Python keras.utils.to_categorical() Examples
The following are 30 code examples for showing how to use keras.utils.to_categorical(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
keras.utils
, or try the search function
.
Example 1
Project: Image-Caption-Generator Author: dabasajay File: load_data.py License: MIT License | 6 votes |
def create_sequences(tokenizer, max_length, captions_list, image): # X1 : input for image features # X2 : input for text features # y : output word X1, X2, y = list(), list(), list() vocab_size = len(tokenizer.word_index) + 1 # Walk through each caption for the image for caption in captions_list: # Encode the sequence seq = tokenizer.texts_to_sequences([caption])[0] # Split one sequence into multiple X,y pairs for i in range(1, len(seq)): # Split into input and output pair in_seq, out_seq = seq[:i], seq[i] # Pad input sequence in_seq = pad_sequences([in_seq], maxlen=max_length)[0] # Encode output sequence out_seq = to_categorical([out_seq], num_classes=vocab_size)[0] # Store X1.append(image) X2.append(in_seq) y.append(out_seq) return X1, X2, y # Data generator, intended to be used in a call to model.fit_generator()
Example 2
Project: Multi-level-DCNet Author: ssrp File: 3leveldcnet.py License: GNU General Public License v3.0 | 6 votes |
def load_dataset(): # Load the dataset from Keras from keras.datasets import cifar10 (x_train, y_train), (x_test, y_test) = cifar10.load_data() # Preprocessing the dataset x_train = x_train.astype('float32') x_test = x_test.astype('float32') x_train= preprocess_input(x_train) x_test= preprocess_input(x_test) x_train = x_train.reshape(-1, 32, 32, 3).astype('float32') x_test = x_test.reshape(-1, 32, 32, 3).astype('float32') y_train = to_categorical(y_train.astype('float32')) y_test = to_categorical(y_test.astype('float32')) return (x_train, y_train), (x_test, y_test)
Example 3
Project: icassp19 Author: edufonseca File: data.py License: MIT License | 6 votes |
def __getitem__(self, index): """ takes an index (batch number) and returns one batch of self.batch_size :param index: :return: """ # index is taken care of by the Sequencer inherited indexes = self.indexes[index * self.batch_size:(index + 1) * self.batch_size] # fetch labels for the batch y_int = np.empty((self.batch_size, 1), dtype='int') for tt in np.arange(self.batch_size): y_int[tt] = int(self.labels[indexes[tt]]) y_cat = to_categorical(y_int, num_classes=self.n_classes) # fetch features for the batch and adjust format to input CNN # (batch_size, 1, time, freq) for channels_first features = self.features[indexes, np.newaxis] return features, y_cat
Example 4
Project: bert4keras Author: bojone File: task_sentiment_virtual_adversarial_training.py License: Apache License 2.0 | 6 votes |
def __iter__(self, random=False): batch_token_ids, batch_segment_ids, batch_labels = [], [], [] for is_end, (text, label) in self.sample(random): token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen) batch_token_ids.append(token_ids) batch_segment_ids.append(segment_ids) batch_labels.append(label) if len(batch_token_ids) == self.batch_size or is_end: batch_token_ids = sequence_padding(batch_token_ids) batch_segment_ids = sequence_padding(batch_segment_ids) batch_labels = to_categorical(batch_labels, num_classes) yield [batch_token_ids, batch_segment_ids], batch_labels batch_token_ids, batch_segment_ids, batch_labels = [], [], [] # 转换数据集
Example 5
Project: Audio-Vision Author: channelCS File: get_data.py License: MIT License | 6 votes |
def get_train_data(input_img_h5, input_ques_h5, data_limit=215359): img_data = h5py.File(input_img_h5) ques_data = h5py.File(input_ques_h5) img_data = np.array(img_data['images_train']) img_pos_train = ques_data['img_pos_train'][:data_limit] train_img_data = np.array([img_data[_-1,:] for _ in img_pos_train]) # Normalizing images tem = np.sqrt(np.sum(np.multiply(train_img_data, train_img_data), axis=1)) train_img_data = np.divide(train_img_data, np.transpose(np.tile(tem,(4096,1)))) #shifting padding to left side ques_train = np.array(ques_data['ques_train'])[:data_limit, :] ques_length_train = np.array(ques_data['ques_length_train'])[:data_limit] ques_train = right_align(ques_train, ques_length_train) train_X = [train_img_data, ques_train] # NOTE should've consturcted one-hots using exhausitve list of answers, cause some answers may not be in dataset # To temporarily rectify this, all those answer indices is set to 1 in validation set train_y = to_categorical(ques_data['answers'])[:data_limit, :] return train_X, train_y
Example 6
Project: Audio-Vision Author: channelCS File: get_data.py License: MIT License | 6 votes |
def get_train_data(input_img_h5, input_ques_h5, data_limit=215359): img_data = h5py.File(input_img_h5) ques_data = h5py.File(input_ques_h5) img_data = np.array(img_data['images_train']) img_pos_train = ques_data['img_pos_train'][:data_limit] train_img_data = np.array([img_data[_-1,:] for _ in img_pos_train]) # Normalizing images tem = np.sqrt(np.sum(np.multiply(train_img_data, train_img_data), axis=1)) train_img_data = np.divide(train_img_data, np.transpose(np.tile(tem,(4096,1)))) #shifting padding to left side ques_train = np.array(ques_data['ques_train'])[:data_limit, :] ques_length_train = np.array(ques_data['ques_length_train'])[:data_limit] ques_train = right_align(ques_train, ques_length_train) train_X = [train_img_data, ques_train] # NOTE should've consturcted one-hots using exhausitve list of answers, cause some answers may not be in dataset # To temporarily rectify this, all those answer indices is set to 1 in validation set train_y = to_categorical(ques_data['answers'])[:data_limit, :] return train_X, train_y
Example 7
Project: bi-lstm-crf Author: GlassyWing File: data_loader.py License: Apache License 2.0 | 6 votes |
def load_sents_from_file(self, file_path, encoding): with open(file_path, encoding=encoding) as f: sent, chunk = [], [] for line in f: line = line[:-1] chars, tags = line.split(self.sent_delimiter) sent.append(chars.split(self.word_delimiter)) chunk.append(tags.split(self.word_delimiter)) if len(sent) >= self.batch_size: sent = self.src_tokenizer.texts_to_sequences(sent) chunk = self.tgt_tokenizer.texts_to_sequences(chunk) sent, chunk = self._pad_seq(sent, chunk) if not self.sparse_target: chunk = to_categorical(chunk, num_classes=self.tgt_vocab_size + 1) yield sent, chunk sent, chunk = [], []
Example 8
Project: bi-lstm-crf Author: GlassyWing File: data_loader.py License: Apache License 2.0 | 6 votes |
def generator_from_data(self, X, Y): steps = 0 total_size = X.shape[0] while True: if steps >= self.shuffle_batch: indicates = list(range(total_size)) np.random.shuffle(indicates) X = X[indicates] Y = Y[indicates] steps = 0 sample_index = np.random.randint(0, total_size - self.batch_size) ret_x = X[sample_index:sample_index + self.batch_size] ret_y = Y[sample_index:sample_index + self.batch_size] if not self.sparse_target: ret_y = to_categorical(ret_y, num_classes=self.tgt_vocab_size + 1) else: ret_y = np.expand_dims(ret_y, 2) yield ret_x, ret_y steps += 1
Example 9
Project: DeepLearning_Wavelet-LSTM Author: hello-sea File: np_utils_test.py License: MIT License | 6 votes |
def test_to_categorical(): num_classes = 5 shapes = [(1,), (3,), (4, 3), (5, 4, 3), (3, 1), (3, 2, 1)] expected_shapes = [(1, num_classes), (3, num_classes), (4, 3, num_classes), (5, 4, 3, num_classes), (3, num_classes), (3, 2, num_classes)] labels = [np.random.randint(0, num_classes, shape) for shape in shapes] one_hots = [to_categorical(label, num_classes) for label in labels] for label, one_hot, expected_shape in zip(labels, one_hots, expected_shapes): # Check shape assert one_hot.shape == expected_shape # Make sure there are only 0s and 1s assert np.array_equal(one_hot, one_hot.astype(bool)) # Make sure there is exactly one 1 in a row assert np.all(one_hot.sum(axis=-1) == 1) # Get original labels back from one hots assert np.all(np.argmax(one_hot, -1).reshape(label.shape) == label)
Example 10
Project: DeepLearning_Wavelet-LSTM Author: hello-sea File: np_utils_test.py License: MIT License | 6 votes |
def test_to_categorical(): num_classes = 5 shapes = [(1,), (3,), (4, 3), (5, 4, 3), (3, 1), (3, 2, 1)] expected_shapes = [(1, num_classes), (3, num_classes), (4, 3, num_classes), (5, 4, 3, num_classes), (3, num_classes), (3, 2, num_classes)] labels = [np.random.randint(0, num_classes, shape) for shape in shapes] one_hots = [to_categorical(label, num_classes) for label in labels] for label, one_hot, expected_shape in zip(labels, one_hots, expected_shapes): # Check shape assert one_hot.shape == expected_shape # Make sure there are only 0s and 1s assert np.array_equal(one_hot, one_hot.astype(bool)) # Make sure there is exactly one 1 in a row assert np.all(one_hot.sum(axis=-1) == 1) # Get original labels back from one hots assert np.all(np.argmax(one_hot, -1).reshape(label.shape) == label)
Example 11
Project: DeepLearning_Wavelet-LSTM Author: hello-sea File: np_utils_test.py License: MIT License | 6 votes |
def test_to_categorical(): num_classes = 5 shapes = [(1,), (3,), (4, 3), (5, 4, 3), (3, 1), (3, 2, 1)] expected_shapes = [(1, num_classes), (3, num_classes), (4, 3, num_classes), (5, 4, 3, num_classes), (3, num_classes), (3, 2, num_classes)] labels = [np.random.randint(0, num_classes, shape) for shape in shapes] one_hots = [to_categorical(label, num_classes) for label in labels] for label, one_hot, expected_shape in zip(labels, one_hots, expected_shapes): # Check shape assert one_hot.shape == expected_shape # Make sure there are only 0s and 1s assert np.array_equal(one_hot, one_hot.astype(bool)) # Make sure there is exactly one 1 in a row assert np.all(one_hot.sum(axis=-1) == 1) # Get original labels back from one hots assert np.all(np.argmax(one_hot, -1).reshape(label.shape) == label)
Example 12
Project: DeepLearning_Wavelet-LSTM Author: hello-sea File: np_utils_test.py License: MIT License | 6 votes |
def test_to_categorical(): num_classes = 5 shapes = [(1,), (3,), (4, 3), (5, 4, 3), (3, 1), (3, 2, 1)] expected_shapes = [(1, num_classes), (3, num_classes), (4, 3, num_classes), (5, 4, 3, num_classes), (3, num_classes), (3, 2, num_classes)] labels = [np.random.randint(0, num_classes, shape) for shape in shapes] one_hots = [to_categorical(label, num_classes) for label in labels] for label, one_hot, expected_shape in zip(labels, one_hots, expected_shapes): # Check shape assert one_hot.shape == expected_shape # Make sure there are only 0s and 1s assert np.array_equal(one_hot, one_hot.astype(bool)) # Make sure there is exactly one 1 in a row assert np.all(one_hot.sum(axis=-1) == 1) # Get original labels back from one hots assert np.all(np.argmax(one_hot, -1).reshape(label.shape) == label)
Example 13
Project: DeepLearning_Wavelet-LSTM Author: hello-sea File: np_utils_test.py License: MIT License | 6 votes |
def test_to_categorical(): num_classes = 5 shapes = [(1,), (3,), (4, 3), (5, 4, 3), (3, 1), (3, 2, 1)] expected_shapes = [(1, num_classes), (3, num_classes), (4, 3, num_classes), (5, 4, 3, num_classes), (3, num_classes), (3, 2, num_classes)] labels = [np.random.randint(0, num_classes, shape) for shape in shapes] one_hots = [to_categorical(label, num_classes) for label in labels] for label, one_hot, expected_shape in zip(labels, one_hots, expected_shapes): # Check shape assert one_hot.shape == expected_shape # Make sure there are only 0s and 1s assert np.array_equal(one_hot, one_hot.astype(bool)) # Make sure there is exactly one 1 in a row assert np.all(one_hot.sum(axis=-1) == 1) # Get original labels back from one hots assert np.all(np.argmax(one_hot, -1).reshape(label.shape) == label)
Example 14
Project: DeepLearning_Wavelet-LSTM Author: hello-sea File: np_utils_test.py License: MIT License | 6 votes |
def test_to_categorical(): num_classes = 5 shapes = [(1,), (3,), (4, 3), (5, 4, 3), (3, 1), (3, 2, 1)] expected_shapes = [(1, num_classes), (3, num_classes), (4, 3, num_classes), (5, 4, 3, num_classes), (3, num_classes), (3, 2, num_classes)] labels = [np.random.randint(0, num_classes, shape) for shape in shapes] one_hots = [to_categorical(label, num_classes) for label in labels] for label, one_hot, expected_shape in zip(labels, one_hots, expected_shapes): # Check shape assert one_hot.shape == expected_shape # Make sure there are only 0s and 1s assert np.array_equal(one_hot, one_hot.astype(bool)) # Make sure there is exactly one 1 in a row assert np.all(one_hot.sum(axis=-1) == 1) # Get original labels back from one hots assert np.all(np.argmax(one_hot, -1).reshape(label.shape) == label)
Example 15
Project: DeepLearning_Wavelet-LSTM Author: hello-sea File: np_utils_test.py License: MIT License | 6 votes |
def test_to_categorical(): num_classes = 5 shapes = [(1,), (3,), (4, 3), (5, 4, 3), (3, 1), (3, 2, 1)] expected_shapes = [(1, num_classes), (3, num_classes), (4, 3, num_classes), (5, 4, 3, num_classes), (3, num_classes), (3, 2, num_classes)] labels = [np.random.randint(0, num_classes, shape) for shape in shapes] one_hots = [to_categorical(label, num_classes) for label in labels] for label, one_hot, expected_shape in zip(labels, one_hots, expected_shapes): # Check shape assert one_hot.shape == expected_shape # Make sure there are only 0s and 1s assert np.array_equal(one_hot, one_hot.astype(bool)) # Make sure there is exactly one 1 in a row assert np.all(one_hot.sum(axis=-1) == 1) # Get original labels back from one hots assert np.all(np.argmax(one_hot, -1).reshape(label.shape) == label)
Example 16
Project: nlp_xiaojiang Author: yongzhuo File: keras_bert_ner_bi_lstm.py License: MIT License | 6 votes |
def label_tagging(data_x_s, tag_label2index, len_max=32): """ 根据类别字典dict、语料y和最大文本长度l,padding和to_categorical :param data_x_s: list :param tag_label2index:dict :param len_max: int :return: list """ tag_labels = [] for data_x in data_x_s: if len(data_x) <= len_max-2: tag_labels.append([tag_label2index['O']] + [tag_label2index[i] for i in data_x] + [tag_label2index['O'] for i in range(len_max - len(data_x) - 1)]) else: tag_labels.append([tag_label2index['O']] + [tag_label2index[i] for i in data_x[:len_max-1]] + [tag_label2index['O']]) tag_labels_pad = pad_sequences(sequences=tag_labels, maxlen=len_max, dtype='int32', padding='post', truncating='post', value=tag_label2index['O']) one_hot_y = to_categorical(tag_labels_pad, num_classes=len(tag_label2index)) label_num = len(set(["".join(str(i)) for i in tag_labels])) # tag_labels_pad_to = to_categorical(y=tag_labels_pad.tolist(), num_classes=label_num) return one_hot_y, label_num
Example 17
Project: imageatm Author: idealo File: data_generator.py License: Apache License 2.0 | 6 votes |
def _data_generator(self, batch_samples: List[dict]) -> Tuple[np.array, np.array]: """Generates data from samples in specified batch.""" # initialize images and labels tensors for faster processing dims = self.img_crop_dims if self.train == True else self.img_load_dims X = np.empty((len(batch_samples), *dims, 3)) y = np.empty((len(batch_samples), self.n_classes)) for i, sample in enumerate(batch_samples): # load and randomly augment image img_file = self.image_dir / sample['image_id'] img = np.asarray(load_image(img_file, self.img_load_dims)) if self.train == True: img = random_crop(img, self.img_crop_dims) X[i,] = img # TODO: more efficient by preprocessing y[i,] = to_categorical([sample['label']], num_classes=self.n_classes) # apply basenet specific preprocessing # input is 4D numpy array of RGB values within [0, 255] X = self.basenet_preprocess(X) return X, y
Example 18
Project: Keras-GAN Author: eriklindernoren File: infogan.py License: MIT License | 5 votes |
def sample_generator_input(self, batch_size): # Generator inputs sampled_noise = np.random.normal(0, 1, (batch_size, 62)) sampled_labels = np.random.randint(0, self.num_classes, batch_size).reshape(-1, 1) sampled_labels = to_categorical(sampled_labels, num_classes=self.num_classes) return sampled_noise, sampled_labels
Example 19
Project: Keras-GAN Author: eriklindernoren File: infogan.py License: MIT License | 5 votes |
def sample_images(self, epoch): r, c = 10, 10 fig, axs = plt.subplots(r, c) for i in range(c): sampled_noise, _ = self.sample_generator_input(c) label = to_categorical(np.full(fill_value=i, shape=(r,1)), num_classes=self.num_classes) gen_input = np.concatenate((sampled_noise, label), axis=1) gen_imgs = self.generator.predict(gen_input) gen_imgs = 0.5 * gen_imgs + 0.5 for j in range(r): axs[j,i].imshow(gen_imgs[j,:,:,0], cmap='gray') axs[j,i].axis('off') fig.savefig("images/%d.png" % epoch) plt.close()
Example 20
Project: 3DGCN Author: blackmints File: dataset.py License: MIT License | 5 votes |
def __getitem__(self, idx): batch_x = self.x[idx * self.batch:(idx + 1) * self.batch] batch_c = self.c[idx * self.batch:(idx + 1) * self.batch] batch_y = self.y[idx * self.batch:(idx + 1) * self.batch] if self.task == "category": return self.tensorize(batch_x, batch_c), to_categorical(batch_y) elif self.task == "binary": return self.tensorize(batch_x, batch_c), np.array(batch_y, dtype=int) elif self.task == "regression": return self.tensorize(batch_x, batch_c), np.array(batch_y, dtype=float) elif self.task == "input_only": return self.tensorize(batch_x, batch_c)
Example 21
Project: Action-Recognition Author: Naman-ntc File: conv.py License: MIT License | 5 votes |
def ValAcc(): trainingData = getValData() labels = getValLabels() labels = to_categorical(labels,num_classes=49) print(checkAcc(model,trainingData,labels))
Example 22
Project: Action-Recognition Author: Naman-ntc File: conv3.py License: MIT License | 5 votes |
def ValAcc(): trainingData = getValData() labels = getValLabels() labels = to_categorical(labels,num_classes=49) print(checkAcc(model,trainingData,labels))
Example 23
Project: Action-Recognition Author: Naman-ntc File: conv2.py License: MIT License | 5 votes |
def ValAcc(): trainingData = getValData() labels = getValLabels() labels = to_categorical(labels,num_classes=49) print(checkAcc(model,trainingData,labels))
Example 24
Project: Action-Recognition Author: Naman-ntc File: TCN.py License: MIT License | 5 votes |
def ValAcc(): trainingData = getValData() labels = getValLabels() temp_shape = trainingData.shape trainingData = trainingData.reshape(temp_shape[0],300,-1) labels = to_categorical(labels,num_classes=49) print(checkAcc(model,trainingData,labels))
Example 25
Project: Action-Recognition Author: Naman-ntc File: conv.py License: MIT License | 5 votes |
def ValAcc(): trainingData = getValData() labels = getValLabels() labels = to_categorical(labels,num_classes=49) print(checkAcc(model,trainingData,labels))
Example 26
Project: Action-Recognition Author: Naman-ntc File: 2_classes.py License: MIT License | 5 votes |
def ValAcc(): trainingData = getValData() labels = getValLabels() labels = to_categorical(labels,num_classes=49) print(checkAcc(model,trainingData,labels))
Example 27
Project: AIX360 Author: IBM File: heloc_dataset.py License: Apache License 2.0 | 5 votes |
def split(self, random_state=0): (data_train, data_test) = train_test_split(self._data, stratify=self._data[:,-1], random_state=random_state) x_train = data_train[:,0:-1] x_test = data_test[:, 0:-1] y_train = data_train[:, -1] y_test = data_test[:, -1] y_train_b = to_categorical(y_train) y_test_b = to_categorical(y_test) return (self._data, x_train, x_test, y_train_b, y_test_b)
Example 28
Project: seqeval Author: chakki-works File: test_metrics.py License: MIT License | 5 votes |
def test_keras_callback(self): expected_score = f1_score(self.y_true, self.y_pred) tokenizer = Tokenizer(lower=False) tokenizer.fit_on_texts(self.y_true) maxlen = max((len(row) for row in self.y_true)) def prepare(y, padding): indexes = tokenizer.texts_to_sequences(y) padded = pad_sequences(indexes, maxlen=maxlen, padding=padding, truncating=padding) categorical = to_categorical(padded) return categorical for padding in ('pre', 'post'): callback = F1Metrics(id2label=tokenizer.index_word) y_true_cat = prepare(self.y_true, padding) y_pred_cat = prepare(self.y_pred, padding) input_shape = (1,) layer = Lambda(lambda _: constant(y_pred_cat), input_shape=input_shape) fake_model = Sequential(layers=[layer]) callback.set_model(fake_model) X = numpy.zeros((y_true_cat.shape[0], 1)) # Verify that the callback translates sequences correctly by itself y_true_cb, y_pred_cb = callback.predict(X, y_true_cat) self.assertEqual(y_pred_cb, self.y_pred) self.assertEqual(y_true_cb, self.y_true) # Verify that the callback stores the correct number in logs fake_model.compile(optimizer='adam', loss='categorical_crossentropy') history = fake_model.fit(x=X, batch_size=y_true_cat.shape[0], y=y_true_cat, validation_data=(X, y_true_cat), callbacks=[callback]) actual_score = history.history['f1'][0] self.assertAlmostEqual(actual_score, expected_score)
Example 29
Project: U-net Author: DuFanXin File: unet-Keras.py License: MIT License | 5 votes |
def load_train_data(self): mydata = DataProcess(self.img_rows, self.img_cols) imgs_train, imgs_mask_train = mydata.load_my_train_data() imgs_mask_train = to_categorical(imgs_mask_train, num_classes=2) return imgs_train, imgs_mask_train
Example 30
Project: sesemi Author: vuptran File: utils.py License: MIT License | 5 votes |
def geometric_transform(image): image = np.reshape(image, (32, 32, 3)) labels = np.empty((proxy_labels,), dtype='uint8') images = np.empty((proxy_labels, 32, 32, 3), dtype='float32') for i in range(proxy_labels): if i <= 3: t = np.rot90(image, i) elif i == 4: t = np.fliplr(image) else: t = np.flipud(image) images[i] = t labels[i] = i return (images, to_categorical(labels))