Python tensorflow.truncated_normal() Examples
The following are 30
code examples of tensorflow.truncated_normal().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.

Example #1
Source File: discretization.py From fine-lm with MIT License | 7 votes |
def isemhash_bottleneck(x, bottleneck_bits, bottleneck_noise, discretize_warmup_steps, mode, isemhash_noise_dev=0.5, isemhash_mix_prob=0.5): """Improved semantic hashing bottleneck.""" with tf.variable_scope("isemhash_bottleneck"): x = tf.layers.dense(x, bottleneck_bits, name="dense") y = common_layers.saturating_sigmoid(x) if isemhash_noise_dev > 0 and mode == tf.estimator.ModeKeys.TRAIN: noise = tf.truncated_normal( common_layers.shape_list(x), mean=0.0, stddev=isemhash_noise_dev) y = common_layers.saturating_sigmoid(x + noise) d = tf.to_float(tf.less(0.5, y)) + y - tf.stop_gradient(y) d = 2.0 * d - 1.0 # Move from [0, 1] to [-1, 1]. if mode == tf.estimator.ModeKeys.TRAIN: # Flip some bits. noise = tf.random_uniform(common_layers.shape_list(x)) noise = 2.0 * tf.to_float(tf.less(bottleneck_noise, noise)) - 1.0 d *= noise d = common_layers.mix(d, 2.0 * y - 1.0, discretize_warmup_steps, mode == tf.estimator.ModeKeys.TRAIN, max_prob=isemhash_mix_prob) return d, 0.0
Example #2
Source File: block_util.py From DOTA_models with Apache License 2.0 | 6 votes |
def __init__(self, dims=(0,), scale=2.0, **kwargs): """Creates an initializer. Args: dims: Dimension(s) index to compute standard deviation: sqrt(scale / product(shape[dims])) scale: A constant scaling for the initialization used as sqrt(scale / product(shape[dims])). **kwargs: Extra keyword arguments to pass to tf.truncated_normal. """ if isinstance(dims, (int, long)): self._dims = [dims] else: self._dims = dims self._kwargs = kwargs self._scale = scale
Example #3
Source File: optimize.py From fine-lm with MIT License | 6 votes |
def weight_noise(noise_rate, learning_rate, var_list): """Apply weight noise to vars in var_list.""" if not noise_rate: return [tf.no_op()] tf.logging.info("Applying weight noise scaled by learning rate, " "noise_rate: %0.5f", noise_rate) noise_ops = [] for v in var_list: with tf.device(v._ref().device): # pylint: disable=protected-access scale = noise_rate * learning_rate * 0.001 tf.summary.scalar("weight_noise_scale", scale) noise = tf.truncated_normal(v.shape) * scale noise_op = v.assign_add(noise) noise_ops.append(noise_op) return noise_ops
Example #4
Source File: tf_cnn.py From tf-example-models with Apache License 2.0 | 6 votes |
def dense_layer(x, in_dim, out_dim, layer_name, act): """Creates a single densely connected layer of a NN""" with tf.name_scope(layer_name): # layer weights corresponding to the input / output dimensions weights = tf.Variable( tf.truncated_normal( [in_dim, out_dim], stddev=1.0 / tf.sqrt(float(out_dim)) ), name="weights" ) # layer biases corresponding to output dimension biases = tf.Variable(tf.zeros([out_dim]), name="biases") # layer activations applied to Wx+b layer = act(tf.matmul(x, weights) + biases, name="activations") return layer
Example #5
Source File: tf_cnn.py From tf-example-models with Apache License 2.0 | 6 votes |
def conv_pool_layer(x, in_channels, out_channels, layer_name): """Creates a single convpool layer of a NN""" with tf.name_scope(layer_name): # layer weights corresponding to the input / output channels weights = tf.Variable(tf.truncated_normal([5, 5, in_channels, out_channels], stddev=0.1)) # layer biases corresponding to output channels biases = tf.Variable(tf.constant(0.1, shape=[out_channels])) # convolution layer: convolving inputs with the weights and applying ReLU conv = tf.nn.relu(tf.nn.conv2d(x, weights, strides=[1, 1, 1, 1], padding='SAME') + biases) # max-pooling layer: pooling convolutions (after applying ReLU) by 2x2 windows pool = tf.nn.max_pool(conv, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') return pool # PREPARING DATA # downloading (on first run) and extracting MNIST data
Example #6
Source File: tf_mlp.py From tf-example-models with Apache License 2.0 | 6 votes |
def dense_layer(x, in_dim, out_dim, layer_name, act): """Creates a single densely connected layer of a NN""" with tf.name_scope(layer_name): # layer weights corresponding to the input / output dimensions weights = tf.Variable( tf.truncated_normal( [in_dim, out_dim], stddev=1.0 / tf.sqrt(float(out_dim)) ), name="weights" ) # layer biases corresponding to output dimension biases = tf.Variable(tf.zeros([out_dim]), name="biases") # layer activations applied to Wx+b layer = act(tf.matmul(x, weights) + biases, name="activations") return layer # PREPARING DATA # downloading (on first run) and extracting MNIST data
Example #7
Source File: layers.py From tensorflow-u-net with GNU General Public License v3.0 | 6 votes |
def conv_den(x, dendrites, out_channels, variances=[1., 1., 2.], width=11, data_format="NHWC"): if data_format not in ["NHWC", "NCHW"]: raise ValueError("data_format must be \"NHWC\" or \"NCHW\".") if data_format == "NHWC": raise NotImplementedError("data_format \"NHWC\" is not yet implemented!") shape = x.shape.as_list() depth = shape[1] positions_height = tf.Variable(initial_value=tf.truncated_normal([dendrites], stddev=(width - 3) / 4.), name="dendrite_height", dtype=tf.float32) positions_width = tf.Variable(initial_value=tf.truncated_normal([dendrites], stddev=(width - 3) / 4.), name="dendrite_width", dtype=tf.float32) positions_depth = tf.Variable(initial_value=tf.abs(tf.truncated_normal([dendrites], stddev=(depth - 2) / 2.)) + 0.5, name="dendrite_depth", dtype=tf.float32) positions = [positions_height, positions_width, positions_depth] weights = weight_variable([out_channels, dendrites], name="weights") bias = bias_variable([out_channels, 1, 1], name="biases") output = dendrite_layer(x, positions, weights, variances=[1., 1., 2.], width=11, data_format=data_format) return tf.nn.relu(output + bias, name="relu")
Example #8
Source File: layers.py From tensorflow-u-net with GNU General Public License v3.0 | 6 votes |
def weight_variable(shape, stddev=0.1, name=None): """ Creates a weight variable initialized with a truncated normal distribution. Parameters ---------- shape: list or tuple of ints The shape of the weight variable. stddev: float The standard deviation of the truncated normal distribution. name : string The name of the variable in TensorFlow. Returns ------- weights: TF variable The weight variable. """ return tf.Variable(initial_value=tf.truncated_normal(shape, stddev=stddev), name=name, dtype=tf.float32)
Example #9
Source File: multitask_regressor.py From deepchem with MIT License | 6 votes |
def build(self): # Create target inputs self.label_placeholder = tf.placeholder( dtype='float32', shape=(None, self.n_tasks), name="label_placeholder") self.weight_placeholder = tf.placeholder( dtype='float32', shape=(None, self.n_tasks), name="weight_placholder") feat = self.model.return_outputs() feat_size = feat.get_shape()[-1].value outputs = [] for task in range(self.n_tasks): outputs.append( tf.squeeze( model_ops.fully_connected_layer( tensor=feat, size=1, weight_init=tf.truncated_normal( shape=[feat_size, 1], stddev=0.01), bias_init=tf.constant(value=0., shape=[1])))) return outputs
Example #10
Source File: trainer.py From StackGAN with MIT License | 6 votes |
def sample_encoded_context(self, embeddings): '''Helper function for init_opt''' c_mean_logsigma = self.model.generate_condition(embeddings) mean = c_mean_logsigma[0] if cfg.TRAIN.COND_AUGMENTATION: # epsilon = tf.random_normal(tf.shape(mean)) epsilon = tf.truncated_normal(tf.shape(mean)) stddev = tf.exp(c_mean_logsigma[1]) c = mean + stddev * epsilon kl_loss = KL_loss(c_mean_logsigma[0], c_mean_logsigma[1]) else: c = mean kl_loss = 0 return c, cfg.TRAIN.COEFF.KL * kl_loss
Example #11
Source File: trainer.py From StackGAN with MIT License | 6 votes |
def sample_encoded_context(self, embeddings): '''Helper function for init_opt''' # Build conditioning augmentation structure for text embedding # under different variable_scope: 'g_net' and 'hr_g_net' c_mean_logsigma = self.model.generate_condition(embeddings) mean = c_mean_logsigma[0] if cfg.TRAIN.COND_AUGMENTATION: # epsilon = tf.random_normal(tf.shape(mean)) epsilon = tf.truncated_normal(tf.shape(mean)) stddev = tf.exp(c_mean_logsigma[1]) c = mean + stddev * epsilon kl_loss = KL_loss(c_mean_logsigma[0], c_mean_logsigma[1]) else: c = mean kl_loss = 0 # TODO: play with the coefficient for KL return c, cfg.TRAIN.COEFF.KL * kl_loss
Example #12
Source File: Model.py From Handwritten-Line-Text-Recognition-using-Deep-Learning-with-Tensorflow with Apache License 2.0 | 6 votes |
def setupRNN(self): """ Create RNN layers and return output of these layers """ # Collapse layer to remove dimension 100 x 1 x 512 --> 100 x 512 on axis=2 rnnIn3d = tf.squeeze(self.cnnOut4d, axis=[2]) # 2 layers of LSTM cell used to build RNN numHidden = 512 cells = [tf.contrib.rnn.LSTMCell( num_units=numHidden, state_is_tuple=True, name='basic_lstm_cell') for _ in range(2)] stacked = tf.contrib.rnn.MultiRNNCell(cells, state_is_tuple=True) # Bi-directional RNN # BxTxF -> BxTx2H ((forward, backward), _) = tf.nn.bidirectional_dynamic_rnn( cell_fw=stacked, cell_bw=stacked, inputs=rnnIn3d, dtype=rnnIn3d.dtype) # BxTxH + BxTxH -> BxTx2H -> BxTx1X2H concat = tf.expand_dims(tf.concat([forward, backward], 2), 2) # Project output to chars (including blank): BxTx1x2H -> BxTx1xC -> BxTxC kernel = tf.Variable(tf.truncated_normal( [1, 1, numHidden * 2, len(self.charList) + 1], stddev=0.1)) self.rnnOut3d = tf.squeeze(tf.nn.atrous_conv2d(value=concat, filters=kernel, rate=1, padding='SAME'), axis=[2])
Example #13
Source File: optimize.py From BERT with Apache License 2.0 | 6 votes |
def weight_noise(noise_rate, learning_rate, var_list): """Apply weight noise to vars in var_list.""" if not noise_rate: return [tf.no_op()] tf.logging.info("Applying weight noise scaled by learning rate, " "noise_rate: %0.5f", noise_rate) noise_ops = [] for v in var_list: with tf.device(v.device): # pylint: disable=protected-access scale = noise_rate * learning_rate * 0.001 if common_layers.should_generate_summaries(): tf.summary.scalar("weight_noise_scale", scale) noise = tf.truncated_normal(v.shape) * scale noise_op = v.assign_add(noise) noise_ops.append(noise_op) return noise_ops
Example #14
Source File: discretization.py From BERT with Apache License 2.0 | 6 votes |
def tanh_discrete_bottleneck(x, bottleneck_bits, bottleneck_noise, discretize_warmup_steps, mode): """Simple discretization through tanh, flip bottleneck_noise many bits.""" x = tf.layers.dense(x, bottleneck_bits, name="tanh_discrete_bottleneck") d0 = tf.stop_gradient(2.0 * tf.to_float(tf.less(0.0, x))) - 1.0 if mode == tf.estimator.ModeKeys.TRAIN: x += tf.truncated_normal( common_layers.shape_list(x), mean=0.0, stddev=0.2) x = tf.tanh(x) d = x + tf.stop_gradient(2.0 * tf.to_float(tf.less(0.0, x)) - 1.0 - x) if mode == tf.estimator.ModeKeys.TRAIN: noise = tf.random_uniform(common_layers.shape_list(x)) noise = 2.0 * tf.to_float(tf.less(bottleneck_noise, noise)) - 1.0 d *= noise d = common_layers.mix(d, x, discretize_warmup_steps, mode == tf.estimator.ModeKeys.TRAIN) return d, d0
Example #15
Source File: tf_model.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _weight_variable(shape,name=None): """weight_variable generates a weigh t variable of a given shape.""" initial = tf.truncated_normal(shape, stddev=0.01)+0.01 return tf.Variable(initial,name=name)
Example #16
Source File: tf_model.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _weight_variable(shape,name=None): """weight_variable generates a weigh t variable of a given shape.""" initial = tf.truncated_normal(shape, stddev=0.01)+0.01 return tf.Variable(initial,name=name)
Example #17
Source File: tf_model.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _weight_variable(shape,name=None): """weight_variable generates a weigh t variable of a given shape.""" initial = tf.truncated_normal(shape, stddev=0.01)+0.01 return tf.Variable(initial,name=name)
Example #18
Source File: madry_mnist_model.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def _weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial)
Example #19
Source File: model.py From neural-fingerprinting with BSD 3-Clause "New" or "Revised" License | 5 votes |
def set_input_shape(self, input_shape): batch_size, dim = input_shape self.input_shape = [batch_size, dim] self.output_shape = [batch_size, self.num_hid] shape = [dim, self.num_hid] with tf.variable_scope(self.name): init = tf.truncated_normal(shape, stddev=0.1) self.W = self.get_variable(self.w_name, init) self.b = self.get_variable('b', .1 + np.zeros( (self.num_hid,)).astype('float32'))
Example #20
Source File: 2_mnist.py From deep-learning-note with MIT License | 5 votes |
def weight_variable(shape): """weight_variable generates a weight variable of a given shape.""" initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial)
Example #21
Source File: 1_mnist_before.py From deep-learning-note with MIT License | 5 votes |
def weight_variable(shape): """weight_variable generates a weight variable of a given shape.""" initial = tf.truncated_normal(shape, stddev=0.1) return tf.Variable(initial)
Example #22
Source File: neural_gpu.py From DOTA_models with Apache License 2.0 | 5 votes |
def autoenc_quantize(x, nbits, nmaps, do_training, layers=1): """Autoencoder into nbits vectors of bits, using noise and sigmoids.""" enc_x = tf.reshape(x, [-1, nmaps]) for i in xrange(layers - 1): enc_x = tf.layers.dense(enc_x, nmaps, name="autoenc_%d" % i) enc_x = tf.layers.dense(enc_x, nbits, name="autoenc_%d" % (layers - 1)) noise = tf.truncated_normal(tf.shape(enc_x), stddev=2.0) dec_x = sigmoid_cutoff_12(enc_x + noise * do_training) dec_x = tf.reshape(dec_x, [-1, nbits]) for i in xrange(layers): dec_x = tf.layers.dense(dec_x, nmaps, name="autodec_%d" % i) return tf.reshape(dec_x, tf.shape(x))
Example #23
Source File: block_util.py From DOTA_models with Apache License 2.0 | 5 votes |
def __init__(self, dims=(0,), **kwargs): """Creates an initializer. Args: dims: Dimension(s) index to compute standard deviation: 1.0 / sqrt(product(shape[dims])) **kwargs: Extra keyword arguments to pass to tf.truncated_normal. """ if isinstance(dims, (int, long)): self._dims = [dims] else: self._dims = dims self._kwargs = kwargs
Example #24
Source File: block_util.py From DOTA_models with Apache License 2.0 | 5 votes |
def __call__(self, shape, dtype): stddev = 1.0 / np.sqrt(np.prod([shape[x] for x in self._dims])) return tf.truncated_normal( shape=shape, dtype=dtype, stddev=stddev, **self._kwargs)
Example #25
Source File: block_util.py From DOTA_models with Apache License 2.0 | 5 votes |
def __call__(self, shape, dtype): return tf.truncated_normal(shape=shape, dtype=dtype, stddev=self._stddev)
Example #26
Source File: resnet.py From deep-models with Apache License 2.0 | 5 votes |
def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.01) return tf.Variable(initial)
Example #27
Source File: densenet.py From deep-models with Apache License 2.0 | 5 votes |
def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.01) return tf.Variable(initial)
Example #28
Source File: ssresnet.py From deep-models with Apache License 2.0 | 5 votes |
def weight_variable(shape): initial = tf.truncated_normal(shape, stddev=0.01) return tf.Variable(initial)
Example #29
Source File: models.py From nlp-tensorflow with MIT License | 5 votes |
def _build_net(self): with tf.variable_scope("placeholder"): self.input_x = tf.placeholder(tf.float32, shape=(None, self.vocab_size)) self.input_y = tf.placeholder(tf.int32, shape=(None,)) Y_one_hot = tf.one_hot(self.input_y, self.n_class) with tf.variable_scope("output", reuse=tf.AUTO_REUSE): W = tf.get_variable('W', dtype=tf.float32, initializer=tf.truncated_normal((self.vocab_size, self.n_class))) b = tf.get_variable('b', dtype=tf.float32, initializer=tf.constant(0.1, shape=(self.n_class,))) logits = tf.nn.xw_plus_b(self.input_x, W, b) self.prob = tf.reduce_max(tf.nn.softmax(logits), axis=1) self.prediction = tf.cast(tf.argmax(logits, axis=1), tf.int32) with tf.variable_scope("loss"): self.loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y_one_hot)) with tf.variable_scope("train", reuse=tf.AUTO_REUSE): optimizer = tf.train.AdamOptimizer(self.lr) self.train_op = optimizer.minimize(self.loss) with tf.variable_scope("accuracy"): correct = tf.equal(self.prediction, self.input_y) self.accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) self.sess.run(tf.global_variables_initializer())
Example #30
Source File: models.py From nlp-tensorflow with MIT License | 5 votes |
def _build_net(self): with tf.variable_scope("placeholder"): self.input_x = tf.placeholder(tf.float32, shape=(None, self.vocab_size)) self.input_y = tf.placeholder(tf.int32, shape=(None,)) with tf.variable_scope("output", reuse=tf.AUTO_REUSE): W1 = tf.get_variable("W1", dtype=tf.float32, initializer=tf.truncated_normal((self.vocab_size, self.hidden_size))) b1 = tf.get_variable("b1", dtype=tf.float32, initializer=tf.constant(0.1, shape=(self.hidden_size,))) W2 = tf.get_variable("W2", dtype=tf.float32, initializer=tf.truncated_normal((self.hidden_size, self.n_class))) b2 = tf.get_variable("b2", dtype=tf.float32, initializer=tf.constant(0.1, shape=(self.n_class,))) h = tf.nn.relu(tf.nn.xw_plus_b(self.input_x, W1, b1)) logits = tf.nn.xw_plus_b(h, W2, b2) self.prob = tf.reduce_max(tf.nn.softmax(logits), axis=1) self.prediction = tf.cast(tf.argmax(logits, axis=1), tf.int32) with tf.variable_scope("loss"): self.loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=self.input_y)) with tf.variable_scope("train", reuse=tf.AUTO_REUSE): optimizer = tf.train.AdamOptimizer(self.lr) self.train_op = optimizer.minimize(self.loss) with tf.variable_scope("accuracy"): correct = tf.equal(self.prediction, self.input_y) self.accuracy = tf.reduce_mean(tf.cast(correct, tf.float32)) self.sess.run(tf.global_variables_initializer())