Python numpy.errstate() Examples
The following are 30 code examples for showing how to use numpy.errstate(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: pyscf Author: pyscf File: thermo.py License: Apache License 2.0 | 6 votes |
def rotation_const(mass, atom_coords, unit='GHz'): '''Rotational constants to characterize rotational spectra Kwargs: unit (string) : One of GHz, wavenumber ''' mass_center = numpy.einsum('z,zr->r', mass, atom_coords) / mass.sum() r = atom_coords - mass_center im = numpy.einsum('z,zr,zs->rs', mass, r, r) im = numpy.eye(3) * im.trace() - im e = numpy.sort(numpy.linalg.eigvalsh(im)) unit_im = nist.ATOMIC_MASS * (nist.BOHR_SI)**2 unit_hz = nist.HBAR / (4 * numpy.pi * unit_im) with numpy.errstate(divide='ignore'): if unit.lower() == 'ghz': e = unit_hz / e * 1e-9 elif unit.lower() == 'wavenumber': e = unit_hz / e / nist.LIGHT_SPEED_SI * 1e-2 else: raise RuntimeError('Unsupported unit ' + unit) return e
Example 2
Project: python-control Author: python-control File: grid.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def __call__(self, transform_xy, x1, y1, x2, y2): x_, y_ = np.linspace(x1, x2, self.nx), np.linspace(y1, y2, self.ny) x, y = np.meshgrid(x_, y_) lon, lat = transform_xy(np.ravel(x), np.ravel(y)) with np.errstate(invalid='ignore'): if self.lon_cycle is not None: lon0 = np.nanmin(lon) # Changed from 180 to 360 to be able to span only # 90-270 (left hand side) lon -= 360. * ((lon - lon0) > 360.) if self.lat_cycle is not None: lat0 = np.nanmin(lat) # Changed from 180 to 360 to be able to span only # 90-270 (left hand side) lat -= 360. * ((lat - lat0) > 360.) lon_min, lon_max = np.nanmin(lon), np.nanmax(lon) lat_min, lat_max = np.nanmin(lat), np.nanmax(lat) lon_min, lon_max, lat_min, lat_max = \ self._adjust_extremes(lon_min, lon_max, lat_min, lat_max) return lon_min, lon_max, lat_min, lat_max
Example 3
Project: quail Author: ContextLab File: helpers.py License: MIT License | 6 votes |
def r2z(r): """ Function that calculates the Fisher z-transformation Parameters ---------- r : int or ndarray Correlation value Returns ---------- result : int or ndarray Fishers z transformed correlation value """ with np.errstate(invalid='ignore', divide='ignore'): return 0.5 * (np.log(1 + r) - np.log(1 - r))
Example 4
Project: quail Author: ContextLab File: helpers.py License: MIT License | 6 votes |
def z2r(z): """ Function that calculates the inverse Fisher z-transformation Parameters ---------- z : int or ndarray Fishers z transformed correlation value Returns ---------- result : int or ndarray Correlation value """ with np.errstate(invalid='ignore', divide='ignore'): return (np.exp(2 * z) - 1) / (np.exp(2 * z) + 1)
Example 5
Project: recruit Author: Frank-qlu File: test_type_check.py License: Apache License 2.0 | 6 votes |
def test_generic(self): with np.errstate(divide='ignore', invalid='ignore'): vals = nan_to_num(np.array((-1., 0, 1))/0.) assert_all(vals[0] < -1e10) and assert_all(np.isfinite(vals[0])) assert_(vals[1] == 0) assert_all(vals[2] > 1e10) and assert_all(np.isfinite(vals[2])) assert_equal(type(vals), np.ndarray) # perform the same test but in-place with np.errstate(divide='ignore', invalid='ignore'): vals = np.array((-1., 0, 1))/0. result = nan_to_num(vals, copy=False) assert_(result is vals) assert_all(vals[0] < -1e10) and assert_all(np.isfinite(vals[0])) assert_(vals[1] == 0) assert_all(vals[2] > 1e10) and assert_all(np.isfinite(vals[2])) assert_equal(type(vals), np.ndarray)
Example 6
Project: recruit Author: Frank-qlu File: utils.py License: Apache License 2.0 | 6 votes |
def gisinf(x): """like isinf, but always raise an error if type not supported instead of returning a TypeError object. Notes ----- isinf and other ufunc sometimes return a NotImplementedType object instead of raising any exception. This function is a wrapper to make sure an exception is always raised. This should be removed once this problem is solved at the Ufunc level.""" from numpy.core import isinf, errstate with errstate(invalid='ignore'): st = isinf(x) if isinstance(st, type(NotImplemented)): raise TypeError("isinf not supported for this type") return st
Example 7
Project: recruit Author: Frank-qlu File: test_numeric.py License: Apache License 2.0 | 6 votes |
def test_warnings(self): # test warning code path with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") with np.errstate(all="warn"): np.divide(1, 0.) assert_equal(len(w), 1) assert_("divide by zero" in str(w[0].message)) np.array(1e300) * np.array(1e300) assert_equal(len(w), 2) assert_("overflow" in str(w[-1].message)) np.array(np.inf) - np.array(np.inf) assert_equal(len(w), 3) assert_("invalid value" in str(w[-1].message)) np.array(1e-300) * np.array(1e-300) assert_equal(len(w), 4) assert_("underflow" in str(w[-1].message))
Example 8
Project: recruit Author: Frank-qlu File: test_getlimits.py License: Apache License 2.0 | 6 votes |
def test_known_types(): # Test we are correctly compiling parameters for known types for ftype, ma_like in ((np.float16, _float_ma[16]), (np.float32, _float_ma[32]), (np.float64, _float_ma[64])): assert_ma_equal(_discovered_machar(ftype), ma_like) # Suppress warning for broken discovery of double double on PPC with np.errstate(all='ignore'): ld_ma = _discovered_machar(np.longdouble) bytes = np.dtype(np.longdouble).itemsize if (ld_ma.it, ld_ma.maxexp) == (63, 16384) and bytes in (12, 16): # 80-bit extended precision assert_ma_equal(ld_ma, _float_ma[80]) elif (ld_ma.it, ld_ma.maxexp) == (112, 16384) and bytes == 16: # IEE 754 128-bit assert_ma_equal(ld_ma, _float_ma[128])
Example 9
Project: recruit Author: Frank-qlu File: test_umath.py License: Apache License 2.0 | 6 votes |
def test_complex_nan_comparisons(): nans = [complex(np.nan, 0), complex(0, np.nan), complex(np.nan, np.nan)] fins = [complex(1, 0), complex(-1, 0), complex(0, 1), complex(0, -1), complex(1, 1), complex(-1, -1), complex(0, 0)] with np.errstate(invalid='ignore'): for x in nans + fins: x = np.array([x]) for y in nans + fins: y = np.array([y]) if np.isfinite(x) and np.isfinite(y): continue assert_equal(x < y, False, err_msg="%r < %r" % (x, y)) assert_equal(x > y, False, err_msg="%r > %r" % (x, y)) assert_equal(x <= y, False, err_msg="%r <= %r" % (x, y)) assert_equal(x >= y, False, err_msg="%r >= %r" % (x, y)) assert_equal(x == y, False, err_msg="%r == %r" % (x, y))
Example 10
Project: recruit Author: Frank-qlu File: test_scalarmath.py License: Apache License 2.0 | 6 votes |
def test_zero_division(self): with np.errstate(all="ignore"): for t in [np.complex64, np.complex128]: a = t(0.0) b = t(1.0) assert_(np.isinf(b/a)) b = t(complex(np.inf, np.inf)) assert_(np.isinf(b/a)) b = t(complex(np.inf, np.nan)) assert_(np.isinf(b/a)) b = t(complex(np.nan, np.inf)) assert_(np.isinf(b/a)) b = t(complex(np.nan, np.nan)) assert_(np.isnan(b/a)) b = t(0.) assert_(np.isnan(b/a))
Example 11
Project: recruit Author: Frank-qlu File: test_scalarmath.py License: Apache License 2.0 | 6 votes |
def test_signed_zeros(self): with np.errstate(all="ignore"): for t in [np.complex64, np.complex128]: # tupled (numerator, denominator, expected) # for testing as expected == numerator/denominator data = ( (( 0.0,-1.0), ( 0.0, 1.0), (-1.0,-0.0)), (( 0.0,-1.0), ( 0.0,-1.0), ( 1.0,-0.0)), (( 0.0,-1.0), (-0.0,-1.0), ( 1.0, 0.0)), (( 0.0,-1.0), (-0.0, 1.0), (-1.0, 0.0)), (( 0.0, 1.0), ( 0.0,-1.0), (-1.0, 0.0)), (( 0.0,-1.0), ( 0.0,-1.0), ( 1.0,-0.0)), ((-0.0,-1.0), ( 0.0,-1.0), ( 1.0,-0.0)), ((-0.0, 1.0), ( 0.0,-1.0), (-1.0,-0.0)) ) for cases in data: n = cases[0] d = cases[1] ex = cases[2] result = t(complex(n[0], n[1])) / t(complex(d[0], d[1])) # check real and imag parts separately to avoid comparison # in array context, which does not account for signed zeros assert_equal(result.real, ex[0]) assert_equal(result.imag, ex[1])
Example 12
Project: recruit Author: Frank-qlu File: methods.py License: Apache License 2.0 | 6 votes |
def test_combine_add(self, data_repeated): # GH 20825 orig_data1, orig_data2 = data_repeated(2) s1 = pd.Series(orig_data1) s2 = pd.Series(orig_data2) result = s1.combine(s2, lambda x1, x2: x1 + x2) with np.errstate(over='ignore'): expected = pd.Series( orig_data1._from_sequence([a + b for (a, b) in zip(list(orig_data1), list(orig_data2))])) self.assert_series_equal(result, expected) val = s1.iloc[0] result = s1.combine(val, lambda x1, x2: x1 + x2) expected = pd.Series( orig_data1._from_sequence([a + val for a in list(orig_data1)])) self.assert_series_equal(result, expected)
Example 13
Project: EXOSIMS Author: dsavransky File: test_deltaMag.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def test1(self): r"""Testing some limiting cases.""" p = np.array([0.0,1.0,1.0,1.0,1.0]) Rp = np.array([1.0,0.0,1.0,1.0,1.0]) * u.kilometer d = np.array([1.0,1.0,0.0,1.0,np.inf]) * u.kilometer Phi = np.array([1.0,1.0,1.0,0.0,1.0]) # suppress division-by-zero warnings with np.errstate(divide='ignore'): result = deltaMag(p, Rp, d, Phi) expected = np.array([np.inf, np.inf, -np.inf, np.inf, np.inf]) np.testing.assert_allclose(expected, result, rtol=1e-1, atol=0)
Example 14
Project: differential-privacy-library Author: IBM File: standard_scaler.py License: MIT License | 5 votes |
def _incremental_mean_and_var(X, epsilon, bounds, last_mean, last_variance, last_sample_count): # Initialising new accountant, as budget is tracked in main class. Subject to review in line with GH issue #21 temp_acc = BudgetAccountant() # old = stats until now # new = the current increment # updated = the aggregated stats last_sum = last_mean * last_sample_count new_mean = nanmean(X, epsilon=epsilon, axis=0, bounds=bounds, accountant=temp_acc) new_sample_count = np.sum(~np.isnan(X), axis=0) new_sum = new_mean * new_sample_count updated_sample_count = last_sample_count + new_sample_count updated_mean = (last_sum + new_sum) / updated_sample_count if last_variance is None: updated_variance = None else: new_unnormalized_variance = nanvar(X, epsilon=epsilon, axis=0, bounds=bounds, accountant=temp_acc) * new_sample_count last_unnormalized_variance = last_variance * last_sample_count with np.errstate(divide='ignore', invalid='ignore'): last_over_new_count = last_sample_count / new_sample_count updated_unnormalized_variance = ( last_unnormalized_variance + new_unnormalized_variance + last_over_new_count / updated_sample_count * (last_sum / last_over_new_count - new_sum) ** 2) zeros = last_sample_count == 0 updated_unnormalized_variance[zeros] = new_unnormalized_variance[zeros] updated_variance = updated_unnormalized_variance / updated_sample_count return updated_mean, updated_variance, updated_sample_count # noinspection PyPep8Naming,PyAttributeOutsideInit
Example 15
Project: pymoo Author: msu-coinlab File: mw.py License: Apache License 2.0 | 5 votes |
def _evaluate(self, X, out, *args, **kwargs): g = self.g1(X) f0 = g * X[:, 0] f1 = g * np.sqrt(1.0 - np.power(f0 / g, 2.0)) with np.errstate(divide='ignore'): atan = np.arctan(f1 / f0) g0 = f0 ** 2 + f1 ** 2 - np.power(1.7 - self.LA2(0.2, 2.0, 1.0, 1.0, atan), 2.0) t = 0.5 * np.pi - 2 * np.abs(atan - 0.25 * np.pi) g1 = np.power(1 + self.LA2(0.5, 6.0, 3.0, 1.0, t), 2.0) - f0 ** 2 - f1 ** 2 g2 = np.power(1 - self.LA2(0.45, 6.0, 3.0, 1.0, t), 2.0) - f0 ** 2 - f1 ** 2 out["F"] = np.column_stack([f0, f1]) out["G"] = np.column_stack([g0, g1, g2])
Example 16
Project: pymoo Author: msu-coinlab File: mw.py License: Apache License 2.0 | 5 votes |
def _evaluate(self, X, out, *args, **kwargs): g = self.g2(X) f0 = g * X[:, 0] f1 = g * np.sqrt(1.1 * 1.1 - np.power(f0 / g, 2.0)) with np.errstate(divide='ignore'): atan = np.arctan(f1 / f0) g0 = f0 ** 2 / np.power(1.0 + self.LA3(0.15, 6.0, 4.0, 10.0, atan), 2.0) + f1 ** 2 / np.power( 1.0 + self.LA3(0.75, 6.0, 4.0, 10.0, atan), 2.0) - 1 out["F"] = np.column_stack([f0, f1]) out["G"] = g0.reshape((-1, 1))
Example 17
Project: pymoo Author: msu-coinlab File: mw.py License: Apache License 2.0 | 5 votes |
def _evaluate(self, X, out, *args, **kwargs): g = self.g3(X) f0 = g * X[:, 0] f1 = g * np.sqrt(1 - np.power(f0 / g, 2)) with np.errstate(divide='ignore'): atan = np.arctan(f1 / f0) g0 = f0 ** 2 + f1 ** 2 - np.power(1.2 + np.abs(self.LA2(0.4, 4.0, 1.0, 16.0, atan)), 2.0) g1 = np.power(1.15 - self.LA2(0.2, 4.0, 1.0, 8.0, atan), 2.0) - f0 ** 2 - f1 ** 2 out["F"] = np.column_stack([f0, f1]) out["G"] = np.column_stack([g0, g1])
Example 18
Project: pyscf Author: pyscf File: test_pp.py License: Apache License 2.0 | 5 votes |
def get_pp_loc_part2(cell, kpt=np.zeros(3)): coords = gen_grid.gen_uniform_grids(cell) aoR = numint.eval_ao(cell, coords, kpt) nao = cell.nao_nr() SI = cell.get_SI() G = lib.norm(cell.Gv, axis=1) vlocG = np.zeros((cell.natm,len(G))) for ia in range(cell.natm): Zia = cell.atom_charge(ia) symb = cell.atom_symbol(ia) if symb not in cell._pseudo: vlocG[ia] = 0 continue pp = cell._pseudo[symb] rloc, nexp, cexp = pp[1:3+1] G_red = G*rloc cfacs = np.array( [1*G_red**0, 3 - G_red**2, 15 - 10*G_red**2 + G_red**4, 105 - 105*G_red**2 + 21*G_red**4 - G_red**6]) with np.errstate(divide='ignore'): # Note the signs -- potential here is positive vlocG[ia,:] = (# 4*np.pi * Zia * np.exp(-0.5*G_red**2)/G**2 - (2*np.pi)**(3/2.)*rloc**3*np.exp(-0.5*G_red**2)*( np.dot(cexp, cfacs[:nexp])) ) vpplocG = -np.sum(SI * vlocG, axis=0) vpplocR = tools.ifft(vpplocG, cell.mesh).real vpploc = np.dot(aoR.T.conj(), vpplocR.reshape(-1,1)*aoR) if aoR.dtype == np.double: return vpploc.real else: return vpploc
Example 19
Project: pyGSTi Author: pyGSTio File: scoring.py License: Apache License 2.0 | 5 votes |
def list_score(input_array, scoreFunc='all'): """Score an array of eigenvalues. Smaller scores are better. Parameters ---------- input_array : numpy array The eigenvalues to be scored. scoreFunc : {'all', 'worst'}, optional Sets the objective function for scoring the eigenvalues. If 'all', score is ``sum(1/input_array)``. If 'worst', score is ``1/min(input_array)``. Note: we use this function in various optimization routines, and sometimes choosing one or the other objective function can help avoid suboptimal local minima. Returns ------- float Score for the eigenvalues. """ # We're expecting division by zero in many instances when we call this # function, and the inf can be handled appropriately, so we suppress # division warnings printed to stderr. with _np.errstate(divide='ignore'): if scoreFunc == 'all': score = sum(1. / _np.abs(input_array)) elif scoreFunc == 'worst': score = 1. / min(_np.abs(input_array)) else: raise ValueError("'%s' is not a valid value for scoreFunc. " "Either 'all' or 'worst' must be specified!" % scoreFunc) return score
Example 20
Project: recruit Author: Frank-qlu File: test_masked_matrix.py License: Apache License 2.0 | 5 votes |
def test_masked_unary_operations(self): # Tests masked_unary_operation (x, mx) = self.data with np.errstate(divide='ignore'): assert_(isinstance(log(mx), MMatrix)) assert_equal(log(x), np.log(x))
Example 21
Project: recruit Author: Frank-qlu File: nanfunctions.py License: Apache License 2.0 | 5 votes |
def _divide_by_count(a, b, out=None): """ Compute a/b ignoring invalid results. If `a` is an array the division is done in place. If `a` is a scalar, then its type is preserved in the output. If out is None, then then a is used instead so that the division is in place. Note that this is only called with `a` an inexact type. Parameters ---------- a : {ndarray, numpy scalar} Numerator. Expected to be of inexact type but not checked. b : {ndarray, numpy scalar} Denominator. out : ndarray, optional Alternate output array in which to place the result. The default is ``None``; if provided, it must have the same shape as the expected output, but the type will be cast if necessary. Returns ------- ret : {ndarray, numpy scalar} The return value is a/b. If `a` was an ndarray the division is done in place. If `a` is a numpy scalar, the division preserves its type. """ with np.errstate(invalid='ignore', divide='ignore'): if isinstance(a, np.ndarray): if out is None: return np.divide(a, b, out=a, casting='unsafe') else: return np.divide(a, b, out=out, casting='unsafe') else: if out is None: return a.dtype.type(a / b) else: # This is questionable, but currently a numpy scalar can # be output to a zero dimensional array. return np.divide(a, b, out=out, casting='unsafe')
Example 22
Project: recruit Author: Frank-qlu File: test_function_base.py License: Apache License 2.0 | 5 votes |
def test_extreme(self): x = [[1e-100, 1e100], [1e100, 1e-100]] with np.errstate(all='raise'): c = corrcoef(x) assert_array_almost_equal(c, np.array([[1., -1.], [-1., 1.]])) assert_(np.all(np.abs(c) <= 1.0))
Example 23
Project: recruit Author: Frank-qlu File: test_type_check.py License: Apache License 2.0 | 5 votes |
def test_posinf(self): with np.errstate(divide='ignore'): assert_all(np.isnan(np.array((1.,))/0.) == 0)
Example 24
Project: recruit Author: Frank-qlu File: test_type_check.py License: Apache License 2.0 | 5 votes |
def test_neginf(self): with np.errstate(divide='ignore'): assert_all(np.isnan(np.array((-1.,))/0.) == 0)
Example 25
Project: recruit Author: Frank-qlu File: test_type_check.py License: Apache License 2.0 | 5 votes |
def test_complex1(self): with np.errstate(divide='ignore', invalid='ignore'): assert_all(np.isnan(np.array(0+0j)/0.) == 1)
Example 26
Project: recruit Author: Frank-qlu File: test_type_check.py License: Apache License 2.0 | 5 votes |
def test_posinf(self): with np.errstate(divide='ignore', invalid='ignore'): assert_all(np.isfinite(np.array((1.,))/0.) == 0)
Example 27
Project: recruit Author: Frank-qlu File: test_type_check.py License: Apache License 2.0 | 5 votes |
def test_neginf(self): with np.errstate(divide='ignore', invalid='ignore'): assert_all(np.isfinite(np.array((-1.,))/0.) == 0)
Example 28
Project: recruit Author: Frank-qlu File: test_type_check.py License: Apache License 2.0 | 5 votes |
def test_ind(self): with np.errstate(divide='ignore', invalid='ignore'): assert_all(np.isfinite(np.array((0.,))/0.) == 0)
Example 29
Project: recruit Author: Frank-qlu File: test_type_check.py License: Apache License 2.0 | 5 votes |
def test_complex1(self): with np.errstate(divide='ignore', invalid='ignore'): assert_all(np.isfinite(np.array(1+1j)/0.) == 0)
Example 30
Project: recruit Author: Frank-qlu File: test_type_check.py License: Apache License 2.0 | 5 votes |
def test_posinf_scalar(self): with np.errstate(divide='ignore', invalid='ignore'): assert_all(np.isinf(np.array(1.,)/0.) == 1)