: gumbel.py    License: MIT License 6 votes vote down vote up
def _sample_n(self, n, seed=None):
    # Uniform variates must be sampled from the open-interval `(0, 1)` rather
    # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny`
    # because it is the smallest, positive, "normal" number. A "normal" number
    # is such that the mantissa has an implicit leading 1. Normal, positive
    # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In
    # this case, a subnormal number (i.e., np.nextafter) can cause us to sample
    # 0.
    uniform = random_ops.random_uniform(
        shape=array_ops.concat([[n], self.batch_shape_tensor()], 0),
        minval=np.finfo(self.dtype.as_numpy_dtype).tiny,
        maxval=1.,
        dtype=self.dtype,
        seed=seed)
    sampled = -math_ops.log(-math_ops.log(uniform))
    return sampled * self.scale + self.loc 
Example 8
Project: lambda-packs   Author: ryfeus   File: relaxed_onehot_categorical.py    License: MIT License 6 votes vote down vote up
def _sample_n(self, n, seed=None):
    sample_shape = array_ops.concat([[n], array_ops.shape(self.logits)], 0)
    logits = self.logits * array_ops.ones(sample_shape)
    logits_2d = array_ops.reshape(logits, [-1, self.event_size])
    # Uniform variates must be sampled from the open-interval `(0, 1)` rather
    # than `[0, 1)`. To do so, we use `np.finfo(self.dtype.as_numpy_dtype).tiny`
    # because it is the smallest, positive, "normal" number. A "normal" number
    # is such that the mantissa has an implicit leading 1. Normal, positive
    # numbers x, y have the reasonable property that, `x + y >= max(x, y)`. In
    # this case, a subnormal number (i.e., np.nextafter) can cause us to sample
    # 0.
    uniform = random_ops.random_uniform(
        shape=array_ops.shape(logits_2d),
        minval=np.finfo(self.dtype.as_numpy_dtype).tiny,
        maxval=1.,
        dtype=self.dtype,
        seed=seed)
    gumbel = -math_ops.log(-math_ops.log(uniform))
    noisy_logits = math_ops.div(gumbel + logits_2d, self._temperature_2d)
    samples = nn_ops.log_softmax(noisy_logits)
    ret = array_ops.reshape(samples, sample_shape)
    return ret 
Example 9
Project: auto-alt-text-lambda-api   Author: abhisuri97   File: test_half.py    License: MIT License 6 votes vote down vote up
def test_spacing_nextafter(self):
        """Test np.spacing and np.nextafter"""
        # All non-negative finite #'s
        a = np.arange(0x7c00, dtype=uint16)
        hinf = np.array((np.inf,), dtype=float16)
        a_f16 = a.view(dtype=float16)

        assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1])

        assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:])
        assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1])

        # switch to negatives
        a |= 0x8000

        assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1]))
        assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:])

        assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1])
        assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:]) 
Example 10
Project: auto-alt-text-lambda-api   Author: abhisuri97   File: relaxed_onehot_categorical.py    License: MIT License 6 votes vote down vote up
def _sample_n(self, n, seed=None):
    sample_shape = array_ops.concat(([n], array_ops.shape(self.logits)), 0)
    logits = self.logits * array_ops.ones(sample_shape)
    if logits.get_shape().ndims == 2:
      logits_2d = logits
    else:
      logits_2d = array_ops.reshape(logits, [-1, self.num_classes])
    np_dtype = self.dtype.as_numpy_dtype()
    minval = np.nextafter(np_dtype(0), np_dtype(1))
    uniform = random_ops.random_uniform(shape=array_ops.shape(logits_2d),
                                        minval=minval,
                                        maxval=1,
                                        dtype=self.dtype,
                                        seed=seed)
    gumbel = - math_ops.log(- math_ops.log(uniform))
    noisy_logits = math_ops.div(gumbel + logits_2d, self.temperature)
    samples = nn_ops.log_softmax(noisy_logits)
    ret = array_ops.reshape(samples, sample_shape)
    return ret 
Example 11
Project: vnpy_crypto   Author: birforce   File: test_half.py    License: MIT License 6 votes vote down vote up
def test_spacing_nextafter(self):
        """Test np.spacing and np.nextafter"""
        # All non-negative finite #'s
        a = np.arange(0x7c00, dtype=uint16)
        hinf = np.array((np.inf,), dtype=float16)
        a_f16 = a.view(dtype=float16)

        assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1])

        assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:])
        assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1])

        # switch to negatives
        a |= 0x8000

        assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1]))
        assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:])

        assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1])
        assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:]) 
Example 12
Project: vnpy_crypto   Author: birforce   File: count_model.py    License: MIT License 6 votes vote down vote up
def _predict_prob(self, params, exog, exog_infl, exposure, offset):
        params_infl = params[:self.k_inflate]
        params_main = params[self.k_inflate:]

        p = self.model_main.parameterization
        counts = np.atleast_2d(np.arange(0, np.max(self.endog)+1))

        if len(exog_infl.shape) < 2:
            transform = True
            w = np.atleast_2d(
                self.model_infl.predict(params_infl, exog_infl))[:, None]
        else:
            transform = False
            w = self.model_infl.predict(params_infl, exog_infl)[:, None]

        w[w == 1.] = np.nextafter(1, 0)
        mu = self.model_main.predict(params_main, exog,
            exposure=exposure, offset=offset)[:, None]
        result = self.distribution.pmf(counts, mu, params_main[-1], p, w)
        return result[0] if transform else result 
Example 13
Project: Computable   Author: ktraunmueller   File: test_half.py    License: MIT License 6 votes vote down vote up
def test_spacing_nextafter(self):
        """Test np.spacing and np.nextafter"""
        # All non-negative finite #'s
        a = np.arange(0x7c00, dtype=uint16)
        hinf = np.array((np.inf,), dtype=float16)
        a_f16 = a.view(dtype=float16)

        assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1])

        assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:])
        assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1])

        # switch to negatives
        a |= 0x8000

        assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1]))
        assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:])

        assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1])
        assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:]) 
Example 14
Project: Mastering-Elasticsearch-7.0   Author: PacktPublishing   File: test_half.py    License: MIT License 6 votes vote down vote up
def test_spacing_nextafter(self):
        """Test np.spacing and np.nextafter"""
        # All non-negative finite #'s
        a = np.arange(0x7c00, dtype=uint16)
        hinf = np.array((np.inf,), dtype=float16)
        a_f16 = a.view(dtype=float16)

        assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1])

        assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:])
        assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1])

        # switch to negatives
        a |= 0x8000

        assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1]))
        assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:])

        assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1])
        assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:]) 
Example 15
Project: GraphicDesignPatternByPython   Author: Relph1119   File: test_half.py    License: MIT License 6 votes vote down vote up
def test_spacing_nextafter(self):
        """Test np.spacing and np.nextafter"""
        # All non-negative finite #'s
        a = np.arange(0x7c00, dtype=uint16)
        hinf = np.array((np.inf,), dtype=float16)
        a_f16 = a.view(dtype=float16)

        assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1])

        assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:])
        assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1])

        # switch to negatives
        a |= 0x8000

        assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1]))
        assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:])

        assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1])
        assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:]) 
Example 16
Project: GraphicDesignPatternByPython   Author: Relph1119   File: test_mpmath.py    License: MIT License 6 votes vote down vote up
def test_wrightomega_branch():
    x = -np.logspace(10, 0, 25)
    picut_above = [np.nextafter(np.pi, np.inf)]
    picut_below = [np.nextafter(np.pi, -np.inf)]
    npicut_above = [np.nextafter(-np.pi, np.inf)]
    npicut_below = [np.nextafter(-np.pi, -np.inf)]
    for i in range(50):
        picut_above.append(np.nextafter(picut_above[-1], np.inf))
        picut_below.append(np.nextafter(picut_below[-1], -np.inf))
        npicut_above.append(np.nextafter(npicut_above[-1], np.inf))
        npicut_below.append(np.nextafter(npicut_below[-1], -np.inf))
    y = np.hstack((picut_above, picut_below, npicut_above, npicut_below))
    x, y = np.meshgrid(x, y)
    z = (x + 1j*y).flatten()

    dataset = []
    for z0 in z:
        dataset.append((z0, complex(_mpmath_wrightomega(z0, 25))))
    dataset = np.asarray(dataset)

    FuncData(sc.wrightomega, dataset, 0, 1, rtol=1e-8).check() 
Example 17
def test_spacing_nextafter(self):
        """Test np.spacing and np.nextafter"""
        # All non-negative finite #'s
        a = np.arange(0x7c00, dtype=uint16)
        hinf = np.array((np.inf,), dtype=float16)
        a_f16 = a.view(dtype=float16)

        assert_equal(np.spacing(a_f16[:-1]), a_f16[1:]-a_f16[:-1])

        assert_equal(np.nextafter(a_f16[:-1], hinf), a_f16[1:])
        assert_equal(np.nextafter(a_f16[0], -hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], -hinf), a_f16[:-1])

        # switch to negatives
        a |= 0x8000

        assert_equal(np.spacing(a_f16[0]), np.spacing(a_f16[1]))
        assert_equal(np.spacing(a_f16[1:]), a_f16[:-1]-a_f16[1:])

        assert_equal(np.nextafter(a_f16[0], hinf), -a_f16[1])
        assert_equal(np.nextafter(a_f16[1:], hinf), a_f16[:-1])
        assert_equal(np.nextafter(a_f16[:-1], -hinf), a_f16[1:]) 
Example 18
Project: recruit   Author: Frank-qlu   File: test_random.py    License: Apache License 2.0 5 votes vote down vote up
def test_uniform_range_bounds(self):
        fmin = np.finfo('float').min
        fmax = np.finfo('float').max

        func = np.random.uniform
        assert_raises(OverflowError, func, -np.inf, 0)
        assert_raises(OverflowError, func,  0,      np.inf)
        assert_raises(OverflowError, func,  fmin,   fmax)
        assert_raises(OverflowError, func, [-np.inf], [0])
        assert_raises(OverflowError, func, [0], [np.inf])

        # (fmax / 1e17) - fmin is within range, so this should not throw
        # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX >
        # DBL_MAX by increasing fmin a bit
        np.random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17) 
Example 19
Project: recruit   Author: Frank-qlu   File: test_umath.py    License: Apache License 2.0 5 votes vote down vote up
def test_float_remainder_corner_cases(self):
        # Check remainder magnitude.
        for dt in np.typecodes['Float']:
            b = np.array(1.0, dtype=dt)
            a = np.nextafter(np.array(0.0, dtype=dt), -b)
            rem = np.remainder(a, b)
            assert_(rem <= b, 'dt: %s' % dt)
            rem = np.remainder(-a, -b)
            assert_(rem >= -b, 'dt: %s' % dt)

        # Check nans, inf
        with suppress_warnings() as sup:
            sup.filter(RuntimeWarning, "invalid value encountered in remainder")
            for dt in np.typecodes['Float']:
                fone = np.array(1.0, dtype=dt)
                fzer = np.array(0.0, dtype=dt)
                finf = np.array(np.inf, dtype=dt)
                fnan = np.array(np.nan, dtype=dt)
                rem = np.remainder(fone, fzer)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
                # MSVC 2008 returns NaN here, so disable the check.
                #rem = np.remainder(fone, finf)
                #assert_(rem == fone, 'dt: %s, rem: %s' % (dt, rem))
                rem = np.remainder(fone, fnan)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
                rem = np.remainder(finf, fone)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem)) 
Example 20
Project: recruit   Author: Frank-qlu   File: test_umath.py    License: Apache License 2.0 5 votes vote down vote up
def _test_nextafter(t):
    one = t(1)
    two = t(2)
    zero = t(0)
    eps = np.finfo(t).eps
    assert_(np.nextafter(one, two) - one == eps)
    assert_(np.nextafter(one, zero) - one < 0)
    assert_(np.isnan(np.nextafter(np.nan, one)))
    assert_(np.isnan(np.nextafter(one, np.nan)))
    assert_(np.nextafter(one, one) == one) 
Example 21
Project: recruit   Author: Frank-qlu   File: test_umath.py    License: Apache License 2.0 5 votes vote down vote up
def test_nextafter_vs_spacing():
    # XXX: spacing does not handle long double yet
    for t in [np.float32, np.float64]:
        for _f in [1, 1e-5, 1000]:
            f = t(_f)
            f1 = t(_f + 1)
            assert_(np.nextafter(f, f1) - f == np.spacing(f)) 
Example 22
Project: recruit   Author: Frank-qlu   File: test_scalarmath.py    License: Apache License 2.0 5 votes vote down vote up
def test_float_modulus_corner_cases(self):
        # Check remainder magnitude.
        for dt in np.typecodes['Float']:
            b = np.array(1.0, dtype=dt)
            a = np.nextafter(np.array(0.0, dtype=dt), -b)
            rem = operator.mod(a, b)
            assert_(rem <= b, 'dt: %s' % dt)
            rem = operator.mod(-a, -b)
            assert_(rem >= -b, 'dt: %s' % dt)

        # Check nans, inf
        with suppress_warnings() as sup:
            sup.filter(RuntimeWarning, "invalid value encountered in remainder")
            for dt in np.typecodes['Float']:
                fone = np.array(1.0, dtype=dt)
                fzer = np.array(0.0, dtype=dt)
                finf = np.array(np.inf, dtype=dt)
                fnan = np.array(np.nan, dtype=dt)
                rem = operator.mod(fone, fzer)
                assert_(np.isnan(rem), 'dt: %s' % dt)
                # MSVC 2008 returns NaN here, so disable the check.
                #rem = operator.mod(fone, finf)
                #assert_(rem == fone, 'dt: %s' % dt)
                rem = operator.mod(fone, fnan)
                assert_(np.isnan(rem), 'dt: %s' % dt)
                rem = operator.mod(finf, fone)
                assert_(np.isnan(rem), 'dt: %s' % dt) 
Example 23
Project: recruit   Author: Frank-qlu   File: test_analytics.py    License: Apache License 2.0 5 votes vote down vote up
def test_boundary_float(self, nselect_method, float_dtype):
        # GH 21426
        dtype_info = np.finfo(float_dtype)
        min_val, max_val = dtype_info.min, dtype_info.max
        min_2nd, max_2nd = np.nextafter(
            [min_val, max_val], 0, dtype=float_dtype)
        vals = [min_val, min_2nd, max_2nd, max_val]
        assert_check_nselect_boundary(vals, float_dtype, nselect_method) 
Example 24
Project: recruit   Author: Frank-qlu   File: interval.py    License: Apache License 2.0 5 votes vote down vote up
def _get_next_label(label):
    dtype = getattr(label, 'dtype', type(label))
    if isinstance(label, (Timestamp, Timedelta)):
        dtype = 'datetime64'
    if is_datetime_or_timedelta_dtype(dtype) or is_datetime64tz_dtype(dtype):
        return label + np.timedelta64(1, 'ns')
    elif is_integer_dtype(dtype):
        return label + 1
    elif is_float_dtype(dtype):
        return np.nextafter(label, np.infty)
    else:
        raise TypeError('cannot determine next label for type {typ!r}'
                        .format(typ=type(label))) 
Example 25
Project: recruit   Author: Frank-qlu   File: interval.py    License: Apache License 2.0 5 votes vote down vote up
def _get_prev_label(label):
    dtype = getattr(label, 'dtype', type(label))
    if isinstance(label, (Timestamp, Timedelta)):
        dtype = 'datetime64'
    if is_datetime_or_timedelta_dtype(dtype) or is_datetime64tz_dtype(dtype):
        return label - np.timedelta64(1, 'ns')
    elif is_integer_dtype(dtype):
        return label - 1
    elif is_float_dtype(dtype):
        return np.nextafter(label, -np.infty)
    else:
        raise TypeError('cannot determine next label for type {typ!r}'
                        .format(typ=type(label))) 
Example 26
Project: mars   Author: mars-project   File: nextafter.py    License: Apache License 2.0 5 votes vote down vote up
def nextafter(x1, x2, out=None, where=None, **kwargs):
    """
    Return the next floating-point value after x1 towards x2, element-wise.

    Parameters
    ----------
    x1 : array_like
        Values to find the next representable value of.
    x2 : array_like
        The direction where to look for the next representable value of `x1`.
    out : Tensor, None, or tuple of Tensor and None, optional
        A location into which the result is stored. If provided, it must have
        a shape that the inputs broadcast to. If not provided or `None`,
        a freshly-allocated tensor is returned. A tuple (possible only as a
        keyword argument) must have length equal to the number of outputs.
    where : array_like, optional
        Values of True indicate to calculate the ufunc at that position, values
        of False indicate to leave the value in the output alone.
    **kwargs

    Returns
    -------
    out : array_like
        The next representable values of `x1` in the direction of `x2`.

    Examples
    --------
    >>> import mars.tensor as mt

    >>> eps = mt.finfo(mt.float64).eps
    >>> (mt.nextafter(1, 2) == eps + 1).execute()
    True
    >>> (mt.nextafter([1, 2], [2, 1]) == [eps + 1, 2 - eps]).execute()
    array([ True,  True])
    """
    op = TensorNextafter(**kwargs)
    return op(x1, x2, out=out, where=where) 
Example 27
Project: auto-alt-text-lambda-api   Author: abhisuri97   File: test_umath.py    License: MIT License 5 votes vote down vote up
def test_float_remainder_corner_cases(self):
        # Check remainder magnitude.
        for dt in np.typecodes['Float']:
            b = np.array(1.0, dtype=dt)
            a = np.nextafter(np.array(0.0, dtype=dt), -b)
            rem = np.remainder(a, b)
            assert_(rem <= b, 'dt: %s' % dt)
            rem = np.remainder(-a, -b)
            assert_(rem >= -b, 'dt: %s' % dt)

        # Check nans, inf
        with warnings.catch_warnings():
            warnings.simplefilter('always')
            warnings.simplefilter('ignore', RuntimeWarning)
            for dt in np.typecodes['Float']:
                fone = np.array(1.0, dtype=dt)
                fzer = np.array(0.0, dtype=dt)
                finf = np.array(np.inf, dtype=dt)
                fnan = np.array(np.nan, dtype=dt)
                rem = np.remainder(fone, fzer)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
                # MSVC 2008 returns NaN here, so disable the check.
                #rem = np.remainder(fone, finf)
                #assert_(rem == fone, 'dt: %s, rem: %s' % (dt, rem))
                rem = np.remainder(fone, fnan)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
                rem = np.remainder(finf, fone)
                assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem)) 
Example 28
Project: auto-alt-text-lambda-api   Author: abhisuri97   File: test_umath.py    License: MIT License 5 votes vote down vote up
def _test_nextafter(t):
    one = t(1)
    two = t(2)
    zero = t(0)
    eps = np.finfo(t).eps
    assert_(np.nextafter(one, two) - one == eps)
    assert_(np.nextafter(one, zero) - one < 0)
    assert_(np.isnan(np.nextafter(np.nan, one)))
    assert_(np.isnan(np.nextafter(one, np.nan)))
    assert_(np.nextafter(one, one) == one) 
Example 29
Project: auto-alt-text-lambda-api   Author: abhisuri97   File: test_umath.py    License: MIT License 5 votes vote down vote up
def test_nextafter_vs_spacing():
    # XXX: spacing does not handle long double yet
    for t in [np.float32, np.float64]:
        for _f in [1, 1e-5, 1000]:
            f = t(_f)
            f1 = t(_f + 1)
            assert_(np.nextafter(f, f1) - f == np.spacing(f)) 
Example 30
Project: auto-alt-text-lambda-api   Author: abhisuri97   File: test_scalarmath.py    License: MIT License 5 votes vote down vote up
def test_float_modulus_corner_cases(self):
        # Check remainder magnitude.
        for dt in np.typecodes['Float']:
            b = np.array(1.0, dtype=dt)
            a = np.nextafter(np.array(0.0, dtype=dt), -b)
            rem = self.mod(a, b)
            assert_(rem <= b, 'dt: %s' % dt)
            rem = self.mod(-a, -b)
            assert_(rem >= -b, 'dt: %s' % dt)

        # Check nans, inf
        with warnings.catch_warnings():
            warnings.simplefilter('always')
            warnings.simplefilter('ignore', RuntimeWarning)
            for dt in np.typecodes['Float']:
                fone = np.array(1.0, dtype=dt)
                fzer = np.array(0.0, dtype=dt)
                finf = np.array(np.inf, dtype=dt)
                fnan = np.array(np.nan, dtype=dt)
                rem = self.mod(fone, fzer)
                assert_(np.isnan(rem), 'dt: %s' % dt)
                # MSVC 2008 returns NaN here, so disable the check.
                #rem = self.mod(fone, finf)
                #assert_(rem == fone, 'dt: %s' % dt)
                rem = self.mod(fone, fnan)
                assert_(np.isnan(rem), 'dt: %s' % dt)
                rem = self.mod(finf, fone)
                assert_(np.isnan(rem), 'dt: %s' % dt)