Python numpy.fromfile() Examples
The following are 30 code examples for showing how to use numpy.fromfile(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: deep-learning-note Author: wdxtub File: utils.py License: MIT License | 7 votes |
def parse_data(path, dataset, flatten): if dataset != 'train' and dataset != 't10k': raise NameError('dataset must be train or t10k') label_file = os.path.join(path, dataset + '-labels-idx1-ubyte') with open(label_file, 'rb') as file: _, num = struct.unpack(">II", file.read(8)) labels = np.fromfile(file, dtype=np.int8) # int8 new_labels = np.zeros((num, 10)) new_labels[np.arange(num), labels] = 1 img_file = os.path.join(path, dataset + '-images-idx3-ubyte') with open(img_file, 'rb') as file: _, num, rows, cols = struct.unpack(">IIII", file.read(16)) imgs = np.fromfile(file, dtype=np.uint8).reshape(num, rows, cols) # uint8 imgs = imgs.astype(np.float32) / 255.0 if flatten: imgs = imgs.reshape([num, -1]) return imgs, new_labels
Example 2
Project: me-ica Author: ME-ICA File: io.py License: GNU Lesser General Public License v2.1 | 7 votes |
def _fread3_many(fobj, n): """Read 3-byte ints from an open binary file object. Parameters ---------- fobj : file File descriptor Returns ------- out : 1D array An array of 3 byte int """ b1, b2, b3 = np.fromfile(fobj, ">u1", 3 * n).reshape(-1, 3).astype(np.int).T return (b1 << 16) + (b2 << 8) + b3
Example 3
Project: ArtGAN Author: cs-chan File: ingest_stl10.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def collectdata(self,): print 'Start Collect Data...' train_x_path = os.path.join(self.input_dir, 'unlabeled_X.bin') train_xf = open(train_x_path, 'rb') train_x = np.fromfile(train_xf, dtype=np.uint8) train_x = np.reshape(train_x, (-1, 3, 96, 96)) train_x = np.transpose(train_x, (0, 3, 2, 1)) idx = 0 for i in xrange(train_x.shape[0]): if not self.skipimg: transform_and_save(img_arr=train_x[i], output_filename=os.path.join(self.unlabeldir, str(idx) + '.jpg')) self.trainpairlist[os.path.join('images', 'unlabeled', str(idx) + '.jpg')] = 'labels/11.txt' idx += 1 print 'Finished Collect Data...'
Example 4
Project: pointnet-registration-framework Author: vinits5 File: plyfile.py License: MIT License | 6 votes |
def _read(self, stream, text, byte_order): ''' Read the actual data from a PLY file. ''' if text: self._read_txt(stream) else: if self._have_list: # There are list properties, so a simple load is # impossible. self._read_bin(stream, byte_order) else: # There are no list properties, so loading the data is # much more straightforward. self._data = _np.fromfile(stream, self.dtype(byte_order), self.count) if len(self._data) < self.count: k = len(self._data) del self._data raise PlyParseError("early end-of-file", self, k) self._check_sanity()
Example 5
Project: baseband Author: mhvk File: test_mark4.py License: GNU General Public License v3.0 | 6 votes |
def test_payload_getitem_setitem(self, item): with open(SAMPLE_FILE, 'rb') as fh: fh.seek(0xa88) header = mark4.Mark4Header.fromfile(fh, ntrack=64, decade=2010) payload = mark4.Mark4Payload.fromfile(fh, header) sel_data = payload.data[item] assert np.all(payload[item] == sel_data) payload2 = mark4.Mark4Payload(payload.words.copy(), header) assert payload2 == payload payload2[item] = -sel_data check = payload.data check[item] = -sel_data assert np.all(payload2[item] == -sel_data) assert np.all(payload2.data == check) assert payload2 != payload payload2[item] = sel_data assert np.all(payload2[item] == sel_data) assert payload2 == payload
Example 6
Project: baseband Author: mhvk File: test_mark4.py License: GNU General Public License v3.0 | 6 votes |
def test_binary_file_reader(self): with mark4.open(SAMPLE_FILE, 'rb', decade=2010, ntrack=64) as fh: locations = fh.locate_frames() assert locations == [0xa88, 0xa88+64*2500] fh.seek(0xa88) header = mark4.Mark4Header.fromfile(fh, decade=2010, ntrack=64) fh.seek(0xa88) header2 = fh.read_header() current_pos = fh.tell() assert header2 == header frame_rate = fh.get_frame_rate() assert abs(frame_rate - 32 * u.MHz / header.samples_per_frame) < 1 * u.nHz assert fh.tell() == current_pos repr_fh = repr(fh) assert repr_fh.startswith('Mark4FileReader') assert 'ntrack=64, decade=2010, ref_time=None' in repr_fh
Example 7
Project: baseband Author: mhvk File: test_mark4.py License: GNU General Public License v3.0 | 6 votes |
def test_header_times(self): with mark4.open(SAMPLE_FILE, 'rb', decade=2010, ntrack=64) as fh: fh.seek(0xa88) header0 = mark4.Mark4Header.fromfile(fh, ntrack=64, decade=2010) start_time = header0.time # Use frame size, since header adds to payload. samples_per_frame = header0.frame_nbytes * 8 // 2 // 8 frame_rate = 32. * u.MHz / samples_per_frame frame_duration = 1. / frame_rate fh.seek(0xa88) for frame_nr in range(100): try: frame = fh.read_frame() except EOFError: break header_time = frame.header.time expected = start_time + frame_nr * frame_duration assert abs(header_time - expected) < 1. * u.ns
Example 8
Project: baseband Author: mhvk File: test_mark4.py License: GNU General Public License v3.0 | 6 votes |
def test_header(self): with open(SAMPLE_32TRACK, 'rb') as fh: fh.seek(9656) header = mark4.Mark4Header.fromfile(fh, ntrack=32, decade=2010) # Try initialising with properties instead of keywords. # Here, we let # * time imply the decade, bcd_unit_year, bcd_day, bcd_hour, # bcd_minute, bcd_second, bcd_fraction; # * ntrack, samples_per_frame, bps define headstack_id, bcd_track_id, # fan_out, and magnitude_bit; # * nsb defines lsb_output and converter_id. header1 = mark4.Mark4Header.fromvalues( ntrack=32, samples_per_frame=80000, bps=2, nsb=2, time=header.time, system_id=108) assert header1 == header
Example 9
Project: baseband Author: mhvk File: test_mark4.py License: GNU General Public License v3.0 | 6 votes |
def test_header(self): with open(SAMPLE_32TRACK_FANOUT2, 'rb') as fh: fh.seek(17436) header = mark4.Mark4Header.fromfile(fh, ntrack=32, decade=2010) # Try initialising with properties instead of keywords. # * time imply the decade, bcd_unit_year, bcd_day, bcd_hour, # bcd_minute, bcd_second, bcd_fraction; # * ntrack, samples_per_frame, bps define headstack_id, bcd_track_id, # fan_out, and magnitude_bit; # * header.converter since lsb_output and converter_id are somewhat # non-standard header1 = mark4.Mark4Header.fromvalues( ntrack=32, samples_per_frame=40000, bps=2, time=header.time, system_id=108, converters=header.converters) assert header1 == header
Example 10
Project: baseband Author: mhvk File: test_mark4.py License: GNU General Public License v3.0 | 6 votes |
def test_header(self): with open(SAMPLE_64TRACK_FT, 'rb') as fh: fh.seek(124288) header = mark4.Mark4Header.fromfile(fh, ntrack=64, decade=2010) # Try initialising with properties instead of keywords. # * time imply the decade, bcd_unit_year, bcd_day, bcd_hour, # bcd_minute, bcd_second, bcd_fraction; # * ntrack, samples_per_frame, bps define headstack_id, bcd_track_id, # fan_out, and magnitude_bit; # * explicitly set lsb_output and converter_id as they are so odd. header1 = mark4.Mark4Header.fromvalues( ntrack=64, samples_per_frame=40000, time=header.time, system_id=114, lsb_output=header['lsb_output'], converter_id=header['converter_id'], magnitude_bit=header['magnitude_bit']) assert header1 == header
Example 11
Project: yatsm Author: ceholden File: stack_line_readers.py License: MIT License | 6 votes |
def _read_row(self, row): data = np.empty((self.size[1], self.n_image, self.size[0]), self.datatype) for i, fid in enumerate(self.files): # Find where we need to seek to offset = np.dtype(self.datatype).itemsize * \ (row * self.size[0]) * self.size[1] # Seek relative to current position fid.seek(offset - fid.tell(), 1) # Read data[:, i, :] = np.fromfile(fid, dtype=self.datatype, count=self.size[0] * self.size[1], ).reshape(self.size).T return data
Example 12
Project: CapsLayer Author: naturomics File: writer.py License: Apache License 2.0 | 6 votes |
def load_fashion_mnist(path, split): split = split.lower() image_file, label_file = [os.path.join(path, file_name) for file_name in MNIST_FILES[split]] with open(image_file) as fd: images = np.fromfile(file=fd, dtype=np.uint8) images = images[16:].reshape(-1, 784).astype(np.float32) if split == "train": images = images[:55000] elif split == "eval": images = images[55000:] with open(label_file) as fd: labels = np.fromfile(file=fd, dtype=np.uint8) labels = labels[8:].astype(np.int32) if split == "train": labels = labels[:55000] elif split == "eval": labels = labels[55000:] return(zip(images, labels))
Example 13
Project: CapsLayer Author: naturomics File: writer.py License: Apache License 2.0 | 6 votes |
def load_mnist(path, split): split = split.lower() image_file, label_file = [os.path.join(path, file_name) for file_name in MNIST_FILES[split]] with open(image_file) as fd: images = np.fromfile(file=fd, dtype=np.uint8) images = images[16:].reshape(-1, 784).astype(np.float32) if split == "train": images = images[:55000] elif split == "eval": images = images[55000:] with open(label_file) as fd: labels = np.fromfile(file=fd, dtype=np.uint8) labels = labels[8:].astype(np.int32) if split == "train": labels = labels[:55000] elif split == "eval": labels = labels[55000:] return(zip(images, labels))
Example 14
Project: ibllib Author: int-brain-lab File: certification_protocol.py License: MIT License | 6 votes |
def load_rf_mapping_stimulus(session_path, stim_metadata): """ extract frames of rf mapping stimulus :param session_path: absolute path of a session, i.e. /mnt/data/Subjects/ZM_1887/2019-07-10/001 :type session_path: str :param stim_metadata: dictionary of stimulus/task metadata :type stim_metadata: dict :return: stimulus frames :rtype: np.ndarray of shape (y_pix, x_pix, n_frames) """ idx_rfm = get_stim_num_from_name(stim_metadata['VISUAL_STIMULI'], 'receptive_field_mapping') if idx_rfm is not None: stim_filename = stim_metadata['VISUAL_STIM_%i' % idx_rfm].get( 'stim_data_file_name', '*RFMapStim.raw*') stim_file = glob.glob(os.path.join(session_path, 'raw_behavior_data', stim_filename))[0] frame_array = np.fromfile(stim_file, dtype='uint8') y_pix, x_pix, _ = stim_metadata['VISUAL_STIM_%i' % idx_rfm]['stim_file_shape'] frames = np.transpose(np.reshape(frame_array, [y_pix, x_pix, -1], order='F'), [2, 1, 0]) else: frames = np.array([]) return frames
Example 15
Project: typhon Author: atmtools File: topography.py License: MIT License | 6 votes |
def get_tile(name): """ Get tile with the given name. Check the cache for the tile with the given name. If not found, the tile is download. Args: name(str): The name of the tile. """ dem_file = os.path.join(_get_data_path(), (name + ".dem").upper()) if not (os.path.exists(dem_file)): SRTM30.download_tile(name) y = np.fromfile(dem_file, dtype = np.dtype('>i2')).reshape(SRTM30._tile_height, SRTM30._tile_width) return y
Example 16
Project: typhon Author: atmtools File: catalogues.py License: MIT License | 6 votes |
def from_xml(cls, xmlelement): """Loads a Sparse object from an existing file.""" binaryfp = xmlelement.binaryfp nelem = int(xmlelement[0].attrib['nelem']) nrows = int(xmlelement.attrib['nrows']) ncols = int(xmlelement.attrib['ncols']) if binaryfp is None: rowindex = np.fromstring(xmlelement[0].text, sep=' ').astype(int) colindex = np.fromstring(xmlelement[1].text, sep=' ').astype(int) sparsedata = np.fromstring(xmlelement[2].text, sep=' ') else: rowindex = np.fromfile(binaryfp, dtype='<i4', count=nelem) colindex = np.fromfile(binaryfp, dtype='<i4', count=nelem) sparsedata = np.fromfile(binaryfp, dtype='<d', count=nelem) return cls((sparsedata, (rowindex, colindex)), [nrows, ncols])
Example 17
Project: typhon Author: atmtools File: read.py License: MIT License | 6 votes |
def Vector(elem): nelem = int(elem.attrib['nelem']) if nelem == 0: arr = np.ndarray((0,)) else: # sep=' ' seems to work even when separated by newlines, see # http://stackoverflow.com/q/31882167/974555 if elem.binaryfp is not None: arr = np.fromfile(elem.binaryfp, dtype='<d', count=nelem) else: arr = np.fromstring(elem.text, sep=' ') if arr.size != nelem: raise RuntimeError( 'Expected {:s} elements in Vector, found {:d}' ' elements!'.format(elem.attrib['nelem'], arr.size)) return arr
Example 18
Project: typhon Author: atmtools File: read.py License: MIT License | 6 votes |
def ComplexMatrix(elem): # turn dims around: in ARTS, [10 x 1 x 1] means 10 pages, 1 row, 1 col dimnames = [dim for dim in dimension_names if dim in elem.attrib.keys()][::-1] dims = [int(elem.attrib[dim]) for dim in dimnames] if np.prod(dims) == 0: flatarr = np.ndarray(dims, dtype=np.complex128) elif elem.binaryfp is not None: flatarr = np.fromfile(elem.binaryfp, dtype=np.complex128, count=np.prod(np.array(dims)).item()) flatarr = flatarr.reshape(dims) else: flatarr = np.fromstring(elem.text, sep=' ', dtype=np.float64) flatarr.dtype = np.complex128 flatarr = flatarr.reshape(dims) return flatarr
Example 19
Project: Pointnet_Pointnet2_pytorch Author: yanx27 File: plyfile.py License: MIT License | 6 votes |
def _read(self, stream, text, byte_order): ''' Read the actual data from a PLY file. ''' if text: self._read_txt(stream) else: if self._have_list: # There are list properties, so a simple load is # impossible. self._read_bin(stream, byte_order) else: # There are no list properties, so loading the data is # much more straightforward. self._data = _np.fromfile(stream, self.dtype(byte_order), self.count) if len(self._data) < self.count: k = len(self._data) del self._data raise PlyParseError("early end-of-file", self, k) self._check_sanity()
Example 20
Project: DenseMatchingBenchmark Author: DeepMotionAIResearch File: load_flow.py License: MIT License | 6 votes |
def load_flo(file_path): """ Read .flo file in MiddleBury format Code adapted from: http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy WARNING: this will work on little-endian architectures (eg Intel x86) only! Args: file_path string: file path(absolute) Returns: flow (numpy.array): data of image in (Height, Width, 2) layout """ with open(file_path, 'rb') as f: magic = np.fromfile(f, np.float32, count=1) assert(magic == 202021.25) w = int(np.fromfile(f, np.int32, count=1)) h = int(np.fromfile(f, np.int32, count=1)) # print('Reading %d x %d flo file\n' % (w, h)) flow = np.fromfile(f, np.float32, count=2 * w * h) # Reshape data into 3D array (columns, rows, bands) # The reshape here is for visualization, the original code is (w,h,2) flow = np.resize(flow, (h, w, 2)) return flow
Example 21
Project: PolarSeg Author: edwardzhou130 File: dataset.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def __getitem__(self, index): raw_data = np.fromfile(self.im_idx[index], dtype=np.float32).reshape((-1, 4)) if self.imageset == 'test': annotated_data = np.expand_dims(np.zeros_like(raw_data[:,0],dtype=int),axis=1) else: annotated_data = np.fromfile(self.im_idx[index].replace('velodyne','labels')[:-3]+'label', dtype=np.int32).reshape((-1,1)) annotated_data = annotated_data & 0xFFFF #delete high 16 digits binary annotated_data = np.vectorize(self.learning_map.__getitem__)(annotated_data) data_tuple = (raw_data[:,:3], annotated_data.astype(np.uint8)) if self.return_ref: data_tuple += (raw_data[:,3],) return data_tuple
Example 22
Project: Generative-Latent-Optimization-Tensorflow Author: clvrai File: download.py License: MIT License | 5 votes |
def download_mnist(download_path): data_dir = osp.join(download_path, 'mnist') if check_file(data_dir): print('MNIST was downloaded.') return data_url = 'http://yann.lecun.com/exdb/mnist/' keys = ['train-images-idx3-ubyte.gz', 't10k-images-idx3-ubyte.gz'] for k in keys: url = (data_url+k).format(**locals()) target_path = osp.join(data_dir, k) cmd = ['curl', url, '-o', target_path] print('Downloading ', k) subprocess.call(cmd) cmd = ['gzip', '-d', target_path] print('Unzip ', k) subprocess.call(cmd) num_mnist_train = 60000 num_mnist_test = 10000 fd = open(osp.join(data_dir, 'train-images-idx3-ubyte')) loaded = np.fromfile(file=fd, dtype=np.uint8) train_image = loaded[16:].reshape((num_mnist_train, 28, 28, 1)).astype(np.float) fd = open(osp.join(data_dir, 't10k-images-idx3-ubyte')) loaded = np.fromfile(file=fd, dtype=np.uint8) test_image = loaded[16:].reshape((num_mnist_test, 28, 28, 1)).astype(np.float) prepare_h5py(train_image, test_image, data_dir) for k in keys: cmd = ['rm', '-f', osp.join(data_dir, k[:-3])] subprocess.call(cmd)
Example 23
Project: PSMNet Author: JiaRenChang File: readpfm.py License: MIT License | 5 votes |
def readPFM(file): file = open(file, 'rb') color = None width = None height = None scale = None endian = None header = file.readline().rstrip() if header == 'PF': color = True elif header == 'Pf': color = False else: raise Exception('Not a PFM file.') dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline()) if dim_match: width, height = map(int, dim_match.groups()) else: raise Exception('Malformed PFM header.') scale = float(file.readline().rstrip()) if scale < 0: # little-endian endian = '<' scale = -scale else: endian = '>' # big-endian data = np.fromfile(file, endian + 'f') shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) data = np.flipud(data) return data, scale
Example 24
Project: PSMNet Author: JiaRenChang File: readpfm.py License: MIT License | 5 votes |
def readPFM(file): file = open(file, 'rb') color = None width = None height = None scale = None endian = None header = file.readline().rstrip() encode_type = chardet.detect(header) header = header.decode(encode_type['encoding']) if header == 'PF': color = True elif header == 'Pf': color = False else: raise Exception('Not a PFM file.') dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode(encode_type['encoding'])) if dim_match: width, height = map(int, dim_match.groups()) else: raise Exception('Malformed PFM header.') scale = float(file.readline().rstrip().decode(encode_type['encoding'])) if scale < 0: # little-endian endian = '<' scale = -scale else: endian = '>' # big-endian data = np.fromfile(file, endian + 'f') shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) data = np.flipud(data) return data, scale
Example 25
Project: pymesh Author: taxpon File: stl.py License: MIT License | 5 votes |
def __load_binary(fh): # Read the triangle count count, = struct.unpack("i", fh.read(Stl.COUNT_SIZE)) assert count < Stl.MAX_COUNT, \ 'File too large, got {} triangles which exceeds the maximum of {}' .format( count, Stl.MAX_COUNT ) return numpy.fromfile(fh, Stl.stl_dtype, count=count)
Example 26
Project: pointnet-registration-framework Author: vinits5 File: plyfile.py License: MIT License | 5 votes |
def _read_bin(self, stream, byte_order): ''' Read data from a binary stream. Raise StopIteration if the property could not be read. ''' try: return _np.fromfile(stream, self.dtype(byte_order), 1)[0] except IndexError: raise StopIteration
Example 27
Project: pointnet-registration-framework Author: vinits5 File: plyfile.py License: MIT License | 5 votes |
def _read_bin(self, stream, byte_order): (len_t, val_t) = self.list_dtype(byte_order) try: n = _np.fromfile(stream, len_t, 1)[0] except IndexError: raise StopIteration data = _np.fromfile(stream, val_t, n) if len(data) < n: raise StopIteration return data
Example 28
Project: pyscf Author: pyscf File: m_openmx_mat.py License: Apache License 2.0 | 5 votes |
def fromfile(self, f, out=None, dtype=np.float): """ Read from an open file f """ if out is None: res = np.zeros((self.natoms+1, self.FNAN_mx+1, self.Total_NumOrbs_mx, self.Total_NumOrbs_mx), dtype=dtype) else : res = out for ct_AN in range(1,self.natoms+1): for h_AN in range(0,self.FNAN[ct_AN]+1): for i in range(self.Total_NumOrbs[ct_AN]): c = self.Total_NumOrbs[self.natn[ct_AN,h_AN]] res[ct_AN,h_AN,i,0:c] = np.fromfile(f, count=c) return res
Example 29
Project: MobileNetv2-SSDLite Author: PINTO0309 File: load_caffe_weights.py License: MIT License | 5 votes |
def load_data(net): for key in net.params.iterkeys(): if type(net.params[key]) is caffe._caffe.BlobVec: print key if key.find('mbox') == -1 and (key.startswith("conv") or key.startswith("Conv") or key.startswith("layer")): print('conv') if key.endswith("/bn"): prefix = 'output/' + key.replace('/', '_') net.params[key][0].data[...] = np.fromfile(prefix + '_moving_mean.dat', dtype=np.float32) net.params[key][1].data[...] = np.fromfile(prefix + '_moving_variance.dat', dtype=np.float32) net.params[key][2].data[...] = np.ones(net.params[key][2].data.shape, dtype=np.float32) elif key.endswith("/scale"): prefix = 'output/' + key.replace('scale','bn').replace('/', '_') net.params[key][0].data[...] = np.fromfile(prefix + '_gamma.dat', dtype=np.float32) net.params[key][1].data[...] = np.fromfile(prefix + '_beta.dat', dtype=np.float32) else: prefix = 'output/' + key.replace('/', '_') net.params[key][0].data[...] = np.fromfile(prefix + '_weights.dat', dtype=np.float32).reshape(net.params[key][0].data.shape) if len(net.params[key]) > 1: net.params[key][1].data[...] = np.fromfile(prefix + '_biases.dat', dtype=np.float32) elif key.endswith("mbox_loc"): prefix = key.replace("_mbox_loc", "") index = box_layers.index(prefix) prefix = 'output/BoxPredictor_' + str(index) + '_BoxEncodingPredictor' net.params[key][0].data[...] = np.fromfile(prefix + '_weights.dat', dtype=np.float32).reshape(net.params[key][0].data.shape) net.params[key][1].data[...] = np.fromfile(prefix + '_biases.dat', dtype=np.float32) elif key.endswith("mbox_conf"): prefix = key.replace("_mbox_conf", "") index = box_layers.index(prefix) prefix = 'output/BoxPredictor_' + str(index) + '_ClassPredictor' net.params[key][0].data[...] = np.fromfile(prefix + '_weights.dat', dtype=np.float32).reshape(net.params[key][0].data.shape) net.params[key][1].data[...] = np.fromfile(prefix + '_biases.dat', dtype=np.float32) else: print ("error key " + key)
Example 30
Project: MobileNetv2-SSDLite Author: PINTO0309 File: load_caffe_weights.py License: MIT License | 5 votes |
def load_weights(path, shape=None): weights = None if shape is None: weights = np.fromfile(path, dtype=np.float32) else: weights = np.fromfile(path, dtype=np.float32).reshape(shape) os.unlink(path) return weights