Python numpy.any() Examples
The following are 30 code examples for showing how to use numpy.any(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: libTLDA Author: wmkouw File: tcpr.py License: MIT License | 6 votes |
def add_intercept(self, X): """Add 1's to data as last features.""" # Data shape N, D = X.shape # Check if there's not already an intercept column if np.any(np.sum(X, axis=0) == N): # Report print('Intercept is not the last feature. Swapping..') # Find which column contains the intercept intercept_index = np.argwhere(np.sum(X, axis=0) == N) # Swap intercept to last X = X[:, np.setdiff1d(np.arange(D), intercept_index)] # Add intercept as last column X = np.hstack((X, np.ones((N, 1)))) # Append column of 1's to data, and increment dimensionality return X, D+1
Example 2
Project: libTLDA Author: wmkouw File: suba.py License: MIT License | 6 votes |
def is_pos_def(self, A): """ Check for positive definiteness. Parameters --------- A : array square symmetric matrix. Returns ------- bool whether matrix is positive-definite. Warning! Returns false for arrays containing inf or NaN. """ # Check for valid numbers if np.any(np.isnan(A)) or np.any(np.isinf(A)): return False else: return np.all(np.real(np.linalg.eigvals(A)) > 0)
Example 3
Project: aospy Author: spencerahill File: model.py License: Apache License 2.0 | 6 votes |
def set_grid_data(self): """Populate the attrs that hold grid data.""" if self._grid_data_is_set: return self._set_mult_grid_attr() if not np.any(getattr(self, 'sfc_area', None)): try: sfc_area = _grid_sfc_area(self.lon, self.lat, self.lon_bounds, self.lat_bounds) except AttributeError: sfc_area = _grid_sfc_area(self.lon, self.lat) self.sfc_area = sfc_area try: self.levs_thick = utils.vertcoord.level_thickness(self.level) except AttributeError: self.level = None self.levs_thick = None self._grid_data_is_set = True
Example 4
Project: dustmaps Author: gregreen File: sfd.py License: GNU General Public License v2.0 | 6 votes |
def query(self, coords, order=1): """ Returns the map value at the specified location(s) on the sky. Args: coords (`astropy.coordinates.SkyCoord`): The coordinates to query. order (Optional[int]): Interpolation order to use. Defaults to `1`, for linear interpolation. Returns: A float array containing the map value at every input coordinate. The shape of the output will be the same as the shape of the coordinates stored by `coords`. """ out = np.full(len(coords.l.deg), np.nan, dtype='f4') for pole in self.poles: m = (coords.b.deg >= 0) if pole == 'ngp' else (coords.b.deg < 0) if np.any(m): data, w = self._data[pole] x, y = w.wcs_world2pix(coords.l.deg[m], coords.b.deg[m], 0) out[m] = map_coordinates(data, [y, x], order=order, mode='nearest') return out
Example 5
Project: dustmaps Author: gregreen File: leike_ensslin_2019.py License: GNU General Public License v2.0 | 6 votes |
def fetch(clobber=False): """ Downloads the 3D dust map of Leike & Ensslin (2019). Args: clobber (Optional[bool]): If ``True``, any existing file will be overwritten, even if it appears to match. If ``False`` (the default), ``fetch()`` will attempt to determine if the dataset already exists. This determination is not 100\% robust against data corruption. """ dest_dir = fname_pattern = os.path.join(data_dir(), 'leike_ensslin_2019') fname = os.path.join(dest_dir, 'simple_cube.h5') # Check if the FITS table already exists md5sum = 'f54e01c253453117e3770575bed35078' if (not clobber) and fetch_utils.check_md5sum(fname, md5sum): print('File appears to exist already. Call `fetch(clobber=True)` ' 'to force overwriting of existing file.') return # Download from the server url = 'https://zenodo.org/record/2577337/files/simple_cube.h5?download=1' fetch_utils.download_and_verify(url, md5sum, fname)
Example 6
Project: neural-fingerprinting Author: StephanZheng File: attacks_tf.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def _compute_gradients(self, loss_fn, x, unused_optim_state): """Compute a new value of `x` to minimize `loss_fn`. Args: loss_fn: a callable that takes `x`, a batch of images, and returns a batch of loss values. `x` will be optimized to minimize `loss_fn(x)`. x: A list of Tensors, the values to be updated. This is analogous to the `var_list` argument in standard TF Optimizer. unused_optim_state: A (possibly nested) dict, containing any state info needed for the optimizer. Returns: new_x: A list of Tensors, the same length as `x`, which are updated new_optim_state: A dict, with the same structure as `optim_state`, which have been updated. """ # Assumes `x` is a list, # and contains a tensor representing a batch of images assert len(x) == 1 and isinstance(x, list), \ 'x should be a list and contain only one image tensor' x = x[0] loss = reduce_mean(loss_fn(x), axis=0) return tf.gradients(loss, x)
Example 7
Project: models Author: kipoi File: dataloader_m.py License: MIT License | 6 votes |
def _prepro_cpg(self, states, dists): """Preprocess the state and distance of neighboring CpG sites.""" prepro_states = [] prepro_dists = [] for state, dist in zip(states, dists): nan = state == dat.CPG_NAN if np.any(nan): state[nan] = np.random.binomial(1, state[~nan].mean(), nan.sum()) dist[nan] = self.cpg_max_dist dist = np.minimum(dist, self.cpg_max_dist) / self.cpg_max_dist prepro_states.append(np.expand_dims(state, 1)) prepro_dists.append(np.expand_dims(dist, 1)) prepro_states = np.concatenate(prepro_states, axis=1) prepro_dists = np.concatenate(prepro_dists, axis=1) if self.cpg_wlen: center = prepro_states.shape[2] // 2 delta = self.cpg_wlen // 2 tmp = slice(center - delta, center + delta) prepro_states = prepro_states[:, :, tmp] prepro_dists = prepro_dists[:, :, tmp] return (prepro_states, prepro_dists)
Example 8
Project: mlearn Author: materialsvirtuallab File: test_data.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_convert_docs(self): _, df = convert_docs(self.test_pool, include_stress=False) test_energies = df[df['dtype'] == 'energy']['y_orig'] self.assertFalse(np.any(test_energies - self.test_energies)) test_forces = df[df['dtype'] == 'force']['y_orig'] for force1, force2 in zip(test_forces, np.array(self.test_forces).ravel()): self.assertEqual(force1, force2) _, df = convert_docs(self.test_pool, include_stress=True) test_energies = df[df['dtype'] == 'energy']['y_orig'] self.assertFalse(np.any(test_energies - self.test_energies)) test_forces = df[df['dtype'] == 'force']['y_orig'] for force1, force2 in zip(test_forces, np.array(self.test_forces).ravel()): self.assertEqual(force1, force2) test_stresses = df[df['dtype'] == 'stress']['y_orig'] for stress1, stress2 in zip(test_stresses, np.array(self.test_stresses).ravel()): self.assertEqual(stress1, stress2)
Example 9
Project: neuropythy Author: noahbenson File: util.py License: GNU Affero General Public License v3.0 | 6 votes |
def point_on_segment(ac, b, atol=1e-8): ''' point_on_segment((a,b), c) yields True if point x is on segment (a,b) and False otherwise. Note that this differs from point_in_segment in that a point that if c is equal to a or b it is considered 'on' but not 'in' the segment. The option atol can be given and is used only to test for difference from 0; by default it is 1e-8. ''' (a,c) = ac abc = [np.asarray(u) for u in (a,b,c)] if any(len(u.shape) > 1 for u in abc): (a,b,c) = [np.reshape(u,(len(u),-1)) for u in abc] else: (a,b,c) = abc vab = b - a vbc = c - b vac = c - a dab = np.sqrt(np.sum(vab**2, axis=0)) dbc = np.sqrt(np.sum(vbc**2, axis=0)) dac = np.sqrt(np.sum(vac**2, axis=0)) return np.isclose(dab + dbc - dac, 0, atol=atol)
Example 10
Project: neuropythy Author: noahbenson File: util.py License: GNU Affero General Public License v3.0 | 6 votes |
def point_in_segment(ac, b, atol=1e-8): ''' point_in_segment((a,b), c) yields True if point x is in segment (a,b) and False otherwise. Note that this differs from point_on_segment in that a point that if c is equal to a or b it is considered 'on' but not 'in' the segment. The option atol can be given and is used only to test for difference from 0; by default it is 1e-8. ''' (a,c) = ac abc = [np.asarray(u) for u in (a,b,c)] if any(len(u.shape) > 1 for u in abc): (a,b,c) = [np.reshape(u,(len(u),-1)) for u in abc] else: (a,b,c) = abc vab = b - a vbc = c - b vac = c - a dab = np.sqrt(np.sum(vab**2, axis=0)) dbc = np.sqrt(np.sum(vbc**2, axis=0)) dac = np.sqrt(np.sum(vac**2, axis=0)) return (np.isclose(dab + dbc - dac, 0, atol=atol) & ~np.isclose(dac - dab, 0, atol=atol) & ~np.isclose(dac - dbc, 0, atol=atol))
Example 11
Project: fullrmc Author: bachiraoun File: DistanceConstraints.py License: GNU Affero General Public License v3.0 | 6 votes |
def should_step_get_rejected(self, standardError): """ Given a standardError, return whether to keep or reject new standardError according to the constraint rejectProbability. In addition, if flexible flag is set to True, total number of atoms not satisfying constraints definition must be decreasing or at least remain the same. :Parameters: #. standardError (number): Standard error to compare with Constraint's standard error. :Returns: #. result (boolean): True to reject step, False to accept. """ if self.__flexible: # compute if step should get rejected as a RigidConstraint return super(_DistanceConstraint, self).should_step_get_rejected(standardError) else: cond = self.activeAtomsDataAfterMove["number"]>self.activeAtomsDataBeforeMove["number"] if np.any(cond): return True return False
Example 12
Project: DOTA_models Author: ringringyi File: optimizers.py License: Apache License 2.0 | 6 votes |
def optimize(self, sess, feed_dict): reg_input, reg_weight, old_values, targets = sess.run( [self.inputs, self.regression_weight, self.values, self.targets], feed_dict=feed_dict) intended_values = targets * self.mix_frac + old_values * (1 - self.mix_frac) # taken from rllab reg_coeff = 1e-5 for _ in range(5): best_fit_weight = np.linalg.lstsq( reg_input.T.dot(reg_input) + reg_coeff * np.identity(reg_input.shape[1]), reg_input.T.dot(intended_values))[0] if not np.any(np.isnan(best_fit_weight)): break reg_coeff *= 10 if len(best_fit_weight.shape) == 1: best_fit_weight = np.expand_dims(best_fit_weight, -1) sess.run(self.update_regression_weight, feed_dict={self.new_regression_weight: best_fit_weight})
Example 13
Project: DOTA_models Author: ringringyi File: models_test.py License: Apache License 2.0 | 6 votes |
def _testDecoder(self, height=64, width=64, channels=4, batch_norm_params=None, decoder=models.small_decoder): codes = tf.to_float(np.random.rand(32, 100)) with self.test_session() as sess: output = decoder( codes, height=height, width=width, channels=channels, batch_norm_params=batch_norm_params) sess.run(tf.global_variables_initializer()) output_np = sess.run(output) self.assertEqual(output_np.shape, (32, height, width, channels)) self.assertTrue(np.any(output_np)) self.assertTrue(np.all(np.isfinite(output_np)))
Example 14
Project: QCElemental Author: MolSSI File: from_arrays.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def validate_and_fill_geometry(geom=None, tooclose=0.1, copy=True): """Check `geom` for overlapping atoms. Return flattened""" npgeom = np.array(geom, copy=copy, dtype=np.float).reshape((-1, 3)) # Upper triangular metric = tooclose ** 2 tooclose_inds = [] for x in range(npgeom.shape[0]): diffs = npgeom[x] - npgeom[x + 1 :] dists = np.einsum("ij,ij->i", diffs, diffs) # Record issues if np.any(dists < metric): indices = np.where(dists < metric)[0] tooclose_inds.extend([(x, y, dist) for y, dist in zip(indices + x + 1, dists[indices] ** 0.5)]) if tooclose_inds: raise ValidationError( """Following atoms are too close: {}""".format([(i, j, dist) for i, j, dist in tooclose_inds]) ) return {"geom": npgeom.reshape((-1))}
Example 15
Project: medicaldetectiontoolkit Author: MIC-DKFZ File: mrcnn.py License: Apache License 2.0 | 6 votes |
def test_forward(self, batch, return_masks=True): """ test method. wrapper around forward pass of network without usage of any ground truth information. prepares input data for processing and stores outputs in a dictionary. :param batch: dictionary containing 'data' :param return_masks: boolean. If True, full resolution masks are returned for all proposals (speed trade-off). :return: results_dict: dictionary with keys: 'boxes': list over batch elements. each batch element is a list of boxes. each box is a dictionary: [[{box_0}, ... {box_n}], [{box_0}, ... {box_n}], ...] 'seg_preds': pixel-wise class predictions (b, 1, y, x, (z)) with values [0, n_classes] """ img = batch['data'] img = torch.from_numpy(img).float().cuda() _, _, _, detections, detection_masks = self.forward(img) results_dict = get_results(self.cf, img.shape, detections, detection_masks, return_masks=return_masks) return results_dict
Example 16
Project: medicaldetectiontoolkit Author: MIC-DKFZ File: ufrcnn.py License: Apache License 2.0 | 6 votes |
def test_forward(self, batch, return_masks=True): """ test method. wrapper around forward pass of network without usage of any ground truth information. prepares input data for processing and stores outputs in a dictionary. :param batch: dictionary containing 'data' :param return_masks: boolean. If True, full resolution masks are returned for all proposals (speed trade-off). :return: results_dict: dictionary with keys: 'boxes': list over batch elements. each batch element is a list of boxes. each box is a dictionary: [[{box_0}, ... {box_n}], [{box_0}, ... {box_n}], ...] 'seg_preds': pixel-wise class predictions (b, 1, y, x, (z)) with values [0, n_classes] """ img = batch['data'] img = torch.from_numpy(img).float().cuda() _, _, _, detections, seg_logits = self.forward(img) results_dict = get_results(self.cf, img.shape, detections, seg_logits) return results_dict
Example 17
Project: EXOSIMS Author: dsavransky File: test_OpticalSystem.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_init_occulter(self): r"""Test of initialization and __init__ -- occulter. Method: If any starlight suppression system has an occulter , the attribute OpticalSystem.haveOcculter is set. We instantiate OpticalSystem objects and verify that this is done. """ our_specs = deepcopy(specs_default) optsys = self.fixture(**deepcopy(our_specs)) self.assertFalse(optsys.haveOcculter,'Expect to NOT haveOcculter') our_specs['starlightSuppressionSystems'][0]['occulter'] = True optsys = self.fixture(**deepcopy(our_specs)) self.assertTrue(optsys.haveOcculter, 'Expect to haveOcculter') optsys = self.fixture(**deepcopy(specs_multi)) self.assertTrue(optsys.haveOcculter, 'Expect to haveOcculter')
Example 18
Project: Black-Box-Audio Author: rtaori File: run_audio_attack.py License: MIT License | 5 votes |
def db(audio): if len(audio.shape) > 1: maxx = np.max(np.abs(audio), axis=1) return 20 * np.log10(maxx) if np.any(maxx != 0) else np.array([0]) maxx = np.max(np.abs(audio)) return 20 * np.log10(maxx) if maxx != 0 else np.array([0])
Example 19
Project: libTLDA Author: wmkouw File: rba.py License: MIT License | 5 votes |
def iwe_kernel_densities(self, X, Z, clip=1000): """ Estimate importance weights based on kernel density estimation. Parameters ---------- X : array source data (N samples by D features) Z : array target data (M samples by D features) clip : float maximum allowed value for individual weights (def: 1000) Returns ------- array importance weights (N samples by 1) """ # Data shapes N, DX = X.shape M, DZ = Z.shape # Assert equivalent dimensionalities assert DX == DZ # Compute probabilities based on source kernel densities pT = st.gaussian_kde(Z.T).pdf(X.T) pS = st.gaussian_kde(X.T).pdf(X.T) # Check for numerics assert not np.any(np.isnan(pT)) or np.any(pT == 0) assert not np.any(np.isnan(pS)) or np.any(pS == 0) # Compute importance weights iw = pT / pS # Clip importance weights return np.minimum(clip, np.maximum(0, iw))
Example 20
Project: libTLDA Author: wmkouw File: test_suba.py License: MIT License | 5 votes |
def test_subspace_alignment(): """Test the alignment between datasets.""" X = rnd.randn(100, 10) Z = np.dot(rnd.randn(100, 10), np.diag(np.arange(1, 11))) clf = SubspaceAlignedClassifier() V, CX, CZ = clf.subspace_alignment(X, Z, subspace_dim=3) assert not np.any(np.isnan(V)) assert CX.shape[1] == 3 assert CZ.shape[1] == 3
Example 21
Project: natural-questions Author: google-research-datasets File: nq_browser.py License: Apache License 2.0 | 5 votes |
def get_candidates(self, json_candidates): """Returns a list of `LongAnswerCandidate` objects for top level candidates. Args: json_candidates: List of Json records representing candidates. Returns: List of `LongAnswerCandidate` objects. """ candidates = [] top_level_candidates = [c for c in json_candidates if c['top_level']] for candidate in top_level_candidates: tokenized_contents = ' '.join([ t['token'] for t in self.json_example['document_tokens'] [candidate['start_token']:candidate['end_token']] ]) start = candidate['start_byte'] end = candidate['end_byte'] is_answer = self.has_long_answer and np.any( [(start == ans['start_byte']) and (end == ans['end_byte']) for ans in self.long_answers]) contains_answer = self.has_long_answer and np.any( [(start <= ans['start_byte']) and (end >= ans['end_byte']) for ans in self.long_answers]) candidates.append( LongAnswerCandidate(tokenized_contents, len(candidates), is_answer, contains_answer)) return candidates
Example 22
Project: aospy Author: spencerahill File: region.py License: Apache License 2.0 | 5 votes |
def _get_land_mask(data, do_land_mask, land_mask_str=LAND_MASK_STR): if not do_land_mask: return 1 try: land_mask = data[land_mask_str].copy() except AttributeError: # TODO: Implement aospy built-in land mask to default to. msg = ("No land mask found. Using empty mask, which amounts to " "no land or ocean mask being applied. Regions that use a " "land or ocean mask will therefore NOT be accurately " "computed.") logging.warning(msg) return 1 try: percent_bool = land_mask.units.lower() in ('%', 'percent') except AttributeError: percent_bool = np.any(land_mask > 1) if percent_bool: land_mask *= 0.01 logging.debug("Converting land mask from 0-100 to 0.0-1.0") if do_land_mask is True: return land_mask if do_land_mask == 'ocean': return 1. - land_mask if do_land_mask in ('strict_land', 'strict_ocean'): raise NotImplementedError msg = ("'do_land_mask' value of '{0}' is not one of the valid " "choices: [True, False, 'ocean', 'strict_land', " "'strict_ocean']").format(do_land_mask) raise ValueError(msg)
Example 23
Project: dustmaps Author: gregreen File: leike_ensslin_2019.py License: GNU General Public License v2.0 | 5 votes |
def query(self, coords, component='mean'): """ Returns the extinction density (in e-foldings / kpc, in Gaia G-band) at the given coordinates. Args: coords (:obj:`astropy.coordinates.SkyCoord`): Coordinates at which to query the extinction. Must be 3D (i.e., include distance information). component (str): Which component to return. Allowable values are 'mean' (for the mean extinction density) and 'std' (for the standard deviation of extinction density). Defaults to 'mean'. Returns: The extinction density, in units of e-foldings / pc, as either a numpy array or float, with the same shape as the input :obj:`coords`. """ idx,mask = self._coords2idx(coords) v = self._data[component][idx[0], idx[1], idx[2]] if np.any(mask): # Set extinction to NaN for out-of-bounds (x, y, z) v[mask] = np.nan return v
Example 24
Project: dustmaps Author: gregreen File: marshall.py License: GNU General Public License v2.0 | 5 votes |
def __init__(self, map_fname=None): """ Args: map_fname (Optional[:obj:`str`]): Filename at which the map is stored. Defaults to ``None``, meaning that the default filename is used. """ if map_fname is None: map_fname = os.path.join(data_dir(), 'marshall', 'marshall.h5') with h5py.File(map_fname, 'r') as f: self._l = f['l'][:] self._b = f['b'][:] self._A = f['A'][:] self._sigma_A = f['sigma_A'][:] self._dist = f['dist'][:] self._sigma_dist = f['sigma_dist'][:] # self._l.shape = (self._l.size,) # self._b.shape = (self._b.size,) # self._A.shape = (self._A.shape[0], self._A.shape[1]*self._A.shape[2]) # Shape of the (l,b)-grid self._shape = self._l.shape # Number of distance bins in each sightline self._n_dists = np.sum(np.isfinite(self._dist), axis=2) # idx = ~np.isfinite(self._dist) # if np.any(idx): # self._dist[idx] = np.inf self._l_bounds = (-100., 100.) # min,max Galactic longitude, in deg self._b_bounds = (-10., 10.) # min,max Galactic latitude, in deg self._inv_pix_scale = 4. # 1 / (pixel scale, in deg)
Example 25
Project: dustmaps Author: gregreen File: marshall.py License: GNU General Public License v2.0 | 5 votes |
def _gal2idx(self, gal): """ Converts from Galactic coordinates to pixel indices. Args: gal (:obj:`astropy.coordinates.SkyCoord`): Galactic coordinates. Must store an array of coordinates (i.e., not be scalar). Returns: ``j, k, mask`` - Pixel indices of the coordinates, as well as a mask of in-bounds coordinates. Outputs have the same shape as the input coordinates. """ # Make sure that l is in domain [-180 deg, 180 deg) l = coordinates.Longitude(gal.l, wrap_angle=180.*units.deg) j = (self._inv_pix_scale * (l.deg - self._l_bounds[0])).astype('i4') k = (self._inv_pix_scale * (gal.b.deg - self._b_bounds[0])).astype('i4') idx = (j < 0) | (j >= self._shape[0]) | (k < 0) | (k >= self._shape[1]) if np.any(idx): j[idx] = -1 k[idx] = -1 return j, k, ~idx
Example 26
Project: dustmaps Author: gregreen File: bayestar.py License: GNU General Public License v2.0 | 5 votes |
def _find_data_idx(self, l, b): pix_idx = np.empty(l.shape, dtype='i8') pix_idx[:] = -1 # Search at each nside for k,nside in enumerate(self._nside_levels): ipix = lb2pix(nside, l, b, nest=True) # Find the insertion points of the query pixels in the large, ordered pixel list idx = np.searchsorted(self._hp_idx_sorted[k], ipix, side='left') # Determine which insertion points are beyond the edge of the pixel list in_bounds = (idx < self._hp_idx_sorted[k].size) if not np.any(in_bounds): continue # Determine which query pixels are correctly placed idx[~in_bounds] = -1 match_idx = (self._hp_idx_sorted[k][idx] == ipix) match_idx[~in_bounds] = False idx = idx[match_idx] if np.any(match_idx): pix_idx[match_idx] = self._data_idx[k][idx] return pix_idx
Example 27
Project: dustmaps Author: gregreen File: bayestar.py License: GNU General Public License v2.0 | 5 votes |
def _interpret_percentile(self, mode, pct): if mode == 'percentile': if pct is None: raise ValueError( '"percentile" mode requires an additional keyword ' 'argument: "pct"') if (type(pct) in (list,tuple)) or isinstance(pct, np.ndarray): try: pct = np.array(pct, dtype='f8') except ValueError as err: raise ValueError( 'Invalid "pct" specification. Must be number or ' 'list/array of numbers.') if np.any((pct < 0) | (pct > 100)): raise ValueError('"pct" must be between 0 and 100.') scalar_pct = False else: try: pct = float(pct) except ValueError as err: raise ValueError( 'Invalid "pct" specification. Must be number or ' 'list/array of numbers.') if (pct < 0) or (pct > 100): raise ValueError('"pct" must be between 0 and 100.') scalar_pct = True return pct, scalar_pct else: return None, None
Example 28
Project: dustmaps Author: gregreen File: iphas.py License: GNU General Public License v2.0 | 5 votes |
def __init__(self, map_fname=None): """ Args: map_fname (Optional[:obj:`str`]): Filename at which the map is stored. Defaults to ``None``, meaning that the default filename is used. """ if map_fname is None: map_fname = os.path.join(data_dir(), 'iphas', 'iphas.h5') with h5py.File(map_fname, 'r') as f: self._data = f['samples'][:] self._n_pix = self._data.size self._n_dists = self._data['A0'].shape[1] self._n_samples = self._data['A0'].shape[2] # All the distance bins are the same self._dists = self._data['dist'][0] # Don't query more than this angular distance from any point max_pix_scale = 0.5 * units.deg # Tesselate the sphere coords = coordinates.SkyCoord( self._data['l'], self._data['b'], unit='deg', frame='galactic') super(IPHASQuery, self).__init__(coords, max_pix_scale, metric_p=2)
Example 29
Project: dustmaps Author: gregreen File: chen2014.py License: GNU General Public License v2.0 | 5 votes |
def __init__(self, map_fname=None): """ Args: map_fname (Optional[:obj:`str`]): Filename at which the map is stored. Defaults to ``None``, meaning that the default filename is used. """ if map_fname is None: map_fname = os.path.join(data_dir(), 'chen2014', 'chen2014.h5') with h5py.File(map_fname, 'r') as f: self._dists = f['dists'][:] self._lb = f['pix_lb'][:] self._A = f['A_r'][:] self._sigma_A = f['A_r_err'][:] # Have to filter out zero pixels # idx = ~np.all(self._A < 1.e-5, axis=1) # self._lb = self._lb[idx] # self._A = self._A[idx] # self._sigma_A = self._sigma_A[idx] self._n_dists = self._dists.size # Don't query more than this angular distance from any point max_pix_scale = 0.5 * units.deg # Tesselate the sphere coords = coordinates.SkyCoord( self._lb[:,0], self._lb[:,1], unit='deg', frame='galactic') super(Chen2014Query, self).__init__(coords, max_pix_scale, metric_p=2)
Example 30
Project: spectrum_painter Author: polygon File: radios.py License: MIT License | 5 votes |
def _clip(self, complex_iq, limit=1.0): # Clips amplitude to level clipped_samples = np.abs(complex_iq) > limit if np.any(clipped_samples): clipped = complex_iq clipped[clipped_samples] = complex_iq[clipped_samples] / np.abs(complex_iq[clipped_samples]) warn('Some samples were clipped') else: clipped = complex_iq return clipped