Python tensorflow.ConfigProto() Examples

The following are 30 code examples of tensorflow.ConfigProto(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow , or try the search function .
Example #1
Source File: agents.py    From soccer-matlab with BSD 2-Clause "Simplified" License 7 votes vote down vote up
def __init__(self):

        self.session = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,log_device_placement=False))
        self.actor = networks.Actor_MLP(scope="actor1",units=[settings.S_DIM,100,settings.A_DIM],activations=[None,'relu','tanh'],trainable=True)
        self.old_actor = networks.Actor_MLP(scope="actor0",units=[settings.S_DIM,100,settings.A_DIM],activations=[None,'relu','tanh'],trainable=False)
        self.critic =  networks.Critic_MLP(scope="critic1",units=[settings.S_DIM,100,1],activations=[None,'relu',None],trainable=True)

        self.state_tf = tf.placeholder(dtype=tf.float32,shape=[None,settings.S_DIM])
        self.action_tf = tf.placeholder(dtype=tf.float32,shape=[None,settings.A_DIM])
        self.return_tf = tf.placeholder(dtype=tf.float32,shape=[None,1]) 
        self.adv_tf = tf.placeholder(dtype=tf.float32,shape=[None,1]) 
        
        # global steps to keep track of training
        self.actor_step = tf.get_variable('actor_global_step', [], initializer=tf.constant_initializer(0), trainable=False)
        self.critic_step = tf.get_variable('critic_global_step', [], initializer=tf.constant_initializer(0), trainable=False)

        # build computation graphs
        self.actor.build_graph(self.state_tf,self.actor_step) 
        self.old_actor.build_graph(self.state_tf,0)
        self.critic.build_graph(self.state_tf,self.critic_step)
        self.build_graph() 
Example #2
Source File: tfutil.py    From disentangling_conditional_gans with MIT License 6 votes vote down vote up
def create_session(config_dict=dict(), force_as_default=False):
    config = tf.ConfigProto()
    for key, value in config_dict.items():
        fields = key.split('.')
        obj = config
        for field in fields[:-1]:
            obj = getattr(obj, field)
        setattr(obj, fields[-1], value)
    session = tf.Session(config=config)
    if force_as_default:
        session._default_session = session.as_default()
        session._default_session.enforce_nesting = False
        session._default_session.__enter__()
    return session

#----------------------------------------------------------------------------
# Initialize all tf.Variables that have not already been initialized.
# Equivalent to the following, but more efficient and does not bloat the tf graph:
#   tf.variables_initializer(tf.report_unitialized_variables()).run() 
Example #3
Source File: model_based_policy.py    From cs294-112_hws with MIT License 6 votes vote down vote up
def _setup_graph(self):
        """
        Sets up the tensorflow computation graph for training, prediction, and action selection

        The variables returned will be set as class attributes (see __init__)
        """
        tf_config = tf.ConfigProto()
        tf_config.gpu_options.allow_growth = True
        sess = tf.Session(config=tf_config)

        ### PROBLEM 1
        ### YOUR CODE HERE
        state_ph, action_ph, next_state_ph = self._setup_placeholders()
        next_state_pred = self._dynamics_func(state_ph, action_ph, False)
        loss, optimizer = self._setup_training(state_ph, next_state_ph, next_state_pred)
        ### PROBLEM 2
        ### YOUR CODE HERE
        best_action = self._setup_action_selection(state_ph)

        sess.run(tf.global_variables_initializer())

        return sess, state_ph, action_ph, next_state_ph, \
                next_state_pred, loss, optimizer, best_action 
Example #4
Source File: trainer_lib.py    From fine-lm with MIT License 6 votes vote down vote up
def create_session_config(log_device_placement=False,
                          enable_graph_rewriter=False,
                          gpu_mem_fraction=0.95,
                          use_tpu=False,
                          inter_op_parallelism_threads=0,
                          intra_op_parallelism_threads=0):
  """The TensorFlow Session config to use."""
  if use_tpu:
    graph_options = tf.GraphOptions()
  else:
    if enable_graph_rewriter:
      rewrite_options = rewriter_config_pb2.RewriterConfig()
      rewrite_options.layout_optimizer = rewriter_config_pb2.RewriterConfig.ON
      graph_options = tf.GraphOptions(rewrite_options=rewrite_options)
    else:
      graph_options = tf.GraphOptions(
          optimizer_options=tf.OptimizerOptions(
              opt_level=tf.OptimizerOptions.L1, do_function_inlining=False))

  gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_mem_fraction)

  config = tf.ConfigProto(
      allow_soft_placement=True,
      graph_options=graph_options,
      gpu_options=gpu_options,
      log_device_placement=log_device_placement,
      inter_op_parallelism_threads=inter_op_parallelism_threads,
      intra_op_parallelism_threads=intra_op_parallelism_threads)
  return config 
Example #5
Source File: run_mujoco.py    From lirpg with MIT License 6 votes vote down vote up
def train(env_id, num_timesteps, seed):
    env = make_mujoco_env(env_id, seed)

    with tf.Session(config=tf.ConfigProto()):
        ob_dim = env.observation_space.shape[0]
        ac_dim = env.action_space.shape[0]
        with tf.variable_scope("vf"):
            vf = NeuralNetValueFunction(ob_dim, ac_dim)
        with tf.variable_scope("pi"):
            policy = GaussianMlpPolicy(ob_dim, ac_dim)

        learn(env, policy=policy, vf=vf,
            gamma=0.99, lam=0.97, timesteps_per_batch=2500,
            desired_kl=0.002,
            num_timesteps=num_timesteps, animate=False)

        env.close() 
Example #6
Source File: run_atari.py    From lirpg with MIT License 6 votes vote down vote up
def train(env_id, num_timesteps, seed, policy):

    ncpu = multiprocessing.cpu_count()
    if sys.platform == 'darwin': ncpu //= 2
    config = tf.ConfigProto(allow_soft_placement=True,
                            intra_op_parallelism_threads=ncpu,
                            inter_op_parallelism_threads=ncpu)
    config.gpu_options.allow_growth = True #pylint: disable=E1101
    tf.Session(config=config).__enter__()

    env = VecFrameStack(make_atari_env(env_id, 8, seed), 4)
    policy = {'cnn' : CnnPolicy, 'lstm' : LstmPolicy, 'lnlstm' : LnLstmPolicy}[policy]
    ppo2.learn(policy=policy, env=env, nsteps=128, nminibatches=4,
        lam=0.95, gamma=0.99, noptepochs=4, log_interval=1,
        ent_coef=.01,
        lr=lambda f : f * 2.5e-4,
        cliprange=lambda f : f * 0.1,
        total_timesteps=int(num_timesteps * 1.1)) 
Example #7
Source File: run_mujoco.py    From HardRLWithYoutube with MIT License 6 votes vote down vote up
def train(env_id, num_timesteps, seed):
    env = make_mujoco_env(env_id, seed)

    with tf.Session(config=tf.ConfigProto()):
        ob_dim = env.observation_space.shape[0]
        ac_dim = env.action_space.shape[0]
        with tf.variable_scope("vf"):
            vf = NeuralNetValueFunction(ob_dim, ac_dim)
        with tf.variable_scope("pi"):
            policy = GaussianMlpPolicy(ob_dim, ac_dim)

        learn(env, policy=policy, vf=vf,
            gamma=0.99, lam=0.97, timesteps_per_batch=2500,
            desired_kl=0.002,
            num_timesteps=num_timesteps, animate=False)

        env.close() 
Example #8
Source File: nn_model.py    From mercari-price-suggestion with MIT License 6 votes vote down vote up
def __init__(self, train_df, word_count, batch_size, epochs):
        tf.set_random_seed(4)
        session_conf = tf.ConfigProto(intra_op_parallelism_threads=2, inter_op_parallelism_threads=8)
        backend.set_session(tf.Session(graph=tf.get_default_graph(), config=session_conf))

        self.batch_size = batch_size
        self.epochs = epochs

        self.max_name_seq = 10
        self.max_item_desc_seq = 75
        self.max_text = word_count + 1
        self.max_brand = np.max(train_df.brand_name.max()) + 1
        self.max_condition = np.max(train_df.item_condition_id.max()) + 1
        self.max_subcat0 = np.max(train_df.subcat_0.max()) + 1
        self.max_subcat1 = np.max(train_df.subcat_1.max()) + 1
        self.max_subcat2 = np.max(train_df.subcat_2.max()) + 1 
Example #9
Source File: ensemble_gpu.py    From kaggle-carvana-2017 with MIT License 6 votes vote down vote up
def predictor(q, gpu, pq):
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    with sess.as_default():
        model = create_model(gpu)
        while True:
            batch_fnames, x_batch = q.get()
            if x_batch is None:
                break

            preds = model.predict_on_batch(x_batch)

            for i, pred in enumerate(preds):
                filename = batch_fnames[i]
                pq.put((os.path.join(ensembling_dir, filename[:-4] + ".png"), pred)) 
Example #10
Source File: predict_multithreaded.py    From kaggle-carvana-2017 with MIT License 6 votes vote down vote up
def predictor(q, gpu):
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    with sess.as_default():
        model = create_model(gpu)
        while True:
            batch_fnames, x_batch = q.get()
            if x_batch is None:
                break

            preds = model.predict_on_batch(x_batch)

            if args.pred_tta:
                preds = undo_tta(preds, args.pred_tta)

            for i, pred in enumerate(preds):
                filename = batch_fnames[i]
                prediction = pred[:, 1:-1, :]
                array_to_img(prediction * 255).save(os.path.join(output_dir, filename.split('/')[-1][:-4] + ".png")) 
Example #11
Source File: chptToBin.py    From iAI with MIT License 6 votes vote down vote up
def chpt_to_dict_arrays_simple(file_name):
    """
        Convert a checkpoint into into a dictionary of numpy arrays 
        for later use in TensorRT NMT sample.
    """
    config = tf.ConfigProto(allow_soft_placement=True)
    sess = tf.Session(config=config)

    saver = tf.train.import_meta_graph(file_name)
    dir_name = os.path.dirname(os.path.abspath(file_name))
    saver.restore(sess, tf.train.latest_checkpoint(dir_name))

    params = {}
    print ('\nFound the following trainable variables:')
    with sess.as_default():
        variables = tf.trainable_variables()
        for v in variables:
            params[v.name] = v.eval(session=sess)
            print ("{0}    {1}".format(v.name, params[v.name].shape))

    #use default value
    params["forget_bias"] = 1.0
    return params 
Example #12
Source File: chptToBin.py    From iAI with MIT License 6 votes vote down vote up
def chpt_to_dict_arrays_simple(file_name):
    """
        Convert a checkpoint into into a dictionary of numpy arrays 
        for later use in TensorRT NMT sample.
    """
    config = tf.ConfigProto(allow_soft_placement=True)
    sess = tf.Session(config=config)

    saver = tf.train.import_meta_graph(file_name)
    dir_name = os.path.dirname(os.path.abspath(file_name))
    saver.restore(sess, tf.train.latest_checkpoint(dir_name))

    params = {}
    print ('\nFound the following trainable variables:')
    with sess.as_default():
        variables = tf.trainable_variables()
        for v in variables:
            params[v.name] = v.eval(session=sess)
            print ("{0}    {1}".format(v.name, params[v.name].shape))

    #use default value
    params["forget_bias"] = 1.0
    return params 
Example #13
Source File: chptToBin.py    From iAI with MIT License 6 votes vote down vote up
def chpt_to_dict_arrays_simple(file_name):
    """
        Convert a checkpoint into into a dictionary of numpy arrays 
        for later use in TensorRT NMT sample.
    """
    config = tf.ConfigProto(allow_soft_placement=True)
    sess = tf.Session(config=config)

    saver = tf.train.import_meta_graph(file_name)
    dir_name = os.path.dirname(os.path.abspath(file_name))
    saver.restore(sess, tf.train.latest_checkpoint(dir_name))

    params = {}
    print ('\nFound the following trainable variables:')
    with sess.as_default():
        variables = tf.trainable_variables()
        for v in variables:
            params[v.name] = v.eval(session=sess)
            print ("{0}    {1}".format(v.name, params[v.name].shape))

    #use default value
    params["forget_bias"] = 1.0
    return params 
Example #14
Source File: mdbt.py    From ConvLab with MIT License 6 votes vote down vote up
def test_update():
    os.environ["CUDA_VISIBLE_DEVICES"] = '0'
    _config = tf.ConfigProto()
    _config.gpu_options.allow_growth = True
    _config.allow_soft_placement = True
    start_time = time.time()
    mdbt = MDBTTracker()
    print('\tMDBT: model build time: {:.2f} seconds'.format(time.time() - start_time))
    saver = tf.train.Saver()
    mdbt.restore_model(mdbt.sess, saver)
    # demo state history
    mdbt.state['history'] = [['null', 'I\'m trying to find an expensive restaurant in the centre part of town.'],
                             [
                                 'The Cambridge Chop House is an good expensive restaurant in the centre of town. Would you like me to book it for you?',
                                 'Yes, a table for 1 at 16:15 on sunday.  I need the reference number.']]
    new_state = mdbt.update(None, 'hi, this is not good')
    print(json.dumps(new_state, indent=4))
    print('all time: {:.2f} seconds'.format(time.time() - start_time)) 
Example #15
Source File: reaction.py    From armchair-expert with MIT License 6 votes vote down vote up
def __init__(self, path: str = None, use_gpu=False):

        import tensorflow as tf
        from keras.models import Sequential
        from keras.layers import Dense
        from keras.backend import set_session

        self.model = Sequential()
        self.model.add(Dense(AOLReactionFeatureAnalyzer.NUM_FEATURES, activation='relu',
                             input_dim=AOLReactionFeatureAnalyzer.NUM_FEATURES))
        self.model.add(Dense(AOLReactionFeatureAnalyzer.NUM_FEATURES - 2, activation='relu'))
        self.model.add(Dense(1, activation='sigmoid'))
        self.model.compile(optimizer='rmsprop',
                           loss='binary_crossentropy',
                           metrics=['accuracy'])

        if use_gpu:
            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True
            set_session(tf.Session(config=config)) 
Example #16
Source File: structure.py    From armchair-expert with MIT License 6 votes vote down vote up
def __init__(self, use_gpu: bool = False):
        import tensorflow as tf
        from keras.models import Sequential
        from keras.layers import Dense, Embedding
        from keras.layers import LSTM
        from keras.backend import set_session

        latent_dim = StructureModel.SEQUENCE_LENGTH * 8

        model = Sequential()
        model.add(
            Embedding(StructureFeatureAnalyzer.NUM_FEATURES, StructureFeatureAnalyzer.NUM_FEATURES,
                      input_length=StructureModel.SEQUENCE_LENGTH))
        model.add(LSTM(latent_dim, dropout=0.2, return_sequences=False))
        model.add(Dense(StructureFeatureAnalyzer.NUM_FEATURES, activation='softmax'))
        model.summary()
        model.compile(loss='sparse_categorical_crossentropy', optimizer='adam')
        self.model = model

        if use_gpu:
            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True
            set_session(tf.Session(config=config)) 
Example #17
Source File: interface.py    From Generative-adversarial-Nets-in-NLP with Apache License 2.0 6 votes vote down vote up
def train(self):
		# Construct model
		model = Transformer()
		print("Graph loaded")
		init = tf.global_variables_initializer()

		config = tf.ConfigProto()
		config.gpu_options.allow_growth = True

		# Start training
		sv = tf.train.Supervisor(logdir=pm.logdir, save_model_secs=0, init_op=init)
		saver = sv.saver
		with sv.managed_session(config=config) as sess:
			for epoch in range(1, pm.num_epochs + 1):
				if sv.should_stop():
					break
				for _ in tqdm(range(model.num_batch), total=model.num_batch, ncols=70, leave=False, unit='b'):
					sess.run(model.optimizer)

				gs = sess.run(model.global_step)
				saver.save(sess, pm.logdir + '/model_epoch_{}_global_step_{}'.format(epoch, gs))

		print("MSG : Done for training!") 
Example #18
Source File: audio_feature_extractor.py    From Tensorflow-Audio-Classification with Apache License 2.0 6 votes vote down vote up
def __init__(self, checkpoint, pca_params, input_tensor_name, output_tensor_name):
        """Create a new Graph and a new Session for every VGGishExtractor object."""
        super(VGGishExtractor, self).__init__()
        
        self.graph = tf.Graph()
        with self.graph.as_default():
            vggish_slim.define_vggish_slim(training=False)

        sess_config = tf.ConfigProto(allow_soft_placement=True)
        sess_config.gpu_options.allow_growth = True
        self.sess = tf.Session(graph=self.graph, config=sess_config)
        vggish_slim.load_defined_vggish_slim_checkpoint(self.sess, checkpoint)
        
        # use the self.sess to init others
        self.input_tensor = self.graph.get_tensor_by_name(input_tensor_name)
        self.output_tensor = self.graph.get_tensor_by_name(output_tensor_name)

        # postprocessor
        self.postprocess = vggish_postprocess.Postprocessor(pca_params) 
Example #19
Source File: server.py    From convseg with MIT License 5 votes vote down vote up
def make_app(model_dir):
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.gpu_options.per_process_gpu_memory_fraction = 1.0
    config.allow_soft_placement = True
    config.log_device_placement = True
    sess = tf.Session(config=config)
    tagger = Tagger(sess=sess, model_dir=model_dir, scope=TASK.scope, batch_size=200)
    return tornado.web.Application([
        (r"/", MainHandler),
        (r"/%s" % TASK.scope, TaskHandler, {'tagger': tagger})
    ]) 
Example #20
Source File: build.py    From Traffic_sign_detection_YOLO with MIT License 5 votes vote down vote up
def setup_meta_ops(self):
		cfg = dict({
			'allow_soft_placement': False,
			'log_device_placement': False
		})

		utility = min(self.FLAGS.gpu, 1.)
		if utility > 0.0:
			self.say('GPU mode with {} usage'.format(utility))
			cfg['gpu_options'] = tf.GPUOptions(
				per_process_gpu_memory_fraction = utility)
			cfg['allow_soft_placement'] = True
		else: 
			self.say('Running entirely on CPU')
			cfg['device_count'] = {'GPU': 0}

		if self.FLAGS.train: self.build_train_op()
		
		if self.FLAGS.summary:
			self.summary_op = tf.summary.merge_all()
			self.writer = tf.summary.FileWriter(self.FLAGS.summary + 'train')
		
		self.sess = tf.Session(config = tf.ConfigProto(**cfg))
		self.sess.run(tf.global_variables_initializer())

		if not self.ntrain: return
		self.saver = tf.train.Saver(tf.global_variables(), 
			max_to_keep = self.FLAGS.keep)
		if self.FLAGS.load != 0: self.load_from_ckpt()
		
		if self.FLAGS.summary:
			self.writer.add_graph(self.sess.graph) 
Example #21
Source File: face_attack.py    From Adversarial-Face-Attack with GNU General Public License v3.0 5 votes vote down vote up
def __init__(self):
        self.graph = tf.Graph()
        with self.graph.as_default():
            gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5)
            sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
            with sess.as_default():
                self.pnet, self.rnet, self.onet = FaceDet.create_mtcnn(sess, None) 
Example #22
Source File: trainer.py    From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def _init_session(self):
        # Set TF random seed to improve reproducibility
        self.rng = np.random.RandomState([2017, 8, 30])
        tf.set_random_seed(1234)

        # Create TF session
        self.sess = tf.Session(
            config=tf.ConfigProto(allow_soft_placement=True))

        # Object used to keep track of (and return) key accuracies
        if self.hparams.save:
            self.writer = tf.summary.FileWriter(self.hparams.save_dir,
                                                flush_secs=10)
        else:
            self.writer = None 
Example #23
Source File: DeepFM.py    From tensorflow-DeepFM with MIT License 5 votes vote down vote up
def _init_session(self):
        config = tf.ConfigProto(device_count={"gpu": 0})
        config.gpu_options.allow_growth = True
        return tf.Session(config=config) 
Example #24
Source File: test.py    From Sound-Recognition-Tutorial with Apache License 2.0 5 votes vote down vote up
def use_gpu():
    """Configuration for GPU"""
    from keras.backend.tensorflow_backend import set_session
    os.environ['CUDA_VISIBLE_DEVICES'] = str(0)
    config = tf.ConfigProto()
    config.gpu_options.per_process_gpu_memory_fraction = 0.5
    config.gpu_options.allow_growth = True
    set_session(tf.InteractiveSession(config=config)) 
Example #25
Source File: train.py    From Sound-Recognition-Tutorial with Apache License 2.0 5 votes vote down vote up
def use_gpu():
    """Configuration for GPU"""
    from keras.backend.tensorflow_backend import set_session
    os.environ['CUDA_VISIBLE_DEVICES'] = str(0)   # 使用第一台GPU
    config = tf.ConfigProto()
    config.gpu_options.per_process_gpu_memory_fraction = 0.5  # GPU使用率为50%
    config.gpu_options.allow_growth = True    # 允许容量增长
    set_session(tf.InteractiveSession(config=config)) 
Example #26
Source File: seq2seq_attention_decode.py    From DOTA_models with Apache License 2.0 5 votes vote down vote up
def DecodeLoop(self):
    """Decoding loop for long running process."""
    sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
    step = 0
    while step < FLAGS.max_decode_steps:
      time.sleep(DECODE_LOOP_DELAY_SECS)
      if not self._Decode(self._saver, sess):
        continue
      step += 1 
Example #27
Source File: seq2seq_attention.py    From DOTA_models with Apache License 2.0 5 votes vote down vote up
def _Train(model, data_batcher):
  """Runs model training."""
  with tf.device('/cpu:0'):
    model.build_graph()
    saver = tf.train.Saver()
    # Train dir is different from log_root to avoid summary directory
    # conflict with Supervisor.
    summary_writer = tf.summary.FileWriter(FLAGS.train_dir)
    sv = tf.train.Supervisor(logdir=FLAGS.log_root,
                             is_chief=True,
                             saver=saver,
                             summary_op=None,
                             save_summaries_secs=60,
                             save_model_secs=FLAGS.checkpoint_secs,
                             global_step=model.global_step)
    sess = sv.prepare_or_wait_for_session(config=tf.ConfigProto(
        allow_soft_placement=True))
    running_avg_loss = 0
    step = 0
    while not sv.should_stop() and step < FLAGS.max_run_steps:
      (article_batch, abstract_batch, targets, article_lens, abstract_lens,
       loss_weights, _, _) = data_batcher.NextBatch()
      (_, summaries, loss, train_step) = model.run_train_step(
          sess, article_batch, abstract_batch, targets, article_lens,
          abstract_lens, loss_weights)

      summary_writer.add_summary(summaries, train_step)
      running_avg_loss = _RunningAvgLoss(
          running_avg_loss, loss, summary_writer, train_step)
      step += 1
      if step % 100 == 0:
        summary_writer.flush()
    sv.Stop()
    return running_avg_loss 
Example #28
Source File: seq2seq_attention.py    From DOTA_models with Apache License 2.0 5 votes vote down vote up
def _Eval(model, data_batcher, vocab=None):
  """Runs model eval."""
  model.build_graph()
  saver = tf.train.Saver()
  summary_writer = tf.summary.FileWriter(FLAGS.eval_dir)
  sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
  running_avg_loss = 0
  step = 0
  while True:
    time.sleep(FLAGS.eval_interval_secs)
    try:
      ckpt_state = tf.train.get_checkpoint_state(FLAGS.log_root)
    except tf.errors.OutOfRangeError as e:
      tf.logging.error('Cannot restore checkpoint: %s', e)
      continue

    if not (ckpt_state and ckpt_state.model_checkpoint_path):
      tf.logging.info('No model to eval yet at %s', FLAGS.train_dir)
      continue

    tf.logging.info('Loading checkpoint %s', ckpt_state.model_checkpoint_path)
    saver.restore(sess, ckpt_state.model_checkpoint_path)

    (article_batch, abstract_batch, targets, article_lens, abstract_lens,
     loss_weights, _, _) = data_batcher.NextBatch()
    (summaries, loss, train_step) = model.run_eval_step(
        sess, article_batch, abstract_batch, targets, article_lens,
        abstract_lens, loss_weights)
    tf.logging.info(
        'article:  %s',
        ' '.join(data.Ids2Words(article_batch[0][:].tolist(), vocab)))
    tf.logging.info(
        'abstract: %s',
        ' '.join(data.Ids2Words(abstract_batch[0][:].tolist(), vocab)))

    summary_writer.add_summary(summaries, train_step)
    running_avg_loss = _RunningAvgLoss(
        running_avg_loss, loss, summary_writer, train_step)
    if step % 100 == 0:
      summary_writer.flush() 
Example #29
Source File: alexnet_benchmark.py    From DOTA_models with Apache License 2.0 5 votes vote down vote up
def run_benchmark():
  """Run the benchmark on AlexNet."""
  with tf.Graph().as_default():
    # Generate some dummy images.
    image_size = 224
    # Note that our padding definition is slightly different the cuda-convnet.
    # In order to force the model to start with the same activations sizes,
    # we add 3 to the image_size and employ VALID padding above.
    images = tf.Variable(tf.random_normal([FLAGS.batch_size,
                                           image_size,
                                           image_size, 3],
                                          dtype=tf.float32,
                                          stddev=1e-1))

    # Build a Graph that computes the logits predictions from the
    # inference model.
    pool5, parameters = inference(images)

    # Build an initialization operation.
    init = tf.global_variables_initializer()

    # Start running operations on the Graph.
    config = tf.ConfigProto()
    config.gpu_options.allocator_type = 'BFC'
    sess = tf.Session(config=config)
    sess.run(init)

    # Run the forward benchmark.
    time_tensorflow_run(sess, pool5, "Forward")

    # Add a simple objective so we can calculate the backward pass.
    objective = tf.nn.l2_loss(pool5)
    # Compute the gradient with respect to all the parameters.
    grad = tf.gradients(objective, parameters)
    # Run the backward benchmark.
    time_tensorflow_run(sess, grad, "Forward-backward") 
Example #30
Source File: eval.py    From DOTA_models with Apache License 2.0 5 votes vote down vote up
def main(_):
  if not tf.gfile.Exists(FLAGS.eval_log_dir):
    tf.gfile.MakeDirs(FLAGS.eval_log_dir)

  dataset = common_flags.create_dataset(split_name=FLAGS.split_name)
  model = common_flags.create_model(dataset.num_char_classes,
                                    dataset.max_sequence_length,
                                    dataset.num_of_views, dataset.null_code)
  data = data_provider.get_data(
      dataset,
      FLAGS.batch_size,
      augment=False,
      central_crop_size=common_flags.get_crop_size())
  endpoints = model.create_base(data.images, labels_one_hot=None)
  model.create_loss(data, endpoints)
  eval_ops = model.create_summaries(
      data, endpoints, dataset.charset, is_training=False)
  slim.get_or_create_global_step()
  session_config = tf.ConfigProto(device_count={"GPU": 0})
  slim.evaluation.evaluation_loop(
      master=FLAGS.master,
      checkpoint_dir=FLAGS.train_log_dir,
      logdir=FLAGS.eval_log_dir,
      eval_op=eval_ops,
      num_evals=FLAGS.num_batches,
      eval_interval_secs=FLAGS.eval_interval_secs,
      max_number_of_evaluations=FLAGS.number_of_steps,
      session_config=session_config)