Python numpy.ulonglong() Examples
The following are 18 code examples for showing how to use numpy.ulonglong(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: mars Author: mars-project File: histogram.py License: Apache License 2.0 | 6 votes |
def _unsigned_subtract(a, b): """ Subtract two values where a >= b, and produce an unsigned result This is needed when finding the difference between the upper and lower bound of an int16 histogram """ # coerce to a single type signed_to_unsigned = { np.byte: np.ubyte, np.short: np.ushort, np.intc: np.uintc, np.int_: np.uint, np.longlong: np.ulonglong } dt = np.result_type(a, b) try: dt = signed_to_unsigned[dt.type] except KeyError: # pragma: no cover return np.subtract(a, b, dtype=dt) else: # we know the inputs are integers, and we are deliberately casting # signed to unsigned return np.subtract(a, b, casting='unsafe', dtype=dt)
Example 2
Project: lambda-packs Author: ryfeus File: histograms.py License: MIT License | 6 votes |
def _unsigned_subtract(a, b): """ Subtract two values where a >= b, and produce an unsigned result This is needed when finding the difference between the upper and lower bound of an int16 histogram """ # coerce to a single type signed_to_unsigned = { np.byte: np.ubyte, np.short: np.ushort, np.intc: np.uintc, np.int_: np.uint, np.longlong: np.ulonglong } dt = np.result_type(a, b) try: dt = signed_to_unsigned[dt.type] except KeyError: return np.subtract(a, b, dtype=dt) else: # we know the inputs are integers, and we are deliberately casting # signed to unsigned return np.subtract(a, b, casting='unsafe', dtype=dt)
Example 3
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: histograms.py License: MIT License | 6 votes |
def _unsigned_subtract(a, b): """ Subtract two values where a >= b, and produce an unsigned result This is needed when finding the difference between the upper and lower bound of an int16 histogram """ # coerce to a single type signed_to_unsigned = { np.byte: np.ubyte, np.short: np.ushort, np.intc: np.uintc, np.int_: np.uint, np.longlong: np.ulonglong } dt = np.result_type(a, b) try: dt = signed_to_unsigned[dt.type] except KeyError: return np.subtract(a, b, dtype=dt) else: # we know the inputs are integers, and we are deliberately casting # signed to unsigned return np.subtract(a, b, casting='unsafe', dtype=dt)
Example 4
Project: GraphicDesignPatternByPython Author: Relph1119 File: histograms.py License: MIT License | 6 votes |
def _unsigned_subtract(a, b): """ Subtract two values where a >= b, and produce an unsigned result This is needed when finding the difference between the upper and lower bound of an int16 histogram """ # coerce to a single type signed_to_unsigned = { np.byte: np.ubyte, np.short: np.ushort, np.intc: np.uintc, np.int_: np.uint, np.longlong: np.ulonglong } dt = np.result_type(a, b) try: dt = signed_to_unsigned[dt.type] except KeyError: return np.subtract(a, b, dtype=dt) else: # we know the inputs are integers, and we are deliberately casting # signed to unsigned return np.subtract(a, b, casting='unsafe', dtype=dt)
Example 5
Project: predictive-maintenance-using-machine-learning Author: awslabs File: histograms.py License: Apache License 2.0 | 6 votes |
def _unsigned_subtract(a, b): """ Subtract two values where a >= b, and produce an unsigned result This is needed when finding the difference between the upper and lower bound of an int16 histogram """ # coerce to a single type signed_to_unsigned = { np.byte: np.ubyte, np.short: np.ushort, np.intc: np.uintc, np.int_: np.uint, np.longlong: np.ulonglong } dt = np.result_type(a, b) try: dt = signed_to_unsigned[dt.type] except KeyError: return np.subtract(a, b, dtype=dt) else: # we know the inputs are integers, and we are deliberately casting # signed to unsigned return np.subtract(a, b, casting='unsafe', dtype=dt)
Example 6
Project: pySINDy Author: luckystarufo File: histograms.py License: MIT License | 6 votes |
def _unsigned_subtract(a, b): """ Subtract two values where a >= b, and produce an unsigned result This is needed when finding the difference between the upper and lower bound of an int16 histogram """ # coerce to a single type signed_to_unsigned = { np.byte: np.ubyte, np.short: np.ushort, np.intc: np.uintc, np.int_: np.uint, np.longlong: np.ulonglong } dt = np.result_type(a, b) try: dt = signed_to_unsigned[dt.type] except KeyError: return np.subtract(a, b, dtype=dt) else: # we know the inputs are integers, and we are deliberately casting # signed to unsigned return np.subtract(a, b, casting='unsafe', dtype=dt)
Example 7
Project: coffeegrindsize Author: jgagneastro File: histograms.py License: MIT License | 6 votes |
def _unsigned_subtract(a, b): """ Subtract two values where a >= b, and produce an unsigned result This is needed when finding the difference between the upper and lower bound of an int16 histogram """ # coerce to a single type signed_to_unsigned = { np.byte: np.ubyte, np.short: np.ushort, np.intc: np.uintc, np.int_: np.uint, np.longlong: np.ulonglong } dt = np.result_type(a, b) try: dt = signed_to_unsigned[dt.type] except KeyError: return np.subtract(a, b, dtype=dt) else: # we know the inputs are integers, and we are deliberately casting # signed to unsigned return np.subtract(a, b, casting='unsafe', dtype=dt)
Example 8
Project: Carnets Author: holzschu File: histograms.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def _unsigned_subtract(a, b): """ Subtract two values where a >= b, and produce an unsigned result This is needed when finding the difference between the upper and lower bound of an int16 histogram """ # coerce to a single type signed_to_unsigned = { np.byte: np.ubyte, np.short: np.ushort, np.intc: np.uintc, np.int_: np.uint, np.longlong: np.ulonglong } dt = np.result_type(a, b) try: dt = signed_to_unsigned[dt.type] except KeyError: return np.subtract(a, b, dtype=dt) else: # we know the inputs are integers, and we are deliberately casting # signed to unsigned return np.subtract(a, b, casting='unsafe', dtype=dt)
Example 9
Project: Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda Author: PacktPublishing File: histograms.py License: MIT License | 6 votes |
def _unsigned_subtract(a, b): """ Subtract two values where a >= b, and produce an unsigned result This is needed when finding the difference between the upper and lower bound of an int16 histogram """ # coerce to a single type signed_to_unsigned = { np.byte: np.ubyte, np.short: np.ushort, np.intc: np.uintc, np.int_: np.uint, np.longlong: np.ulonglong } dt = np.result_type(a, b) try: dt = signed_to_unsigned[dt.type] except KeyError: return np.subtract(a, b, dtype=dt) else: # we know the inputs are integers, and we are deliberately casting # signed to unsigned return np.subtract(a, b, casting='unsafe', dtype=dt)
Example 10
Project: twitter-stock-recommendation Author: alvarobartt File: histograms.py License: MIT License | 6 votes |
def _unsigned_subtract(a, b): """ Subtract two values where a >= b, and produce an unsigned result This is needed when finding the difference between the upper and lower bound of an int16 histogram """ # coerce to a single type signed_to_unsigned = { np.byte: np.ubyte, np.short: np.ushort, np.intc: np.uintc, np.int_: np.uint, np.longlong: np.ulonglong } dt = np.result_type(a, b) try: dt = signed_to_unsigned[dt.type] except KeyError: return np.subtract(a, b, dtype=dt) else: # we know the inputs are integers, and we are deliberately casting # signed to unsigned return np.subtract(a, b, casting='unsafe', dtype=dt)
Example 11
Project: recruit Author: Frank-qlu File: histograms.py License: Apache License 2.0 | 5 votes |
def _unsigned_subtract(a, b): """ Subtract two values where a >= b, and produce an unsigned result This is needed when finding the difference between the upper and lower bound of an int16 histogram """ # coerce to a single type signed_to_unsigned = { np.byte: np.ubyte, np.short: np.ushort, np.intc: np.uintc, np.int_: np.uint, np.longlong: np.ulonglong } dt = np.result_type(a, b) try: dt = signed_to_unsigned[dt.type] except KeyError: return np.subtract(a, b, dtype=dt) else: # we know the inputs are integers, and we are deliberately casting # signed to unsigned return np.subtract(a, b, casting='unsafe', dtype=dt)
Example 12
Project: chainer Author: chainer File: scatter_add.py License: MIT License | 5 votes |
def scatter_add(a, slices, b): """Adds given values to specified elements of an array. This function adds ``b`` to the specified elements of the copy of ``a``, and returns the copy. The value of the original ``a`` is not changed. Args: a (:class:`~chainer.Variable` or :ref:`ndarray`): A variable. slices (int, slice, Ellipsis, None, integer array-like, boolean\ array-like or tuple of them): It is an integer, a slice, an ellipsis, a numpy.newaxis, an integer array-like, a boolean array-like or tuple of them. b (:class:`~chainer.Variable` or :ref:`ndarray`): A variable that is scatter added to ``a``. Its shape has to equal ``a[slices]`` because broadcasting of variables is not supported. Returns: A :class:`~chainer.Variable` object which is the result of scatter addition. .. note:: It only supports types that are supported by CUDA's atomicAdd when an integer array is included in ``slices``. The supported types are ``numpy.float32``, ``numpy.int32``, ``numpy.uint32``, ``numpy.uint64`` and ``numpy.ulonglong``. .. note:: It does not support ``slices`` that contains multiple boolean arrays. .. seealso:: :func:`numpy.add.at` and :func:`cupyx.scatter_add`. """ y, = ScatterAdd(slices).apply((a, b)) return y
Example 13
Project: eliot Author: itamarst File: test_json.py License: Apache License 2.0 | 5 votes |
def test_numpy(self): """NumPy objects get serialized to readable JSON.""" l = [ np.float32(12.5), np.float64(2.0), np.float16(0.5), np.bool(True), np.bool(False), np.bool_(True), np.unicode_("hello"), np.byte(12), np.short(12), np.intc(-13), np.int_(0), np.longlong(100), np.intp(7), np.ubyte(12), np.ushort(12), np.uintc(13), np.ulonglong(100), np.uintp(7), np.int8(1), np.int16(3), np.int32(4), np.int64(5), np.uint8(1), np.uint16(3), np.uint32(4), np.uint64(5), ] l2 = [l, np.array([1, 2, 3])] roundtripped = loads(dumps(l2, cls=EliotJSONEncoder)) self.assertEqual([l, [1, 2, 3]], roundtripped)
Example 14
Project: hope Author: jakeret File: test_return.py License: GNU General Public License v3.0 | 5 votes |
def test_return_arrcrt_zeros(a, b, c): d = np.zeros(3) d[:] = 2 d[0] = 1 return d # TODO: fix for np.ulonglong, np.longlong and uint64
Example 15
Project: hope Author: jakeret File: test_return.py License: GNU General Public License v3.0 | 5 votes |
def test_return_scalar(dtype): def fkt(a): return a ao, ah = random(dtype, []) ro, rh = fkt(ao), hope.jit(fkt)(ah) assert check(ro, rh) # TODO: fix for np.ulonglong, np.longlong and uint64
Example 16
Project: hope Author: jakeret File: test_return.py License: GNU General Public License v3.0 | 5 votes |
def test_return_arrayscalar(dtype): def fkt(a): return a[2] ao, ah = random(dtype, [10]) ro, rh = fkt(ao), hope.jit(fkt)(ah) assert check(ro, rh) # TODO: fix for np.ulonglong, np.longlong and uint64
Example 17
Project: hope Author: jakeret File: test_op_pow.py License: GNU General Public License v3.0 | 5 votes |
def test_augmented_pow(dtype, shape): def fkt(a, c): c[:] **= a hfkt = hope.jit(fkt) (ao, ah), (co, ch) = random(np.uint8, shape), random(dtype, shape) if np.count_nonzero(ao == 0) > 0: ao[ao == 0] += 1 if np.count_nonzero(ah == 0) > 0: ah[ah == 0] += 1 if np.count_nonzero(co == 0) > 0: co[co == 0] += 1 if np.count_nonzero(ch == 0) > 0: ch[ch == 0] += 1 co, ch = np.copysign(np.sqrt(np.abs(co)), co).astype(dtype), np.copysign(np.sqrt(np.abs(ch)), ch).astype(dtype) ao, ah = np.power(np.abs(ao).astype(np.float64), 1. / co.astype(np.float64)).astype(dtype), np.power(np.abs(ah).astype(np.float64), 1. / ch.astype(np.float64)).astype(dtype) fkt(ao, co), hfkt(ah, ch) assert check(co, ch) # TODO: fix for np.ulonglong and uint64, std::power produce different results
Example 18
Project: chainer Author: chainer File: get_item.py License: MIT License | 4 votes |
def get_item(x, slices): """Extract elements from array with specified shape, axes and offsets. Args: x (:class:`~chainer.Variable` or :ref:`ndarray`): A variable to be sliced. slices (int, slice, Ellipsis, None, integer array-like, boolean\ array-like or tuple of them): An object to specify the selection of elements. Returns: A :class:`~chainer.Variable` object which contains sliced array of ``x``. .. note:: It only supports types that are supported by CUDA's atomicAdd when an integer array is included in ``slices``. The supported types are ``numpy.float32``, ``numpy.int32``, ``numpy.uint32``, ``numpy.uint64`` and ``numpy.ulonglong``. .. note:: It does not support ``slices`` that contains multiple boolean arrays. .. note:: See NumPy documentation for details of `indexing <https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html>`_. .. admonition:: Example >>> x = np.arange(12).reshape((2, 2, 3)) >>> x array([[[ 0, 1, 2], [ 3, 4, 5]], <BLANKLINE> [[ 6, 7, 8], [ 9, 10, 11]]]) >>> F.get_item(x, 0) variable([[0, 1, 2], [3, 4, 5]]) >>> F.get_item(x, (0, 0, slice(0, 2, 1))) # equals x[0, 0, 0:2:1] variable([0, 1]) >>> F.get_item(x, (Ellipsis, 2)) # equals x[..., 2] variable([[ 2, 5], [ 8, 11]]) >>> F.get_item(x, (1, np.newaxis, 1, 0)) # equals x[1, None, 1, 0] variable([9]) """ return GetItem(slices).apply((x,))[0]