Python numpy.long() Examples
The following are 30 code examples for showing how to use numpy.long(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: recruit Author: Frank-qlu File: test_random.py License: Apache License 2.0 | 6 votes |
def test_respect_dtype_singleton(self): # See gh-7203 for dt in self.itype: lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1 sample = self.rfunc(lbnd, ubnd, dtype=dt) assert_equal(sample.dtype, np.dtype(dt)) for dt in (bool, int, np.long): lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 # gh-7284: Ensure that we get Python data types sample = self.rfunc(lbnd, ubnd, dtype=dt) assert_(not hasattr(sample, 'dtype')) assert_equal(type(sample), dt)
Example 2
Project: glc Author: mmazeika File: MNIST_gold_only.py License: Apache License 2.0 | 6 votes |
def prepare_data(corruption_matrix, gold_fraction=0.5, merge_valset=True): np.random.seed(1) mnist_images = np.copy(mnist.train.images) mnist_labels = np.copy(mnist.train.labels) if merge_valset: mnist_images = np.concatenate([mnist_images, np.copy(mnist.validation.images)], axis=0) mnist_labels = np.concatenate([mnist_labels, np.copy(mnist.validation.labels)]) indices = np.arange(len(mnist_labels)) np.random.shuffle(indices) mnist_images = mnist_images[indices] mnist_labels = mnist_labels[indices].astype(np.long) num_gold = int(len(mnist_labels)*gold_fraction) num_silver = len(mnist_labels) - num_gold for i in range(num_silver): mnist_labels[i] = np.random.choice(num_classes, p=corruption_matrix[mnist_labels[i]]) dataset = {'x': mnist_images, 'y': mnist_labels} gold = {'x': dataset['x'][num_silver:], 'y': dataset['y'][num_silver:]} return dataset, gold, num_gold, num_silver
Example 3
Project: glc Author: mmazeika File: MNIST_experiments_pytorch.py License: Apache License 2.0 | 6 votes |
def prepare_data(corruption_matrix, gold_fraction=0.5, merge_valset=True): np.random.seed(1) mnist_images = np.copy(mnist.train.images) mnist_labels = np.copy(mnist.train.labels) if merge_valset: mnist_images = np.concatenate([mnist_images, np.copy(mnist.validation.images)], axis=0) mnist_labels = np.concatenate([mnist_labels, np.copy(mnist.validation.labels)]) indices = np.arange(len(mnist_labels)) np.random.shuffle(indices) mnist_images = mnist_images[indices] mnist_labels = mnist_labels[indices].astype(np.long) num_gold = int(len(mnist_labels)*gold_fraction) num_silver = len(mnist_labels) - num_gold for i in range(num_silver): mnist_labels[i] = np.random.choice(num_classes, p=corruption_matrix[mnist_labels[i]]) dataset = {'x': mnist_images, 'y': mnist_labels} gold = {'x': dataset['x'][num_silver:], 'y': dataset['y'][num_silver:]} return dataset, gold, num_gold, num_silver
Example 4
Project: glc Author: mmazeika File: Twitter_gold_only.py License: Apache License 2.0 | 6 votes |
def prepare_data(corruption_matrix, gold_fraction=0.5, merge_valset=True): np.random.seed(1) twitter_tweets = np.copy(X_train) twitter_labels = np.copy(Y_train) if merge_valset: twitter_tweets = np.concatenate([twitter_tweets, np.copy(X_dev)], axis=0) twitter_labels = np.concatenate([twitter_labels, np.copy(Y_dev)]) indices = np.arange(len(twitter_labels)) np.random.shuffle(indices) twitter_tweets = twitter_tweets[indices] twitter_labels = twitter_labels[indices].astype(np.long) num_gold = int(len(twitter_labels)*gold_fraction) num_silver = len(twitter_labels) - num_gold for i in range(num_silver): twitter_labels[i] = np.random.choice(num_classes, p=corruption_matrix[twitter_labels[i]]) dataset = {'x': twitter_tweets, 'y': twitter_labels} gold = {'x': dataset['x'][num_silver:], 'y': dataset['y'][num_silver:]} return dataset, gold, num_gold, num_silver
Example 5
Project: glc Author: mmazeika File: Twitter_experiments_pytorch.py License: Apache License 2.0 | 6 votes |
def prepare_data(corruption_matrix, gold_fraction=0.5, merge_valset=True): np.random.seed(1) twitter_tweets = np.copy(X_train) twitter_labels = np.copy(Y_train) if merge_valset: twitter_tweets = np.concatenate([twitter_tweets, np.copy(X_dev)], axis=0) twitter_labels = np.concatenate([twitter_labels, np.copy(Y_dev)]) indices = np.arange(len(twitter_labels)) np.random.shuffle(indices) twitter_tweets = twitter_tweets[indices] twitter_labels = twitter_labels[indices].astype(np.long) num_gold = int(len(twitter_labels)*gold_fraction) num_silver = len(twitter_labels) - num_gold for i in range(num_silver): twitter_labels[i] = np.random.choice(num_classes, p=corruption_matrix[twitter_labels[i]]) dataset = {'x': twitter_tweets, 'y': twitter_labels} gold = {'x': dataset['x'][num_silver:], 'y': dataset['y'][num_silver:]} return dataset, gold, num_gold, num_silver
Example 6
Project: dgl Author: dmlc File: sudoku_solver.py License: Apache License 2.0 | 6 votes |
def solve_sudoku(puzzle): """ Solve sudoku puzzle using RRN. :param puzzle: an array-like data with shape [9, 9], blank positions are filled with 0 :return: a [9, 9] shaped numpy array """ puzzle = np.array(puzzle, dtype=np.long).reshape([-1]) model_path = 'ckpt' if not os.path.exists(model_path): os.mkdir(model_path) model_filename = os.path.join(model_path, 'rrn-sudoku.pkl') if not os.path.exists(model_filename): print('Downloading model...') url = 'https://data.dgl.ai/models/rrn-sudoku.pkl' urllib.request.urlretrieve(url, model_filename) model = torch.load(model_filename, map_location='cpu') g = _basic_sudoku_graph() sudoku_indices = np.arange(0, 81) rows = sudoku_indices // 9 cols = sudoku_indices % 9 g.ndata['row'] = torch.tensor(rows, dtype=torch.long) g.ndata['col'] = torch.tensor(cols, dtype=torch.long) g.ndata['q'] = torch.tensor(puzzle, dtype=torch.long) g.ndata['a'] = torch.tensor(puzzle, dtype=torch.long) pred, _ = model(g, False) pred = pred.cpu().data.numpy().reshape([9, 9]) return pred
Example 7
Project: skutil Author: tgsmith61591 File: fixes.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def _is_integer(x): """Determine whether some object ``x`` is an integer type (int, long, etc). This is part of the ``fixes`` module, since Python 3 removes the long datatype, we have to check the version major. Parameters ---------- x : object The item to assess whether is an integer. Returns ------- bool True if ``x`` is an integer type """ return (not isinstance(x, (bool, np.bool))) and \ isinstance(x, (numbers.Integral, int, np.int, np.long, long)) # no long type in python 3
Example 8
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_random.py License: MIT License | 6 votes |
def test_respect_dtype_singleton(self): # See gh-7203 for dt in self.itype: lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1 sample = self.rfunc(lbnd, ubnd, dtype=dt) self.assertEqual(sample.dtype, np.dtype(dt)) for dt in (np.bool, np.int, np.long): lbnd = 0 if dt is np.bool else np.iinfo(dt).min ubnd = 2 if dt is np.bool else np.iinfo(dt).max + 1 # gh-7284: Ensure that we get Python data types sample = self.rfunc(lbnd, ubnd, dtype=dt) self.assertFalse(hasattr(sample, 'dtype')) self.assertEqual(type(sample), dt)
Example 9
Project: vnpy_crypto Author: birforce File: test_random.py License: MIT License | 6 votes |
def test_respect_dtype_singleton(self): # See gh-7203 for dt in self.itype: lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1 sample = self.rfunc(lbnd, ubnd, dtype=dt) assert_equal(sample.dtype, np.dtype(dt)) for dt in (bool, int, np.long): lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 # gh-7284: Ensure that we get Python data types sample = self.rfunc(lbnd, ubnd, dtype=dt) assert_(not hasattr(sample, 'dtype')) assert_equal(type(sample), dt)
Example 10
Project: ngraph-python Author: NervanaSystems File: test_model_wrappers.py License: Apache License 2.0 | 6 votes |
def test_attribute_wrapper(): def attribute_value_test(attribute_value): node = make_node('Abs', ['X'], [], name='test_node', test_attribute=attribute_value) model = make_model(make_graph([node], 'test_graph', [ make_tensor_value_info('X', onnx.TensorProto.FLOAT, [1, 2]), ], []), producer_name='ngraph') wrapped_attribute = ModelWrapper(model).graph.node[0].get_attribute('test_attribute') return wrapped_attribute.get_value() tensor = make_tensor('test_tensor', onnx.TensorProto.FLOAT, [1], [1]) assert attribute_value_test(1) == 1 assert type(attribute_value_test(1)) == np.long assert attribute_value_test(1.0) == 1.0 assert type(attribute_value_test(1.0)) == np.float assert attribute_value_test('test') == 'test' assert attribute_value_test(tensor)._proto == tensor assert attribute_value_test([1, 2, 3]) == [1, 2, 3] assert attribute_value_test([1.0, 2.0, 3.0]) == [1.0, 2.0, 3.0] assert attribute_value_test(['test1', 'test2']) == ['test1', 'test2'] assert attribute_value_test([tensor, tensor])[1]._proto == tensor
Example 11
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_random.py License: MIT License | 6 votes |
def test_respect_dtype_singleton(self): # See gh-7203 for dt in self.itype: lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1 sample = self.rfunc(lbnd, ubnd, dtype=dt) assert_equal(sample.dtype, np.dtype(dt)) for dt in (bool, int, np.long): lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 # gh-7284: Ensure that we get Python data types sample = self.rfunc(lbnd, ubnd, dtype=dt) assert_(not hasattr(sample, 'dtype')) assert_equal(type(sample), dt)
Example 12
Project: HGNN Author: iMoonLab File: data_helper.py License: MIT License | 6 votes |
def load_ft(data_dir, feature_name='GVCNN'): data = scio.loadmat(data_dir) lbls = data['Y'].astype(np.long) if lbls.min() == 1: lbls = lbls - 1 idx = data['indices'].item() if feature_name == 'MVCNN': fts = data['X'][0].item().astype(np.float32) elif feature_name == 'GVCNN': fts = data['X'][1].item().astype(np.float32) else: print(f'wrong feature name{feature_name}!') raise IOError idx_train = np.where(idx == 1)[0] idx_test = np.where(idx == 0)[0] return fts, lbls, idx_train, idx_test
Example 13
Project: fontgoggles Author: justvanrossum File: makePathFromOutline.py License: Apache License 2.0 | 6 votes |
def makePathFromArrays(points, tags, contours): n_contours = len(contours) n_points = len(tags) assert len(points) >= n_points assert points.shape[1:] == (2,) if points.dtype != numpy.long: points = numpy.floor(points + [0.5, 0.5]) points = points.astype(numpy.long) assert tags.dtype == numpy.byte assert contours.dtype == numpy.short path = objc.objc_object( c_void_p=_makePathFromArrays( n_contours, n_points, points.ctypes.data_as(FT_Vector_p), tags.ctypes.data_as(c_char_p), contours.ctypes.data_as(c_short_p))) # See comment in makePathFromOutline() path.release() return path
Example 14
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_random.py License: MIT License | 6 votes |
def test_respect_dtype_singleton(self): # See gh-7203 for dt in self.itype: lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1 sample = self.rfunc(lbnd, ubnd, dtype=dt) assert_equal(sample.dtype, np.dtype(dt)) for dt in (bool, int, np.long): lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 # gh-7284: Ensure that we get Python data types sample = self.rfunc(lbnd, ubnd, dtype=dt) assert_(not hasattr(sample, 'dtype')) assert_equal(type(sample), dt)
Example 15
Project: predictive-maintenance-using-machine-learning Author: awslabs File: test_random.py License: Apache License 2.0 | 6 votes |
def test_respect_dtype_singleton(self): # See gh-7203 for dt in self.itype: lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1 sample = self.rfunc(lbnd, ubnd, dtype=dt) assert_equal(sample.dtype, np.dtype(dt)) for dt in (bool, int, np.long): lbnd = 0 if dt is bool else np.iinfo(dt).min ubnd = 2 if dt is bool else np.iinfo(dt).max + 1 # gh-7284: Ensure that we get Python data types sample = self.rfunc(lbnd, ubnd, dtype=dt) assert_(not hasattr(sample, 'dtype')) assert_equal(type(sample), dt)
Example 16
Project: pytorch-fm Author: rixwew File: movielens.py License: MIT License | 5 votes |
def __init__(self, dataset_path, sep=',', engine='c', header='infer'): data = pd.read_csv(dataset_path, sep=sep, engine=engine, header=header).to_numpy()[:, :3] self.items = data[:, :2].astype(np.int) - 1 # -1 because ID begins from 1 self.targets = self.__preprocess_target(data[:, 2]).astype(np.float32) self.field_dims = np.max(self.items, axis=0) + 1 self.user_field_idx = np.array((0, ), dtype=np.long) self.item_field_idx = np.array((1,), dtype=np.long)
Example 17
Project: pytorch-fm Author: rixwew File: avazu.py License: MIT License | 5 votes |
def __getitem__(self, index): with self.env.begin(write=False) as txn: np_array = np.frombuffer( txn.get(struct.pack('>I', index)), dtype=np.uint32).astype(dtype=np.long) return np_array[1:], np_array[0]
Example 18
Project: pytorch-fm Author: rixwew File: criteo.py License: MIT License | 5 votes |
def __getitem__(self, index): with self.env.begin(write=False) as txn: np_array = np.frombuffer( txn.get(struct.pack('>I', index)), dtype=np.uint32).astype(dtype=np.long) return np_array[1:], np_array[0]
Example 19
Project: pytorch-fm Author: rixwew File: layer.py License: MIT License | 5 votes |
def __init__(self, field_dims, output_dim=1): super().__init__() self.fc = torch.nn.Embedding(sum(field_dims), output_dim) self.bias = torch.nn.Parameter(torch.zeros((output_dim,))) self.offsets = np.array((0, *np.cumsum(field_dims)[:-1]), dtype=np.long)
Example 20
Project: pytorch-fm Author: rixwew File: layer.py License: MIT License | 5 votes |
def __init__(self, field_dims, embed_dim): super().__init__() self.embedding = torch.nn.Embedding(sum(field_dims), embed_dim) self.offsets = np.array((0, *np.cumsum(field_dims)[:-1]), dtype=np.long) torch.nn.init.xavier_uniform_(self.embedding.weight.data)
Example 21
Project: seamseg Author: mapillary File: transform.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def __call__(self, img, msk, cat, iscrowd): # Random flip if self.random_flip: img, msk = self._random_flip(img, msk) # Adjust scale, possibly at random if self.random_scale is not None: target_size = self._random_target_size() else: target_size = self.shortest_size scale = self._adjusted_scale(img.size[0], img.size[1], target_size) out_size = tuple(int(dim * scale) for dim in img.size) img = img.resize(out_size, resample=Image.BILINEAR) msk = [m.resize(out_size, resample=Image.NEAREST) for m in msk] # Wrap in np.array cat = np.array(cat, dtype=np.int32) iscrowd = np.array(iscrowd, dtype=np.uint8) # Image transformations img = tfn.to_tensor(img) img = self._normalize_image(img) # Label transformations msk = np.stack([np.array(m, dtype=np.int32, copy=False) for m in msk], axis=0) msk, cat, iscrowd = self._compact_labels(msk, cat, iscrowd) # Convert labels to torch and extract bounding boxes msk = torch.from_numpy(msk.astype(np.long)) cat = torch.from_numpy(cat.astype(np.long)) iscrowd = torch.from_numpy(iscrowd) bbx = extract_boxes(msk, cat.numel()) return dict(img=img, msk=msk, cat=cat, iscrowd=iscrowd, bbx=bbx)
Example 22
Project: recruit Author: Frank-qlu File: test_random.py License: Apache License 2.0 | 5 votes |
def test_random_integers_max_int(self): # Tests whether random_integers can generate the # maximum allowed Python int that can be converted # into a C long. Previous implementations of this # method have thrown an OverflowError when attempting # to generate this integer. with suppress_warnings() as sup: w = sup.record(DeprecationWarning) actual = np.random.random_integers(np.iinfo('l').max, np.iinfo('l').max) assert_(len(w) == 1) desired = np.iinfo('l').max assert_equal(actual, desired)
Example 23
Project: recruit Author: Frank-qlu File: test_ufunc.py License: Apache License 2.0 | 5 votes |
def test_matrix_multiply(self): self.compare_matrix_multiply_results(np.long) self.compare_matrix_multiply_results(np.double)
Example 24
Project: recruit Author: Frank-qlu File: test_regression.py License: Apache License 2.0 | 5 votes |
def test_signed_integer_division_overflow(self): # Ticket #1317. def test_type(t): min = np.array([np.iinfo(t).min]) min //= -1 with np.errstate(divide="ignore"): for t in (np.int8, np.int16, np.int32, np.int64, int, np.long): test_type(t)
Example 25
Project: recruit Author: Frank-qlu File: test_regression.py License: Apache License 2.0 | 5 votes |
def test_array_side_effect(self): # The second use of itemsize was throwing an exception because in # ctors.c, discover_itemsize was calling PyObject_Length without # checking the return code. This failed to get the length of the # number 2, and the exception hung around until something checked # PyErr_Occurred() and returned an error. assert_equal(np.dtype('S10').itemsize, 10) np.array([['abc', 2], ['long ', '0123456789']], dtype=np.string_) assert_equal(np.dtype('S10').itemsize, 10)
Example 26
Project: recruit Author: Frank-qlu File: test_regression.py License: Apache License 2.0 | 5 votes |
def test_object_array_nested(self): # but is fine with a reference to a different array a = np.array(0, dtype=object) b = np.array(0, dtype=object) a[()] = b assert_equal(int(a), int(0)) assert_equal(long(a), long(0)) assert_equal(float(a), float(0)) if sys.version_info.major == 2: # in python 3, this falls back on operator.index, which fails on # on dtype=object assert_equal(oct(a), oct(0)) assert_equal(hex(a), hex(0))
Example 27
Project: recruit Author: Frank-qlu File: test_regression.py License: Apache License 2.0 | 5 votes |
def test_field_access_by_title(self): # gh-11507 s = 'Some long field name' if HAS_REFCOUNT: base = sys.getrefcount(s) t = np.dtype([((s, 'f1'), np.float64)]) data = np.zeros(10, t) for i in range(10): str(data[['f1']]) if HAS_REFCOUNT: assert_(base <= sys.getrefcount(s))
Example 28
Project: snape Author: mbernico File: utils.py License: Apache License 2.0 | 5 votes |
def assert_valid_percent(x, eq_lower=False, eq_upper=False): # these are all castable to float assert_is_type(x, (float, np.float, np.int, int, np.long)) x = float(x) # test lower bound: if not ((eq_lower and 0. <= x) or ((not eq_lower) and 0. < x)): raise ValueError('Expected 0. %s x, but got x=%r' % ('<=' if eq_lower else '<', x)) if not ((eq_upper and x <= 1.) or ((not eq_upper) and x < 1.)): raise ValueError('Expected x %s 1., but got x=%r' % ('<=' if eq_upper else '<', x)) return x
Example 29
Project: snape Author: mbernico File: utils.py License: Apache License 2.0 | 5 votes |
def get_random_state(random_state): # if it's a seed, return a new seeded RandomState if random_state is None or \ isinstance(random_state, (int, np.int, np.long)): return RandomState(random_state) # if it's a RandomState, it's been initialized elif isinstance(random_state, RandomState): return random_state else: raise TypeError('cannot seed new RandomState with type=%s' % type(random_state))
Example 30
Project: PyReshaper Author: NCAR File: testtools.py License: Apache License 2.0 | 5 votes |
def _bytesize(tc): DTYPE_MAP = {'d': np.float64, 'f': np.float32, 'l': np.long, 'i': np.int32, 'h': np.int16, 'b': np.int8, 'S1': np.character} return np.dtype(DTYPE_MAP.get(tc, np.float)).itemsize #============================================================================== # Private Size from Shape Calculator #==============================================================================