Python numpy.array_equal() Examples
The following are 30 code examples for showing how to use numpy.array_equal(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: neural-pipeline Author: toodef File: data_processor_test.py License: MIT License | 6 votes |
def test_train(self): model = SimpleModel().train() train_config = TrainConfig(model, [], torch.nn.Module(), torch.optim.SGD(model.parameters(), lr=0.1)) dp = TrainDataProcessor(train_config=train_config) self.assertFalse(model.fc.weight.is_cuda) self.assertTrue(model.training) res = dp.predict({'data': torch.rand(1, 3)}, is_train=True) self.assertTrue(model.training) self.assertTrue(res.requires_grad) self.assertIsNone(res.grad) with self.assertRaises(NotImplementedError): dp.process_batch({'data': torch.rand(1, 3), 'target': torch.rand(1)}, is_train=True) loss = SimpleLoss() train_config = TrainConfig(model, [], loss, torch.optim.SGD(model.parameters(), lr=0.1)) dp = TrainDataProcessor(train_config=train_config) res = dp.process_batch({'data': torch.rand(1, 3), 'target': torch.rand(1)}, is_train=True) self.assertTrue(model.training) self.assertTrue(loss.module.requires_grad) self.assertIsNotNone(loss.module.grad) self.assertTrue(np.array_equal(res, loss.res.data.numpy()))
Example 2
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: test_gluon_rnn.py License: Apache License 2.0 | 6 votes |
def test_residual(): cell = gluon.rnn.ResidualCell(gluon.rnn.GRUCell(50, prefix='rnn_')) inputs = [mx.sym.Variable('rnn_t%d_data'%i) for i in range(2)] outputs, _ = cell.unroll(2, inputs) outputs = mx.sym.Group(outputs) assert sorted(cell.collect_params().keys()) == \ ['rnn_h2h_bias', 'rnn_h2h_weight', 'rnn_i2h_bias', 'rnn_i2h_weight'] # assert outputs.list_outputs() == \ # ['rnn_t0_out_plus_residual_output', 'rnn_t1_out_plus_residual_output'] args, outs, auxs = outputs.infer_shape(rnn_t0_data=(10, 50), rnn_t1_data=(10, 50)) assert outs == [(10, 50), (10, 50)] outputs = outputs.eval(rnn_t0_data=mx.nd.ones((10, 50)), rnn_t1_data=mx.nd.ones((10, 50)), rnn_i2h_weight=mx.nd.zeros((150, 50)), rnn_i2h_bias=mx.nd.zeros((150,)), rnn_h2h_weight=mx.nd.zeros((150, 50)), rnn_h2h_bias=mx.nd.zeros((150,))) expected_outputs = np.ones((10, 50)) assert np.array_equal(outputs[0].asnumpy(), expected_outputs) assert np.array_equal(outputs[1].asnumpy(), expected_outputs)
Example 3
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: test_operator_gpu.py License: Apache License 2.0 | 6 votes |
def test_residual_fused(): cell = mx.rnn.ResidualCell( mx.rnn.FusedRNNCell(50, num_layers=3, mode='lstm', prefix='rnn_', dropout=0.5)) inputs = [mx.sym.Variable('rnn_t%d_data'%i) for i in range(2)] outputs, _ = cell.unroll(2, inputs, merge_outputs=None) assert sorted(cell.params._params.keys()) == \ ['rnn_parameters'] args, outs, auxs = outputs.infer_shape(rnn_t0_data=(10, 50), rnn_t1_data=(10, 50)) assert outs == [(10, 2, 50)] outputs = outputs.eval(ctx=mx.gpu(0), rnn_t0_data=mx.nd.ones((10, 50), ctx=mx.gpu(0))+5, rnn_t1_data=mx.nd.ones((10, 50), ctx=mx.gpu(0))+5, rnn_parameters=mx.nd.zeros((61200,), ctx=mx.gpu(0))) expected_outputs = np.ones((10, 2, 50))+5 assert np.array_equal(outputs[0].asnumpy(), expected_outputs)
Example 4
Project: DOTA_models Author: ringringyi File: per_image_evaluation_test.py License: Apache License 2.0 | 6 votes |
def test_compute_corloc_with_normal_iou_threshold(self): num_groundtruth_classes = 3 matching_iou_threshold = 0.5 nms_iou_threshold = 1.0 nms_max_output_boxes = 10000 eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold, nms_max_output_boxes) detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3], [0, 0, 5, 5]], dtype=float) detected_scores = np.array([0.9, 0.9, 0.1, 0.9], dtype=float) detected_class_labels = np.array([0, 1, 0, 2], dtype=int) groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3, 3], [0, 0, 6, 6]], dtype=float) groundtruth_class_labels = np.array([0, 0, 2], dtype=int) is_class_correctly_detected_in_image = eval1._compute_cor_loc( detected_boxes, detected_scores, detected_class_labels, groundtruth_boxes, groundtruth_class_labels) expected_result = np.array([1, 0, 1], dtype=int) self.assertTrue(np.array_equal(expected_result, is_class_correctly_detected_in_image))
Example 5
Project: DOTA_models Author: ringringyi File: per_image_evaluation_test.py License: Apache License 2.0 | 6 votes |
def test_compute_corloc_with_very_large_iou_threshold(self): num_groundtruth_classes = 3 matching_iou_threshold = 0.9 nms_iou_threshold = 1.0 nms_max_output_boxes = 10000 eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold, nms_max_output_boxes) detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3], [0, 0, 5, 5]], dtype=float) detected_scores = np.array([0.9, 0.9, 0.1, 0.9], dtype=float) detected_class_labels = np.array([0, 1, 0, 2], dtype=int) groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3, 3], [0, 0, 6, 6]], dtype=float) groundtruth_class_labels = np.array([0, 0, 2], dtype=int) is_class_correctly_detected_in_image = eval1._compute_cor_loc( detected_boxes, detected_scores, detected_class_labels, groundtruth_boxes, groundtruth_class_labels) expected_result = np.array([1, 0, 0], dtype=int) self.assertTrue(np.array_equal(expected_result, is_class_correctly_detected_in_image))
Example 6
Project: DOTA_models Author: ringringyi File: object_detection_evaluation_test.py License: Apache License 2.0 | 6 votes |
def test_add_single_ground_truth_image_info(self): expected_num_gt_instances_per_class = np.array([3, 1, 2], dtype=int) expected_num_gt_imgs_per_class = np.array([2, 1, 2], dtype=int) self.assertTrue(np.array_equal(expected_num_gt_instances_per_class, self.od_eval.num_gt_instances_per_class)) self.assertTrue(np.array_equal(expected_num_gt_imgs_per_class, self.od_eval.num_gt_imgs_per_class)) groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) self.assertTrue(np.allclose(self.od_eval.groundtruth_boxes["img2"], groundtruth_boxes2)) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) self.assertTrue(np.allclose( self.od_eval.groundtruth_is_difficult_list["img2"], groundtruth_is_difficult_list2)) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.assertTrue(np.array_equal(self.od_eval.groundtruth_class_labels[ "img1"], groundtruth_class_labels1))
Example 7
Project: DOTA_models Author: ringringyi File: object_detection_evaluation_test.py License: Apache License 2.0 | 6 votes |
def test_add_single_detected_image_info(self): expected_scores_per_class = [[np.array([0.8, 0.7], dtype=float)], [], [np.array([0.9], dtype=float)]] expected_tp_fp_labels_per_class = [[np.array([0, 1], dtype=bool)], [], [np.array([0], dtype=bool)]] expected_num_images_correctly_detected_per_class = np.array([0, 0, 0], dtype=int) for i in range(self.od_eval.num_class): for j in range(len(expected_scores_per_class[i])): self.assertTrue(np.allclose(expected_scores_per_class[i][j], self.od_eval.scores_per_class[i][j])) self.assertTrue(np.array_equal(expected_tp_fp_labels_per_class[i][ j], self.od_eval.tp_fp_labels_per_class[i][j])) self.assertTrue(np.array_equal( expected_num_images_correctly_detected_per_class, self.od_eval.num_images_correctly_detected_per_class))
Example 8
Project: QCElemental Author: MolSSI File: test_molecule.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_water_minima_fragment(): mol = water_dimer_minima.copy() frag_0 = mol.get_fragment(0, orient=True) frag_1 = mol.get_fragment(1, orient=True) assert frag_0.get_hash() == "5f31757232a9a594c46073082534ca8a6806d367" assert frag_1.get_hash() == "bdc1f75bd1b7b999ff24783d7c1673452b91beb9" frag_0_1 = mol.get_fragment(0, 1) frag_1_0 = mol.get_fragment(1, 0) assert np.array_equal(mol.symbols[:3], frag_0.symbols) assert np.allclose(mol.masses[:3], frag_0.masses) assert np.array_equal(mol.symbols, frag_0_1.symbols) assert np.allclose(mol.geometry, frag_0_1.geometry) assert np.array_equal(np.hstack((mol.symbols[3:], mol.symbols[:3])), frag_1_0.symbols) assert np.allclose(np.hstack((mol.masses[3:], mol.masses[:3])), frag_1_0.masses)
Example 9
Project: prunnable-layers-pytorch Author: alexfjw File: prunable_nn_test.py License: GNU General Public License v3.0 | 6 votes |
def test_pruneFeatureMap_ShouldPruneRightParams(self): dropped_index = 0 output = self.module(self.input) torch.autograd.backward(output, self.upstream_gradient) old_weight_size = self.module.weight.size() old_bias_size = self.module.bias.size() old_out_channels = self.module.out_channels old_weight_values = self.module.weight.data.cpu().numpy() # ensure that the chosen index is dropped self.module.prune_feature_map(dropped_index) # check bias size self.assertEqual(self.module.bias.size()[0], (old_bias_size[0]-1)) # check output channels self.assertEqual(self.module.out_channels, old_out_channels-1) _, *other_old_weight_sizes = old_weight_size # check weight size self.assertEqual(self.module.weight.size(), (old_weight_size[0]-1, *other_old_weight_sizes)) # check weight value expected = np.delete(old_weight_values, dropped_index , 0) self.assertTrue(np.array_equal(self.module.weight.data.cpu().numpy(), expected))
Example 10
Project: prunnable-layers-pytorch Author: alexfjw File: prunable_nn_test.py License: GNU General Public License v3.0 | 6 votes |
def test_PLinearDropInputs_ShouldDropRightParams(self): dropped_index = 0 # assume input is 2x2x2, 2 layers of 2x2 input_shape = (2, 2, 2) module = pnn.PLinear(8, 10) old_num_features = module.in_features old_weight = module.weight.data.cpu().numpy() resized_old_weight = np.resize(old_weight, (module.out_features, *input_shape)) module.drop_inputs(input_shape, dropped_index) new_shape = module.weight.size() # ensure that the chosen index is dropped expected_weight = np.resize(np.delete(resized_old_weight, dropped_index, 1), new_shape) output = module.weight.data.cpu().numpy() self.assertTrue(np.array_equal(output, expected_weight)) # ensure num features is reduced self.assertTrue(module.in_features, old_num_features-1)
Example 11
Project: prunnable-layers-pytorch Author: alexfjw File: prunable_nn_test.py License: GNU General Public License v3.0 | 6 votes |
def test_PBatchNorm2dDropInputChannel_ShouldDropRightParams(self): dropped_index = 0 module = pnn.PBatchNorm2d(2) old_num_features = module.num_features old_bias = module.bias.data.cpu().numpy() old_weight = module.weight.data.cpu().numpy() module.drop_input_channel(dropped_index) # ensure that the chosen index is dropped expected_weight = np.delete(old_weight, dropped_index, 0) self.assertTrue(np.array_equal(module.weight.data.cpu().numpy(), expected_weight)) expected_bias = np.delete(old_bias, dropped_index, 0) self.assertTrue(np.array_equal(module.bias.data.cpu().numpy(), expected_bias)) # ensure num features is reduced self.assertTrue(module.num_features, old_num_features-1)
Example 12
Project: object_detector_app Author: datitran File: per_image_evaluation_test.py License: MIT License | 6 votes |
def test_compute_corloc_with_normal_iou_threshold(self): num_groundtruth_classes = 3 matching_iou_threshold = 0.5 nms_iou_threshold = 1.0 nms_max_output_boxes = 10000 eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold, nms_max_output_boxes) detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3], [0, 0, 5, 5]], dtype=float) detected_scores = np.array([0.9, 0.9, 0.1, 0.9], dtype=float) detected_class_labels = np.array([0, 1, 0, 2], dtype=int) groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3, 3], [0, 0, 6, 6]], dtype=float) groundtruth_class_labels = np.array([0, 0, 2], dtype=int) is_class_correctly_detected_in_image = eval1._compute_cor_loc( detected_boxes, detected_scores, detected_class_labels, groundtruth_boxes, groundtruth_class_labels) expected_result = np.array([1, 0, 1], dtype=int) self.assertTrue(np.array_equal(expected_result, is_class_correctly_detected_in_image))
Example 13
Project: object_detector_app Author: datitran File: per_image_evaluation_test.py License: MIT License | 6 votes |
def test_compute_corloc_with_very_large_iou_threshold(self): num_groundtruth_classes = 3 matching_iou_threshold = 0.9 nms_iou_threshold = 1.0 nms_max_output_boxes = 10000 eval1 = per_image_evaluation.PerImageEvaluation(num_groundtruth_classes, matching_iou_threshold, nms_iou_threshold, nms_max_output_boxes) detected_boxes = np.array([[0, 0, 1, 1], [0, 0, 2, 2], [0, 0, 3, 3], [0, 0, 5, 5]], dtype=float) detected_scores = np.array([0.9, 0.9, 0.1, 0.9], dtype=float) detected_class_labels = np.array([0, 1, 0, 2], dtype=int) groundtruth_boxes = np.array([[0, 0, 1, 1], [0, 0, 3, 3], [0, 0, 6, 6]], dtype=float) groundtruth_class_labels = np.array([0, 0, 2], dtype=int) is_class_correctly_detected_in_image = eval1._compute_cor_loc( detected_boxes, detected_scores, detected_class_labels, groundtruth_boxes, groundtruth_class_labels) expected_result = np.array([1, 0, 0], dtype=int) self.assertTrue(np.array_equal(expected_result, is_class_correctly_detected_in_image))
Example 14
Project: object_detector_app Author: datitran File: object_detection_evaluation_test.py License: MIT License | 6 votes |
def test_add_single_ground_truth_image_info(self): expected_num_gt_instances_per_class = np.array([3, 1, 2], dtype=int) expected_num_gt_imgs_per_class = np.array([2, 1, 2], dtype=int) self.assertTrue(np.array_equal(expected_num_gt_instances_per_class, self.od_eval.num_gt_instances_per_class)) self.assertTrue(np.array_equal(expected_num_gt_imgs_per_class, self.od_eval.num_gt_imgs_per_class)) groundtruth_boxes2 = np.array([[10, 10, 11, 11], [500, 500, 510, 510], [10, 10, 12, 12]], dtype=float) self.assertTrue(np.allclose(self.od_eval.groundtruth_boxes["img2"], groundtruth_boxes2)) groundtruth_is_difficult_list2 = np.array([False, True, False], dtype=bool) self.assertTrue(np.allclose( self.od_eval.groundtruth_is_difficult_list["img2"], groundtruth_is_difficult_list2)) groundtruth_class_labels1 = np.array([0, 2, 0], dtype=int) self.assertTrue(np.array_equal(self.od_eval.groundtruth_class_labels[ "img1"], groundtruth_class_labels1))
Example 15
Project: object_detector_app Author: datitran File: object_detection_evaluation_test.py License: MIT License | 6 votes |
def test_add_single_detected_image_info(self): expected_scores_per_class = [[np.array([0.8, 0.7], dtype=float)], [], [np.array([0.9], dtype=float)]] expected_tp_fp_labels_per_class = [[np.array([0, 1], dtype=bool)], [], [np.array([0], dtype=bool)]] expected_num_images_correctly_detected_per_class = np.array([0, 0, 0], dtype=int) for i in range(self.od_eval.num_class): for j in range(len(expected_scores_per_class[i])): self.assertTrue(np.allclose(expected_scores_per_class[i][j], self.od_eval.scores_per_class[i][j])) self.assertTrue(np.array_equal(expected_tp_fp_labels_per_class[i][ j], self.od_eval.tp_fp_labels_per_class[i][j])) self.assertTrue(np.array_equal( expected_num_images_correctly_detected_per_class, self.od_eval.num_images_correctly_detected_per_class))
Example 16
Project: pyscf Author: pyscf File: df_jk.py License: Apache License 2.0 | 6 votes |
def _ewald_exxdiv_for_G0(cell, kpts, dms, vk, kpts_band=None): s = cell.pbc_intor('int1e_ovlp', hermi=1, kpts=kpts) madelung = tools.pbc.madelung(cell, kpts) if kpts is None: for i,dm in enumerate(dms): vk[i] += madelung * reduce(numpy.dot, (s, dm, s)) elif numpy.shape(kpts) == (3,): if kpts_band is None or is_zero(kpts_band-kpts): for i,dm in enumerate(dms): vk[i] += madelung * reduce(numpy.dot, (s, dm, s)) elif kpts_band is None or numpy.array_equal(kpts, kpts_band): for k in range(len(kpts)): for i,dm in enumerate(dms): vk[i,k] += madelung * reduce(numpy.dot, (s[k], dm[k], s[k])) else: for k, kpt in enumerate(kpts): for kp in member(kpt, kpts_band.reshape(-1,3)): for i,dm in enumerate(dms): vk[i,kp] += madelung * reduce(numpy.dot, (s[k], dm[k], s[k]))
Example 17
Project: pyscf Author: pyscf File: test_shci.py License: Apache License 2.0 | 6 votes |
def test_D2htoDinfh(self): SHCI = lambda: None SHCI.groupname = 'Dooh' #SHCI.orbsym = numpy.array([15,14,0,6,7,2,3,10,11,15,14,17,16,5,13,12,16,17,12,13]) SHCI.orbsym = numpy.array([ 15, 14, 0, 7, 6, 2, 3, 10, 11, 15, 14, 17, 16, 5, 12, 13, 17, 16, 12, 13 ]) coeffs, nRows, rowIndex, rowCoeffs, orbsym = D2htoDinfh(SHCI, 20, 20) coeffs1, nRows1, rowIndex1, rowCoeffs1, orbsym1 = shci.D2htoDinfh( SHCI, 20, 20) self.assertTrue(numpy.array_equal(coeffs1, coeffs)) self.assertTrue(numpy.array_equal(nRows1, nRows)) self.assertTrue(numpy.array_equal(rowIndex1, rowIndex)) self.assertTrue(numpy.array_equal(rowCoeffs1, rowCoeffs)) self.assertTrue(numpy.array_equal(orbsym1, orbsym))
Example 18
Project: pyscf Author: pyscf File: test_shci.py License: Apache License 2.0 | 6 votes |
def test_D2htoDinfh(self): SHCI = lambda: None SHCI.groupname = 'Dooh' #SHCI.orbsym = numpy.array([15,14,0,6,7,2,3,10,11,15,14,17,16,5,13,12,16,17,12,13]) SHCI.orbsym = numpy.array([ 15, 14, 0, 7, 6, 2, 3, 10, 11, 15, 14, 17, 16, 5, 12, 13, 17, 16, 12, 13 ]) coeffs, nRows, rowIndex, rowCoeffs, orbsym = D2htoDinfh(SHCI, 20, 20) coeffs1, nRows1, rowIndex1, rowCoeffs1, orbsym1 = shci.D2htoDinfh( SHCI, 20, 20) self.assertTrue(numpy.array_equal(coeffs1, coeffs)) self.assertTrue(numpy.array_equal(nRows1, nRows)) self.assertTrue(numpy.array_equal(rowIndex1, rowIndex)) self.assertTrue(numpy.array_equal(rowCoeffs1, rowCoeffs)) self.assertTrue(numpy.array_equal(orbsym1, orbsym))
Example 19
Project: pyscf Author: pyscf File: test_numpy_helper.py License: Apache License 2.0 | 6 votes |
def test_takebak_2d(self): b = numpy.arange(9.).reshape((3,3)) a = numpy.arange(49.).reshape(7,7) idx = numpy.array([3,0,5]) idy = numpy.array([5,4,1]) ref = a.copy() ref[idx[:,None],idy] += b lib.takebak_2d(a, b, idx, idy) self.assertTrue(numpy.array_equal(ref, a)) b = numpy.arange(9, dtype=numpy.int32).reshape((3,3)) a = numpy.arange(49, dtype=numpy.int32).reshape(7,7) ref = a.copy() ref[idx[:,None],idy] += b lib.takebak_2d(a, b, idx, idy) self.assertTrue(numpy.array_equal(ref, a))
Example 20
Project: hsds Author: HDFGroup File: chunkUtil.py License: Apache License 2.0 | 6 votes |
def chunkWriteSelection(chunk_arr=None, slices=None, data=None): log.info("chunkWriteSelection") dims = chunk_arr.shape rank = len(dims) if rank == 0: msg = "No dimension passed to chunkReadSelection" raise ValueError(msg) if len(slices) != rank: msg = "Selection rank does not match dataset rank" raise ValueError(msg) if len(data.shape) != rank: msg = "Input arr does not match dataset rank" raise ValueError(msg) updated = False # check if the new data modifies the array or not if not np.array_equal(chunk_arr[slices], data): # update chunk array chunk_arr[slices] = data updated = True return updated
Example 21
Project: reinforcement_learning Author: yrlu File: test_exp_replay.py License: MIT License | 6 votes |
def test3(self): exprep = exp_replay.ExpReplay(mem_size=100, state_size=[2,2], kth=4) for i in xrange(120): exprep.add_step(Step(cur_step=[[i,i],[i,i]], action=0, next_step=[[i+1,i+1],[i+1,i+1]], reward=0, done=False)) self.assertEqual(len(exprep.mem), 100) self.assertEqual(exprep.mem[-1:][0].cur_step, [[119,119],[119,119]]) last_state = exprep.get_last_state() self.assertEqual(np.shape(last_state),(2,2,4)) self.assertTrue(np.array_equal(last_state[:,:,0], [[116,116],[116,116]])) self.assertTrue(np.array_equal(last_state[:,:,1], [[117,117],[117,117]])) self.assertTrue(np.array_equal(last_state[:,:,2], [[118,118],[118,118]])) self.assertTrue(np.array_equal(last_state[:,:,3], [[119,119],[119,119]])) sample = exprep.sample(5) self.assertEqual(len(sample), 5) self.assertEqual(np.shape(sample[0].cur_step), (2,2,4)) self.assertEqual(np.shape(sample[0].next_step), (2,2,4))
Example 22
Project: indras_net Author: gcallah File: vector_space.py License: GNU General Public License v3.0 | 5 votes |
def equals(self, other): """ For prehensions of the base type, they are equal when their vetors are equal. """ return np.array_equal(self.vector, other.vector)
Example 23
Project: vergeml Author: mme File: test_cache.py License: MIT License | 5 votes |
def _test_read_write_ser(path, compress, data, type): wcache = SerializedFileCache(str(path), "w", compress=compress) for i in range(10): wcache.write(data=data, meta=dict(meta=i)) wcache.close() rcache = SerializedFileCache(path, "r", compress=compress) def cmpf(x, y, tp=type): if tp == _BYTES or tp == _PICKLE: return x == y elif tp == _NUMPY: return np.array_equal(x, y) elif isinstance(tp, tuple): return cmpf(x[0], y[0], tp[0]) and cmpf(x[1], y[1], tp[1]) res = rcache.read(0, 5) assert cmpf(res[0][0], data) assert res[0][1] == dict(meta=0) assert cmpf(res[4][0], data) assert res[4][1] == dict(meta=4) res = rcache.read(5, 5) assert cmpf(res[0][0], data) assert res[0][1] == dict(meta=5) assert cmpf(res[4][0], data) assert res[4][1] == dict(meta=9) assert rcache.cnt.info[0] == type
Example 24
Project: aospy Author: spencerahill File: calc.py License: Apache License 2.0 | 5 votes |
def _add_grid_attributes(self, ds): """Add model grid attributes to a dataset""" for name_int, names_ext in self._grid_attrs.items(): ds_coord_name = set(names_ext).intersection(set(ds.coords) | set(ds.data_vars)) model_attr = getattr(self.model, name_int, None) if ds_coord_name and (model_attr is not None): # Force coords to have desired name. ds = ds.rename({list(ds_coord_name)[0]: name_int}) ds = ds.set_coords(name_int) if not np.array_equal(ds[name_int], model_attr): if np.allclose(ds[name_int], model_attr): msg = ("Values for '{0}' are nearly (but not exactly) " "the same in the Run {1} and the Model {2}. " "Therefore replacing Run's values with the " "model's.".format(name_int, self.run, self.model)) logging.info(msg) ds[name_int].values = model_attr.values else: msg = ("Model coordinates for '{0}' do not match those" " in Run: {1} vs. {2}" "".format(name_int, ds[name_int], model_attr)) logging.info(msg) else: # Bring in coord from model object if it exists. ds = ds.load() if model_attr is not None: ds[name_int] = model_attr ds = ds.set_coords(name_int) if (self.dtype_in_vert == 'pressure' and internal_names.PLEVEL_STR in ds.coords): self.pressure = ds.level return ds
Example 25
Project: image_to_numpy Author: ageitgey File: test_load_image_file.py License: MIT License | 5 votes |
def test_jpeg_rotation(self): # Make sure all Portrait test images are auto-rotated correctly for i in range(9): img_jpg = load_image_file(f"Portrait_{i}.jpg") ref_img = np.load(f"Portrait_{i}.jpg.npy") self.assertTrue(np.array_equal(ref_img, img_jpg)) # Make sure all Landscape test images are auto-rotated correctly for i in range(9): img_jpg = load_image_file(f"Landscape_{i}.jpg") ref_img = np.load(f"Landscape_{i}.jpg.npy") self.assertTrue(np.array_equal(ref_img, img_jpg))
Example 26
Project: mmdetection Author: open-mmlab File: test_nms.py License: Apache License 2.0 | 5 votes |
def test_nms_device_and_dtypes_cpu(): """ CommandLine: xdoctest -m tests/test_nms.py test_nms_device_and_dtypes_cpu """ iou_thr = 0.6 base_dets = np.array([[49.1, 32.4, 51.0, 35.9, 0.1], [49.3, 32.9, 51.0, 35.3, 0.05], [35.3, 11.5, 39.9, 14.5, 0.9], [35.2, 11.7, 39.7, 15.7, 0.3]]) base_expected_suppressed = np.array([[35.3, 11.5, 39.9, 14.5, 0.9], [49.1, 32.4, 51.0, 35.9, 0.1]]) # CPU can handle float32 and float64 dets = base_dets.astype(np.float32) expected_suppressed = base_expected_suppressed.astype(np.float32) suppressed, inds = nms(dets, iou_thr) assert dets.dtype == suppressed.dtype assert np.array_equal(suppressed, expected_suppressed) dets = torch.FloatTensor(base_dets) expected_suppressed = torch.FloatTensor(base_expected_suppressed) suppressed, inds = nms(dets, iou_thr) assert dets.dtype == suppressed.dtype assert torch.equal(suppressed, expected_suppressed) dets = base_dets.astype(np.float64) expected_suppressed = base_expected_suppressed.astype(np.float64) suppressed, inds = nms(dets, iou_thr) assert dets.dtype == suppressed.dtype assert np.array_equal(suppressed, expected_suppressed) dets = torch.DoubleTensor(base_dets) expected_suppressed = torch.DoubleTensor(base_expected_suppressed) suppressed, inds = nms(dets, iou_thr) assert dets.dtype == suppressed.dtype assert torch.equal(suppressed, expected_suppressed)
Example 27
Project: mmdetection Author: open-mmlab File: test_nms.py License: Apache License 2.0 | 5 votes |
def test_nms_device_and_dtypes_gpu(): """ CommandLine: xdoctest -m tests/test_nms.py test_nms_device_and_dtypes_gpu """ if not torch.cuda.is_available(): import pytest pytest.skip('test requires GPU and torch+cuda') iou_thr = 0.6 base_dets = np.array([[49.1, 32.4, 51.0, 35.9, 0.1], [49.3, 32.9, 51.0, 35.3, 0.05], [35.3, 11.5, 39.9, 14.5, 0.9], [35.2, 11.7, 39.7, 15.7, 0.3]]) base_expected_suppressed = np.array([[35.3, 11.5, 39.9, 14.5, 0.9], [49.1, 32.4, 51.0, 35.9, 0.1]]) for device_id in range(torch.cuda.device_count()): print(f'Run NMS on device_id = {device_id!r}') # GPU can handle float32 but not float64 dets = base_dets.astype(np.float32) expected_suppressed = base_expected_suppressed.astype(np.float32) suppressed, inds = nms(dets, iou_thr, device_id) assert dets.dtype == suppressed.dtype assert np.array_equal(suppressed, expected_suppressed) dets = torch.FloatTensor(base_dets).to(device_id) expected_suppressed = torch.FloatTensor(base_expected_suppressed).to( device_id) suppressed, inds = nms(dets, iou_thr) assert dets.dtype == suppressed.dtype assert torch.equal(suppressed, expected_suppressed)
Example 28
Project: neural-pipeline Author: toodef File: data_processor_test.py License: MIT License | 5 votes |
def compare_two_models(unittest_obj: unittest.TestCase, model1: torch.nn.Module, model2: torch.nn.Module): def on_node(n1, n2): if n1.device == torch.device('cuda:0'): n1 = n1.to('cpu') if n2.device == torch.device('cuda:0'): n2 = n2.to('cpu') unittest_obj.assertTrue(np.array_equal(n1.numpy(), n2.numpy())) state_dict1 = model1.state_dict().copy() state_dict2 = model2.state_dict().copy() dict_pair_recursive_bypass(state_dict1, state_dict2, on_node)
Example 29
Project: neural-pipeline Author: toodef File: data_processor_test.py License: MIT License | 5 votes |
def test_continue_from_checkpoint(self): def on_node(n1, n2): self.assertTrue(np.array_equal(n1.numpy(), n2.numpy())) model = SimpleModel().train() dp = DataProcessor(model=model) with self.assertRaises(Model.ModelException): dp.save_state() try: fsm = FileStructManager(self.base_dir, is_continue=False) dp.set_checkpoints_manager(CheckpointsManager(fsm)) dp.save_state() except: self.fail('Fail to DataProcessor load when CheckpointsManager was defined') del dp model_new = SimpleModel().train() dp = DataProcessor(model=model_new) with self.assertRaises(Model.ModelException): dp.load() fsm = FileStructManager(base_dir=self.base_dir, is_continue=True) dp.set_checkpoints_manager(CheckpointsManager(fsm)) try: fsm = FileStructManager(self.base_dir, is_continue=True) dp.set_checkpoints_manager(CheckpointsManager(fsm)) dp.load() except: self.fail('Fail to DataProcessor load when CheckpointsManager was defined') compare_two_models(self, model, model_new)
Example 30
Project: neural-pipeline Author: toodef File: data_processor_test.py License: MIT License | 5 votes |
def test_continue_from_checkpoint(self): def on_node(n1, n2): self.assertTrue(np.array_equal(n1.numpy(), n2.numpy())) model = SimpleModel().train() loss = SimpleLoss() for optim in [torch.optim.SGD(model.parameters(), lr=0.1), torch.optim.Adam(model.parameters(), lr=0.1)]: train_config = TrainConfig(model, [], loss, optim) dp_before = TrainDataProcessor(train_config=train_config) before_state_dict = model.state_dict().copy() dp_before.update_lr(0.023) with self.assertRaises(Model.ModelException): dp_before.save_state() try: fsm = FileStructManager(base_dir=self.base_dir, is_continue=False) dp_before.set_checkpoints_manager(CheckpointsManager(fsm)) dp_before.save_state() except: self.fail("Exception on saving state when 'CheckpointsManager' specified") fsm = FileStructManager(base_dir=self.base_dir, is_continue=True) dp_after = TrainDataProcessor(train_config=train_config) with self.assertRaises(Model.ModelException): dp_after.load() try: cm = CheckpointsManager(fsm) dp_after.set_checkpoints_manager(cm) dp_after.load() except: self.fail('DataProcessor initialisation raises exception') after_state_dict = model.state_dict().copy() dict_pair_recursive_bypass(before_state_dict, after_state_dict, on_node) self.assertEqual(dp_before.get_lr(), dp_after.get_lr()) shutil.rmtree(self.base_dir)