Python keras.layers.Flatten() Examples

The following are 30 code examples for showing how to use keras.layers.Flatten(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.

You may check out the related API usage on the sidebar.

You may also want to check out all available functions/classes of the module keras.layers , or try the search function .

Example 1
Project: vergeml   Author: mme   File: imagenet.py    License: MIT License 6 votes vote down vote up
def _save(model, base_model, layers, labels, random_seed, checkpoints_dir):
    from keras.layers import Flatten, Dense
    from keras import Model
    nclasses = len(labels)
    x = Flatten()(base_model.output)
    x = _makenet(x, layers, dropout=None, random_seed=random_seed)
    predictions = Dense(nclasses, activation="softmax", name="predictions")(x)
    model_final = Model(inputs=base_model.input, outputs=predictions)

    for i in range(layers - 1):
        weights = model.get_layer(name='dense_layer_{}'.format(i)).get_weights()
        model_final.get_layer(name='dense_layer_{}'.format(i)).set_weights(weights)

    weights = model.get_layer(name='predictions').get_weights()
    model_final.get_layer(name='predictions').set_weights(weights)

    model_final.save(os.path.join(checkpoints_dir, "model.h5"))
    with open(os.path.join(checkpoints_dir, "labels.txt"), "w") as f:
        f.write("\n".join(labels))
    return model_final 
Example 2
Project: cnn-levelset   Author: wiseodd   File: localizer.py    License: MIT License 6 votes vote down vote up
def __init__(self, model_path=None):
        if model_path is not None:
            self.model = self.load_model(model_path)
        else:
            # VGG16 last conv features
            inputs = Input(shape=(7, 7, 512))
            x = Convolution2D(128, 1, 1)(inputs)
            x = Flatten()(x)

            # Cls head
            h_cls = Dense(256, activation='relu', W_regularizer=l2(l=0.01))(x)
            h_cls = Dropout(p=0.5)(h_cls)
            cls_head = Dense(20, activation='softmax', name='cls')(h_cls)

            # Reg head
            h_reg = Dense(256, activation='relu', W_regularizer=l2(l=0.01))(x)
            h_reg = Dropout(p=0.5)(h_reg)
            reg_head = Dense(4, activation='linear', name='reg')(h_reg)

            # Joint model
            self.model = Model(input=inputs, output=[cls_head, reg_head]) 
Example 3
Project: Keras-GAN   Author: eriklindernoren   File: context_encoder.py    License: MIT License 6 votes vote down vote up
def build_discriminator(self):

        model = Sequential()

        model.add(Conv2D(64, kernel_size=3, strides=2, input_shape=self.missing_shape, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(256, kernel_size=3, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Flatten())
        model.add(Dense(1, activation='sigmoid'))
        model.summary()

        img = Input(shape=self.missing_shape)
        validity = model(img)

        return Model(img, validity) 
Example 4
Project: Keras-GAN   Author: eriklindernoren   File: ccgan.py    License: MIT License 6 votes vote down vote up
def build_discriminator(self):

        img = Input(shape=self.img_shape)

        model = Sequential()
        model.add(Conv2D(64, kernel_size=4, strides=2, padding='same', input_shape=self.img_shape))
        model.add(LeakyReLU(alpha=0.8))
        model.add(Conv2D(128, kernel_size=4, strides=2, padding='same'))
        model.add(LeakyReLU(alpha=0.2))
        model.add(InstanceNormalization())
        model.add(Conv2D(256, kernel_size=4, strides=2, padding='same'))
        model.add(LeakyReLU(alpha=0.2))
        model.add(InstanceNormalization())

        model.summary()

        img = Input(shape=self.img_shape)
        features = model(img)

        validity = Conv2D(1, kernel_size=4, strides=1, padding='same')(features)

        label = Flatten()(features)
        label = Dense(self.num_classes+1, activation="softmax")(label)

        return Model(img, [validity, label]) 
Example 5
Project: Keras-GAN   Author: eriklindernoren   File: bigan.py    License: MIT License 6 votes vote down vote up
def build_encoder(self):
        model = Sequential()

        model.add(Flatten(input_shape=self.img_shape))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(self.latent_dim))

        model.summary()

        img = Input(shape=self.img_shape)
        z = model(img)

        return Model(img, z) 
Example 6
Project: Keras-GAN   Author: eriklindernoren   File: bigan.py    License: MIT License 6 votes vote down vote up
def build_discriminator(self):

        z = Input(shape=(self.latent_dim, ))
        img = Input(shape=self.img_shape)
        d_in = concatenate([z, Flatten()(img)])

        model = Dense(1024)(d_in)
        model = LeakyReLU(alpha=0.2)(model)
        model = Dropout(0.5)(model)
        model = Dense(1024)(model)
        model = LeakyReLU(alpha=0.2)(model)
        model = Dropout(0.5)(model)
        model = Dense(1024)(model)
        model = LeakyReLU(alpha=0.2)(model)
        model = Dropout(0.5)(model)
        validity = Dense(1, activation="sigmoid")(model)

        return Model([z, img], validity) 
Example 7
Project: Keras-GAN   Author: eriklindernoren   File: pixelda.py    License: MIT License 6 votes vote down vote up
def build_classifier(self):

        def clf_layer(layer_input, filters, f_size=4, normalization=True):
            """Classifier layer"""
            d = Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input)
            d = LeakyReLU(alpha=0.2)(d)
            if normalization:
                d = InstanceNormalization()(d)
            return d

        img = Input(shape=self.img_shape)

        c1 = clf_layer(img, self.cf, normalization=False)
        c2 = clf_layer(c1, self.cf*2)
        c3 = clf_layer(c2, self.cf*4)
        c4 = clf_layer(c3, self.cf*8)
        c5 = clf_layer(c4, self.cf*8)

        class_pred = Dense(self.num_classes, activation='softmax')(Flatten()(c5))

        return Model(img, class_pred) 
Example 8
Project: Keras-GAN   Author: eriklindernoren   File: cogan.py    License: MIT License 6 votes vote down vote up
def build_discriminators(self):

        img1 = Input(shape=self.img_shape)
        img2 = Input(shape=self.img_shape)

        # Shared discriminator layers
        model = Sequential()
        model.add(Flatten(input_shape=self.img_shape))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(256))
        model.add(LeakyReLU(alpha=0.2))

        img1_embedding = model(img1)
        img2_embedding = model(img2)

        # Discriminator 1
        validity1 = Dense(1, activation='sigmoid')(img1_embedding)
        # Discriminator 2
        validity2 = Dense(1, activation='sigmoid')(img2_embedding)

        return Model(img1, validity1), Model(img2, validity2) 
Example 9
Project: Keras-GAN   Author: eriklindernoren   File: gan.py    License: MIT License 6 votes vote down vote up
def build_discriminator(self):

        model = Sequential()

        model.add(Flatten(input_shape=self.img_shape))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(256))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(1, activation='sigmoid'))
        model.summary()

        img = Input(shape=self.img_shape)
        validity = model(img)

        return Model(img, validity) 
Example 10
Project: Keras-GAN   Author: eriklindernoren   File: bgan.py    License: MIT License 6 votes vote down vote up
def build_discriminator(self):

        model = Sequential()

        model.add(Flatten(input_shape=self.img_shape))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(256))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(1, activation='sigmoid'))
        model.summary()

        img = Input(shape=self.img_shape)
        validity = model(img)

        return Model(img, validity) 
Example 11
Project: Keras-BiGAN   Author: manicman1999   File: bigan.py    License: MIT License 6 votes vote down vote up
def encoder(self):

        if self.E:
            return self.E

        inp = Input(shape = [im_size, im_size, 3])

        x = d_block(inp, 1 * cha)   #64
        x = d_block(x, 2 * cha)   #32
        x = d_block(x, 3 * cha)   #16
        x = d_block(x, 4 * cha)  #8
        x = d_block(x, 8 * cha)  #4
        x = d_block(x, 16 * cha, p = False)  #4

        x = Flatten()(x)

        x = Dense(16 * cha, kernel_initializer = 'he_normal')(x)
        x = LeakyReLU(0.2)(x)

        x = Dense(latent_size, kernel_initializer = 'he_normal', bias_initializer = 'zeros')(x)

        self.E = Model(inputs = inp, outputs = x)

        return self.E 
Example 12
Project: dataiku-contrib   Author: dataiku   File: parallel_model.py    License: Apache License 2.0 6 votes vote down vote up
def build_model(x_train, num_classes):
        # Reset default graph. Keras leaves old ops in the graph,
        # which are ignored for execution but clutter graph
        # visualization in TensorBoard.
        tf.reset_default_graph()

        inputs = KL.Input(shape=x_train.shape[1:], name="input_image")
        x = KL.Conv2D(32, (3, 3), activation='relu', padding="same",
                      name="conv1")(inputs)
        x = KL.Conv2D(64, (3, 3), activation='relu', padding="same",
                      name="conv2")(x)
        x = KL.MaxPooling2D(pool_size=(2, 2), name="pool1")(x)
        x = KL.Flatten(name="flat1")(x)
        x = KL.Dense(128, activation='relu', name="dense1")(x)
        x = KL.Dense(num_classes, activation='softmax', name="dense2")(x)

        return KM.Model(inputs, x, "digit_classifier_model")

    # Load MNIST Data 
Example 13
Project: blackbox-attacks   Author: sunblaze-ucb   File: mnist.py    License: MIT License 6 votes vote down vote up
def modelA():
    model = Sequential()
    model.add(Conv2D(64, (5, 5),
                            padding='valid'))
    model.add(Activation('relu'))

    model.add(Conv2D(64, (5, 5)))
    model.add(Activation('relu'))

    model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Dense(128))
    model.add(Activation('relu'))

    model.add(Dropout(0.5))
    model.add(Dense(FLAGS.NUM_CLASSES))
    return model 
Example 14
Project: blackbox-attacks   Author: sunblaze-ucb   File: mnist.py    License: MIT License 6 votes vote down vote up
def modelB():
    model = Sequential()
    model.add(Dropout(0.2, input_shape=(FLAGS.IMAGE_ROWS,
                                        FLAGS.IMAGE_COLS,
                                        FLAGS.NUM_CHANNELS)))
    model.add(Convolution2D(64, 8, 8,
                            subsample=(2, 2),
                            border_mode='same'))
    model.add(Activation('relu'))

    model.add(Convolution2D(128, 6, 6,
                            subsample=(2, 2),
                            border_mode='valid'))
    model.add(Activation('relu'))

    model.add(Convolution2D(128, 5, 5,
                            subsample=(1, 1)))
    model.add(Activation('relu'))

    model.add(Dropout(0.5))

    model.add(Flatten())
    model.add(Dense(FLAGS.NUM_CLASSES))
    return model 
Example 15
Project: blackbox-attacks   Author: sunblaze-ucb   File: mnist.py    License: MIT License 6 votes vote down vote up
def modelC():
    model = Sequential()
    model.add(Convolution2D(128, 3, 3,
                            border_mode='valid',
                            input_shape=(FLAGS.IMAGE_ROWS,
                                         FLAGS.IMAGE_COLS,
                                         FLAGS.NUM_CHANNELS)))
    model.add(Activation('relu'))

    model.add(Convolution2D(64, 3, 3))
    model.add(Activation('relu'))

    model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Dense(128))
    model.add(Activation('relu'))

    model.add(Dropout(0.5))
    model.add(Dense(FLAGS.NUM_CLASSES))
    return model 
Example 16
Project: blackbox-attacks   Author: sunblaze-ucb   File: mnist.py    License: MIT License 6 votes vote down vote up
def modelD():
    model = Sequential()

    model.add(Flatten(input_shape=(FLAGS.IMAGE_ROWS,
                                   FLAGS.IMAGE_COLS,
                                   FLAGS.NUM_CHANNELS)))

    model.add(Dense(300, init='he_normal', activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(300, init='he_normal', activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(300, init='he_normal', activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(300, init='he_normal', activation='relu'))
    model.add(Dropout(0.5))

    model.add(Dense(FLAGS.NUM_CLASSES))
    return model 
Example 17
Project: spark-deep-learning   Author: databricks   File: keras_sql_udf_test.py    License: Apache License 2.0 6 votes vote down vote up
def test_simple_keras_udf(self):
        """ Simple Keras sequential model """
        # Notice that the input layer for a image UDF model
        # must be of shape (width, height, numChannels)
        # The leading batch size is taken care of by Keras
        with IsolatedSession(using_keras=True) as issn:
            model = Sequential()
            # Make the test model simpler to increase the stability of travis tests
            model.add(Flatten(input_shape=(640, 480, 3)))
            # model.add(Dense(64, activation='relu'))
            model.add(Dense(16, activation='softmax'))
            # Initialize the variables
            init_op = tf.global_variables_initializer()
            issn.run(init_op)
            makeGraphUDF(issn.graph,
                         'my_keras_model_udf',
                         model.outputs,
                         {tfx.op_name(model.inputs[0], issn.graph): 'image_col'})
            # Run the training procedure
            # Export the graph in this IsolatedSession as a GraphFunction
            # gfn = issn.asGraphFunction(model.inputs, model.outputs)
            fh_name = "test_keras_simple_sequential_model"
            registerKerasImageUDF(fh_name, model)

        self._assert_function_exists(fh_name) 
Example 18
Project: reinforcement-learning-kr   Author: rlcode   File: play_a3c_model.py    License: MIT License 6 votes vote down vote up
def build_model(self):
        input = Input(shape=self.state_size)
        conv = Conv2D(16, (8, 8), strides=(4, 4), activation='relu')(input)
        conv = Conv2D(32, (4, 4), strides=(2, 2), activation='relu')(conv)
        conv = Flatten()(conv)
        fc = Dense(256, activation='relu')(conv)
        policy = Dense(self.action_size, activation='softmax')(fc)
        value = Dense(1, activation='linear')(fc)

        actor = Model(inputs=input, outputs=policy)
        critic = Model(inputs=input, outputs=value)

        actor.summary()
        critic.summary()

        return actor, critic 
Example 19
Project: reinforcement-learning-kr   Author: rlcode   File: breakout_a3c.py    License: MIT License 6 votes vote down vote up
def build_model(self):
        input = Input(shape=self.state_size)
        conv = Conv2D(16, (8, 8), strides=(4, 4), activation='relu')(input)
        conv = Conv2D(32, (4, 4), strides=(2, 2), activation='relu')(conv)
        conv = Flatten()(conv)
        fc = Dense(256, activation='relu')(conv)

        policy = Dense(self.action_size, activation='softmax')(fc)
        value = Dense(1, activation='linear')(fc)

        actor = Model(inputs=input, outputs=policy)
        critic = Model(inputs=input, outputs=value)

        # 가치와 정책을 예측하는 함수를 만들어냄
        actor._make_predict_function()
        critic._make_predict_function()

        actor.summary()
        critic.summary()

        return actor, critic

    # 정책신경망을 업데이트하는 함수 
Example 20
Project: reinforcement-learning-kr   Author: rlcode   File: breakout_a3c.py    License: MIT License 6 votes vote down vote up
def build_local_model(self):
        input = Input(shape=self.state_size)
        conv = Conv2D(16, (8, 8), strides=(4, 4), activation='relu')(input)
        conv = Conv2D(32, (4, 4), strides=(2, 2), activation='relu')(conv)
        conv = Flatten()(conv)
        fc = Dense(256, activation='relu')(conv)
        policy = Dense(self.action_size, activation='softmax')(fc)
        value = Dense(1, activation='linear')(fc)

        local_actor = Model(inputs=input, outputs=policy)
        local_critic = Model(inputs=input, outputs=value)

        local_actor._make_predict_function()
        local_critic._make_predict_function()

        local_actor.set_weights(self.actor.get_weights())
        local_critic.set_weights(self.critic.get_weights())

        local_actor.summary()
        local_critic.summary()

        return local_actor, local_critic

    # 로컬신경망을 글로벌신경망으로 업데이트 
Example 21
Project: subsync   Author: tympanix   File: train_ann.py    License: Apache License 2.0 6 votes vote down vote up
def ann_model(input_shape):

    inp = Input(shape=input_shape, name='mfcc_in')
    model = inp

    model = Conv1D(filters=12, kernel_size=(3), activation='relu')(model)
    model = Conv1D(filters=12, kernel_size=(3), activation='relu')(model)
    model = Flatten()(model)

    model = Dense(56)(model)
    model = Activation('relu')(model)
    model = BatchNormalization()(model)
    model = Dropout(0.2)(model)
    model = Dense(28)(model)
    model = Activation('relu')(model)
    model = BatchNormalization()(model)

    model = Dense(1)(model)
    model = Activation('sigmoid')(model)

    model = Model(inp, model)
    return model 
Example 22
Project: Pix2Pose   Author: kirumang   File: ae_model.py    License: MIT License 6 votes vote down vote up
def DCGAN_discriminator():
    nb_filters = 64
    nb_conv = int(np.floor(np.log(128) / np.log(2)))
    list_filters = [nb_filters * min(8, (2 ** i)) for i in range(nb_conv)]

    input_img = Input(shape=(128, 128, 3))
    x = Conv2D(list_filters[0], (3, 3), strides=(2, 2), name="disc_conv2d_1", padding="same")(input_img)
    x = BatchNormalization(axis=-1)(x)
    x = LeakyReLU(0.2)(x)
    # Next convs
    for i, f in enumerate(list_filters[1:]):
        name = "disc_conv2d_%s" % (i + 2)
        x = Conv2D(f, (3, 3), strides=(2, 2), name=name, padding="same")(x)
        x = BatchNormalization(axis=-1)(x)
        x = LeakyReLU(0.2)(x)

    x_flat = Flatten()(x)
    x_out = Dense(1, activation="sigmoid", name="disc_dense")(x_flat)
    discriminator_model = Model(inputs=input_img, outputs=[x_out])
    return discriminator_model 
Example 23
Project: reinforcement-learning   Author: rlcode   File: play_a3c_model.py    License: MIT License 6 votes vote down vote up
def build_model(self):
        input = Input(shape=self.state_size)
        conv = Conv2D(16, (8, 8), strides=(4, 4), activation='relu')(input)
        conv = Conv2D(32, (4, 4), strides=(2, 2), activation='relu')(conv)
        conv = Flatten()(conv)
        fc = Dense(256, activation='relu')(conv)
        policy = Dense(self.action_size, activation='softmax')(fc)
        value = Dense(1, activation='linear')(fc)

        actor = Model(inputs=input, outputs=policy)
        critic = Model(inputs=input, outputs=value)

        actor.summary()
        critic.summary()

        return actor, critic 
Example 24
Project: reinforcement-learning   Author: rlcode   File: breakout_a3c.py    License: MIT License 6 votes vote down vote up
def build_model(self):
        input = Input(shape=self.state_size)
        conv = Conv2D(16, (8, 8), strides=(4, 4), activation='relu')(input)
        conv = Conv2D(32, (4, 4), strides=(2, 2), activation='relu')(conv)
        conv = Flatten()(conv)
        fc = Dense(256, activation='relu')(conv)
        policy = Dense(self.action_size, activation='softmax')(fc)
        value = Dense(1, activation='linear')(fc)

        actor = Model(inputs=input, outputs=policy)
        critic = Model(inputs=input, outputs=value)

        actor._make_predict_function()
        critic._make_predict_function()

        actor.summary()
        critic.summary()

        return actor, critic

    # make loss function for Policy Gradient
    # [log(action probability) * advantages] will be input for the back prop
    # we add entropy of action probability to loss 
Example 25
Project: reinforcement-learning   Author: rlcode   File: breakout_a3c.py    License: MIT License 6 votes vote down vote up
def build_localmodel(self):
        input = Input(shape=self.state_size)
        conv = Conv2D(16, (8, 8), strides=(4, 4), activation='relu')(input)
        conv = Conv2D(32, (4, 4), strides=(2, 2), activation='relu')(conv)
        conv = Flatten()(conv)
        fc = Dense(256, activation='relu')(conv)
        policy = Dense(self.action_size, activation='softmax')(fc)
        value = Dense(1, activation='linear')(fc)

        actor = Model(inputs=input, outputs=policy)
        critic = Model(inputs=input, outputs=value)

        actor._make_predict_function()
        critic._make_predict_function()

        actor.set_weights(self.actor.get_weights())
        critic.set_weights(self.critic.get_weights())

        actor.summary()
        critic.summary()

        return actor, critic 
Example 26
Project: PanopticSegmentation   Author: dmechea   File: parallel_model.py    License: MIT License 6 votes vote down vote up
def build_model(x_train, num_classes):
        # Reset default graph. Keras leaves old ops in the graph,
        # which are ignored for execution but clutter graph
        # visualization in TensorBoard.
        tf.reset_default_graph()

        inputs = KL.Input(shape=x_train.shape[1:], name="input_image")
        x = KL.Conv2D(32, (3, 3), activation='relu', padding="same",
                      name="conv1")(inputs)
        x = KL.Conv2D(64, (3, 3), activation='relu', padding="same",
                      name="conv2")(x)
        x = KL.MaxPooling2D(pool_size=(2, 2), name="pool1")(x)
        x = KL.Flatten(name="flat1")(x)
        x = KL.Dense(128, activation='relu', name="dense1")(x)
        x = KL.Dense(num_classes, activation='softmax', name="dense2")(x)

        return KM.Model(inputs, x, "digit_classifier_model")

    # Load MNIST Data 
Example 27
Project: C51-DDQN-Keras   Author: flyyufelix   File: networks.py    License: MIT License 6 votes vote down vote up
def value_distribution_network(input_shape, num_atoms, action_size, learning_rate):
        """Model Value Distribution

        With States as inputs and output Probability Distributions for all Actions
        """

        state_input = Input(shape=(input_shape)) 
        cnn_feature = Convolution2D(32, 8, 8, subsample=(4,4), activation='relu')(state_input)
        cnn_feature = Convolution2D(64, 4, 4, subsample=(2,2), activation='relu')(cnn_feature)
        cnn_feature = Convolution2D(64, 3, 3, activation='relu')(cnn_feature)
        cnn_feature = Flatten()(cnn_feature)
        cnn_feature = Dense(512, activation='relu')(cnn_feature)

        distribution_list = []
        for i in range(action_size):
            distribution_list.append(Dense(num_atoms, activation='softmax')(cnn_feature))

        model = Model(input=state_input, output=distribution_list)

        adam = Adam(lr=learning_rate)
        model.compile(loss='categorical_crossentropy',optimizer=adam)

        return model 
Example 28
Project: deepJDOT   Author: bbdamodaran   File: architectures.py    License: MIT License 6 votes vote down vote up
def assda_feat_ext(main_input, l2_weight=0.0, small_model=False):
    padding = 'same'
    maxpool_strides = 2 if small_model else 1
    net = dnn.Convolution2D(32, (3, 3),padding=padding, activation='relu',
                                kernel_regularizer=dnn.keras.regularizers.l2(l2_weight))(main_input)
    net = dnn.Convolution2D(32, (3, 3), padding=padding, activation='relu',
                                kernel_regularizer=dnn.keras.regularizers.l2(l2_weight))(net)
    net = dnn.MaxPooling2D(pool_size=(2, 2), strides=maxpool_strides)(net)
    # net = dnn.Dropout(0.5)(net)
    net = dnn.Convolution2D(64, (3, 3), padding=padding, activation='relu',
                                kernel_regularizer=dnn.keras.regularizers.l2(l2_weight))(net)
    net = dnn.Convolution2D(64, (3, 3), padding=padding, activation='relu',
                                kernel_regularizer=dnn.keras.regularizers.l2(l2_weight))(net)
    net = dnn.MaxPooling2D(pool_size=(2, 2), strides=maxpool_strides)(net)
    # net = dnn.Dropout(0.5)(net)
    net = dnn.Convolution2D(128, (3, 3), padding=padding, activation='relu',
                                kernel_regularizer=dnn.keras.regularizers.l2(l2_weight))(net)
    net = dnn.Convolution2D(128, (3, 3), padding=padding, activation='relu',
                                kernel_regularizer=dnn.keras.regularizers.l2(l2_weight))(net)
    net = dnn.MaxPooling2D(pool_size=(2, 2), strides=maxpool_strides)(net)
#   
    net = dnn.Flatten()(net)
    net = dnn.Dense(128,activation='sigmoid',
                        kernel_regularizer=dnn.keras.regularizers.l2(l2_weight),name='feat_ext')(net)
    return net 
Example 29
Project: Keras-GAN   Author: eriklindernoren   File: sgan.py    License: MIT License 5 votes vote down vote up
def build_discriminator(self):

        model = Sequential()

        model.add(Conv2D(32, kernel_size=3, strides=2, input_shape=self.img_shape, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(Conv2D(64, kernel_size=3, strides=2, padding="same"))
        model.add(ZeroPadding2D(padding=((0,1),(0,1))))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(256, kernel_size=3, strides=1, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.25))
        model.add(Flatten())

        model.summary()

        img = Input(shape=self.img_shape)

        features = model(img)
        valid = Dense(1, activation="sigmoid")(features)
        label = Dense(self.num_classes+1, activation="softmax")(features)

        return Model(img, [valid, label]) 
Example 30
Project: Keras-GAN   Author: eriklindernoren   File: cgan.py    License: MIT License 5 votes vote down vote up
def build_discriminator(self):

        model = Sequential()

        model.add(Dense(512, input_dim=np.prod(self.img_shape)))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.4))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dropout(0.4))
        model.add(Dense(1, activation='sigmoid'))
        model.summary()

        img = Input(shape=self.img_shape)
        label = Input(shape=(1,), dtype='int32')

        label_embedding = Flatten()(Embedding(self.num_classes, np.prod(self.img_shape))(label))
        flat_img = Flatten()(img)

        model_input = multiply([flat_img, label_embedding])

        validity = model(model_input)

        return Model([img, label], validity)