Python numpy.fix() Examples
The following are 30 code examples for showing how to use numpy.fix(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: feets Author: quatrope File: ext_dmdt.py License: MIT License | 6 votes |
def fit(self, magnitude, time, dt_bins, dm_bins): def delta_calc(idx): t0 = time[idx] m0 = magnitude[idx] deltat = time[idx + 1 :] - t0 deltam = magnitude[idx + 1 :] - m0 deltat[np.where(deltat < 0)] *= -1 deltam[np.where(deltat < 0)] *= -1 return np.column_stack((deltat, deltam)) lc_len = len(time) n_vals = int(0.5 * lc_len * (lc_len - 1)) deltas = np.vstack(tuple(delta_calc(idx) for idx in range(lc_len - 1))) deltat = deltas[:, 0] deltam = deltas[:, 1] bins = [dt_bins, dm_bins] counts = np.histogram2d(deltat, deltam, bins=bins, normed=False)[0] result = np.fix(255.0 * counts / n_vals + 0.999).astype(int) return {"DMDT": result}
Example 2
Project: recruit Author: Frank-qlu File: test_ufunclike.py License: Apache License 2.0 | 6 votes |
def test_scalar(self): x = np.inf actual = np.isposinf(x) expected = np.True_ assert_equal(actual, expected) assert_equal(type(actual), type(expected)) x = -3.4 actual = np.fix(x) expected = np.float64(-3.0) assert_equal(actual, expected) assert_equal(type(actual), type(expected)) out = np.array(0.0) actual = np.fix(x, out=out) assert_(actual is out)
Example 3
Project: vnpy_crypto Author: birforce File: test_ufunclike.py License: MIT License | 6 votes |
def test_fix_with_subclass(self): class MyArray(nx.ndarray): def __new__(cls, data, metadata=None): res = nx.array(data, copy=True).view(cls) res.metadata = metadata return res def __array_wrap__(self, obj, context=None): obj.metadata = self.metadata return obj a = nx.array([1.1, -1.1]) m = MyArray(a, metadata='foo') f = ufl.fix(m) assert_array_equal(f, nx.array([1, -1])) assert_(isinstance(f, MyArray)) assert_equal(f.metadata, 'foo') # check 0d arrays don't decay to scalars m0d = m[0,...] m0d.metadata = 'bar' f0d = ufl.fix(m0d) assert_(isinstance(f0d, MyArray)) assert_equal(f0d.metadata, 'bar')
Example 4
Project: vnpy_crypto Author: birforce File: test_ufunclike.py License: MIT License | 6 votes |
def test_scalar(self): x = np.inf actual = np.isposinf(x) expected = np.True_ assert_equal(actual, expected) assert_equal(type(actual), type(expected)) x = -3.4 actual = np.fix(x) expected = np.float64(-3.0) assert_equal(actual, expected) assert_equal(type(actual), type(expected)) out = np.array(0.0) actual = np.fix(x, out=out) assert_(actual is out)
Example 5
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_ufunclike.py License: MIT License | 6 votes |
def test_scalar(self): x = np.inf actual = np.isposinf(x) expected = np.True_ assert_equal(actual, expected) assert_equal(type(actual), type(expected)) x = -3.4 actual = np.fix(x) expected = np.float64(-3.0) assert_equal(actual, expected) assert_equal(type(actual), type(expected)) out = np.array(0.0) actual = np.fix(x, out=out) assert_(actual is out)
Example 6
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_ufunclike.py License: MIT License | 6 votes |
def test_scalar(self): x = np.inf actual = np.isposinf(x) expected = np.True_ assert_equal(actual, expected) assert_equal(type(actual), type(expected)) x = -3.4 actual = np.fix(x) expected = np.float64(-3.0) assert_equal(actual, expected) assert_equal(type(actual), type(expected)) out = np.array(0.0) actual = np.fix(x, out=out) assert_(actual is out)
Example 7
Project: predictive-maintenance-using-machine-learning Author: awslabs File: test_ufunclike.py License: Apache License 2.0 | 6 votes |
def test_scalar(self): x = np.inf actual = np.isposinf(x) expected = np.True_ assert_equal(actual, expected) assert_equal(type(actual), type(expected)) x = -3.4 actual = np.fix(x) expected = np.float64(-3.0) assert_equal(actual, expected) assert_equal(type(actual), type(expected)) out = np.array(0.0) actual = np.fix(x, out=out) assert_(actual is out)
Example 8
Project: pySINDy Author: luckystarufo File: test_ufunclike.py License: MIT License | 6 votes |
def test_scalar(self): x = np.inf actual = np.isposinf(x) expected = np.True_ assert_equal(actual, expected) assert_equal(type(actual), type(expected)) x = -3.4 actual = np.fix(x) expected = np.float64(-3.0) assert_equal(actual, expected) assert_equal(type(actual), type(expected)) out = np.array(0.0) actual = np.fix(x, out=out) assert_(actual is out)
Example 9
Project: mxnet-lambda Author: awslabs File: test_ufunclike.py License: Apache License 2.0 | 6 votes |
def test_fix_with_subclass(self): class MyArray(nx.ndarray): def __new__(cls, data, metadata=None): res = nx.array(data, copy=True).view(cls) res.metadata = metadata return res def __array_wrap__(self, obj, context=None): obj.metadata = self.metadata return obj a = nx.array([1.1, -1.1]) m = MyArray(a, metadata='foo') f = ufl.fix(m) assert_array_equal(f, nx.array([1, -1])) assert_(isinstance(f, MyArray)) assert_equal(f.metadata, 'foo') # check 0d arrays don't decay to scalars m0d = m[0,...] m0d.metadata = 'bar' f0d = ufl.fix(m0d) assert_(isinstance(f0d, MyArray)) assert_equal(f0d.metadata, 'bar')
Example 10
Project: mxnet-lambda Author: awslabs File: test_ufunclike.py License: Apache License 2.0 | 6 votes |
def test_scalar(self): x = np.inf actual = np.isposinf(x) expected = np.True_ assert_equal(actual, expected) assert_equal(type(actual), type(expected)) x = -3.4 actual = np.fix(x) expected = np.float64(-3.0) assert_equal(actual, expected) assert_equal(type(actual), type(expected)) out = np.array(0.0) actual = np.fix(x, out=out) assert_(actual is out)
Example 11
Project: tensorrt_demos Author: jkjung-avt File: mtcnn.py License: MIT License | 6 votes |
def convert_to_1x1(boxes): """Convert detection boxes to 1:1 sizes # Arguments boxes: numpy array, shape (n,5), dtype=float32 # Returns boxes_1x1 """ boxes_1x1 = boxes.copy() hh = boxes[:, 3] - boxes[:, 1] + 1. ww = boxes[:, 2] - boxes[:, 0] + 1. mm = np.maximum(hh, ww) boxes_1x1[:, 0] = boxes[:, 0] + ww * 0.5 - mm * 0.5 boxes_1x1[:, 1] = boxes[:, 1] + hh * 0.5 - mm * 0.5 boxes_1x1[:, 2] = boxes_1x1[:, 0] + mm - 1. boxes_1x1[:, 3] = boxes_1x1[:, 1] + mm - 1. boxes_1x1[:, 0:4] = np.fix(boxes_1x1[:, 0:4]) return boxes_1x1
Example 12
Project: tensorrt_demos Author: jkjung-avt File: mtcnn.py License: MIT License | 6 votes |
def detect(self, img, minsize=40): """detect() This function handles rescaling of the input image if it's larger than 1280x720. """ if img is None: raise ValueError img_h, img_w, _ = img.shape scale = min(720. / img_h, 1280. / img_w) if scale < 1.0: new_h = int(np.ceil(img_h * scale)) new_w = int(np.ceil(img_w * scale)) img = cv2.resize(img, (new_w, new_h)) minsize = max(int(np.ceil(minsize * scale)), 40) dets, landmarks = self._detect_1280x720(img, minsize) if scale < 1.0: dets[:, :-1] = np.fix(dets[:, :-1] / scale) landmarks = np.fix(landmarks / scale) return dets, landmarks
Example 13
Project: AMFM_decompy Author: bjbschmitt File: pYAAPT.py License: MIT License | 6 votes |
def fix(self): if self.PITCH_HALF > 0: nz_pitch = self.samp_values[self.samp_values > 0] idx = self.samp_values < (np.mean(nz_pitch)-self.PITCH_HALF_SENS * np.std(nz_pitch)) if self.PITCH_HALF == 1: self.samp_values[idx] = 0 elif self.PITCH_HALF == 2: self.samp_values[idx] = 2*self.samp_values[idx] if self.PITCH_DOUBLE > 0: nz_pitch = self.samp_values[self.samp_values > 0] idx = self.samp_values > (np.mean(nz_pitch)+self.PITCH_DOUBLE_SENS * np.std(nz_pitch)) if self.PITCH_DOUBLE == 1: self.samp_values[idx] = 0 elif self.PITCH_DOUBLE == 2: self.samp_values[idx] = 0.5*self.samp_values[idx]
Example 14
Project: wradlib Author: wradlib File: util.py License: MIT License | 6 votes |
def filter_window_cartesian(img, wsize, fun, scale, **kwargs): """Apply a filter of square window size `fsize` on a given \ cartesian image `img`. Parameters ---------- img : :class:`numpy:numpy.ndarray` 2d array of values to which the filter is to be applied wsize : float Half size of the window centred on the pixel [m] fun : string name of the 2d filter from :mod:`scipy:scipy.ndimage` scale : tuple of 2 floats x and y scale of the cartesian grid [m] Returns ------- output : :class:`numpy:numpy.ndarray` Array with the same shape as `img`, containing the filter's results. """ fun = getattr(ndimage.filters, "%s_filter" % fun) size = np.fix(wsize / scale + 0.5).astype(int) data_filtered = fun(img, size, **kwargs) return data_filtered
Example 15
Project: insightface Author: deepinsight File: detect_face.py License: MIT License | 5 votes |
def generateBoundingBox(imap, reg, scale, t): # use heatmap to generate bounding boxes stride=2 cellsize=12 imap = np.transpose(imap) dx1 = np.transpose(reg[:,:,0]) dy1 = np.transpose(reg[:,:,1]) dx2 = np.transpose(reg[:,:,2]) dy2 = np.transpose(reg[:,:,3]) y, x = np.where(imap >= t) if y.shape[0]==1: dx1 = np.flipud(dx1) dy1 = np.flipud(dy1) dx2 = np.flipud(dx2) dy2 = np.flipud(dy2) score = imap[(y,x)] reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ])) if reg.size==0: reg = np.empty((0,3)) bb = np.transpose(np.vstack([y,x])) q1 = np.fix((stride*bb+1)/scale) q2 = np.fix((stride*bb+cellsize-1+1)/scale) boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg]) return boundingbox, reg # function pick = nms(boxes,threshold,type)
Example 16
Project: recruit Author: Frank-qlu File: test_ufunclike.py License: Apache License 2.0 | 5 votes |
def test_fix(self): a = nx.array([[1.0, 1.1, 1.5, 1.8], [-1.0, -1.1, -1.5, -1.8]]) out = nx.zeros(a.shape, float) tgt = nx.array([[1., 1., 1., 1.], [-1., -1., -1., -1.]]) res = ufl.fix(a) assert_equal(res, tgt) res = ufl.fix(a, out) assert_equal(res, tgt) assert_equal(out, tgt) assert_equal(ufl.fix(3.14), 3)
Example 17
Project: recruit Author: Frank-qlu File: test_ufunclike.py License: Apache License 2.0 | 5 votes |
def test_fix_with_subclass(self): class MyArray(nx.ndarray): def __new__(cls, data, metadata=None): res = nx.array(data, copy=True).view(cls) res.metadata = metadata return res def __array_wrap__(self, obj, context=None): if isinstance(obj, MyArray): obj.metadata = self.metadata return obj def __array_finalize__(self, obj): self.metadata = getattr(obj, 'metadata', None) return self a = nx.array([1.1, -1.1]) m = MyArray(a, metadata='foo') f = ufl.fix(m) assert_array_equal(f, nx.array([1, -1])) assert_(isinstance(f, MyArray)) assert_equal(f.metadata, 'foo') # check 0d arrays don't decay to scalars m0d = m[0,...] m0d.metadata = 'bar' f0d = ufl.fix(m0d) assert_(isinstance(f0d, MyArray)) assert_equal(f0d.metadata, 'bar')
Example 18
Project: recruit Author: Frank-qlu File: test_ufunclike.py License: Apache License 2.0 | 5 votes |
def test_deprecated(self): # NumPy 1.13.0, 2017-04-26 assert_warns(DeprecationWarning, ufl.fix, [1, 2], y=nx.empty(2)) assert_warns(DeprecationWarning, ufl.isposinf, [1, 2], y=nx.empty(2)) assert_warns(DeprecationWarning, ufl.isneginf, [1, 2], y=nx.empty(2))
Example 19
Project: recruit Author: Frank-qlu File: test_indexing.py License: Apache License 2.0 | 5 votes |
def test_getitem_setitem_ellipsis(): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 assert (result == 5).all()
Example 20
Project: mars Author: mars-project File: fix.py License: Apache License 2.0 | 5 votes |
def fix(x, out=None, **kwargs): """ Round to nearest integer towards zero. Round a tensor of floats element-wise to nearest integer towards zero. The rounded values are returned as floats. Parameters ---------- x : array_like An tensor of floats to be rounded out : Tensor, optional Output tensor Returns ------- out : Tensor of floats The array of rounded numbers See Also -------- trunc, floor, ceil around : Round to given number of decimals Examples -------- >>> import mars.tensor as mt >>> mt.fix(3.14).execute() 3.0 >>> mt.fix(3).execute() 3.0 >>> mt.fix([2.1, 2.9, -2.1, -2.9]).execute() array([ 2., 2., -2., -2.]) """ op = TensorFix(**kwargs) return op(x, out=out)
Example 21
Project: TNT Author: GaoangW File: detect_face.py License: GNU General Public License v3.0 | 5 votes |
def generateBoundingBox(imap, reg, scale, t): """Use heatmap to generate bounding boxes""" stride=2 cellsize=12 imap = np.transpose(imap) dx1 = np.transpose(reg[:,:,0]) dy1 = np.transpose(reg[:,:,1]) dx2 = np.transpose(reg[:,:,2]) dy2 = np.transpose(reg[:,:,3]) y, x = np.where(imap >= t) if y.shape[0]==1: dx1 = np.flipud(dx1) dy1 = np.flipud(dy1) dx2 = np.flipud(dx2) dy2 = np.flipud(dy2) score = imap[(y,x)] reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ])) if reg.size==0: reg = np.empty((0,3)) bb = np.transpose(np.vstack([y,x])) q1 = np.fix((stride*bb+1)/scale) q2 = np.fix((stride*bb+cellsize-1+1)/scale) boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg]) return boundingbox, reg # function pick = nms(boxes,threshold,type)
Example 22
Project: vnpy_crypto Author: birforce File: test_ufunclike.py License: MIT License | 5 votes |
def test_fix(self): a = nx.array([[1.0, 1.1, 1.5, 1.8], [-1.0, -1.1, -1.5, -1.8]]) out = nx.zeros(a.shape, float) tgt = nx.array([[1., 1., 1., 1.], [-1., -1., -1., -1.]]) res = ufl.fix(a) assert_equal(res, tgt) res = ufl.fix(a, out) assert_equal(res, tgt) assert_equal(out, tgt) assert_equal(ufl.fix(3.14), 3)
Example 23
Project: vnpy_crypto Author: birforce File: test_ufunclike.py License: MIT License | 5 votes |
def test_deprecated(self): # NumPy 1.13.0, 2017-04-26 assert_warns(DeprecationWarning, ufl.fix, [1, 2], y=nx.empty(2)) assert_warns(DeprecationWarning, ufl.isposinf, [1, 2], y=nx.empty(2)) assert_warns(DeprecationWarning, ufl.isneginf, [1, 2], y=nx.empty(2))
Example 24
Project: vnpy_crypto Author: birforce File: test_indexing.py License: MIT License | 5 votes |
def test_getitem_setitem_ellipsis(): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 assert (result == 5).all()
Example 25
Project: opensauce-python Author: voicesauce File: shrp.py License: Apache License 2.0 | 5 votes |
def two_max(x, lowerbound, upperbound, unit_len): """Return up to two successive maximum peaks and their indices in x. Return the magnitudes of the peaks and the indices as two lists. If the first maximum is less than zero, just return it. Otherwise look to the right of the first maximum, and if there is a second maximum that is greater than zero, add that to the returned lists. lowerbound and upperbound comprise a closed interval, unlike the normal python half closed interval. [RDM XXX: fix this?] """ # XXX The above description is not completely accurate: there's a window to # the search for the second peak, but I don't understand the goal well # enough to describe it better, and the original comments are less precise. max_index = min(upperbound, len(x)-1) # "find the maximum value" mag = np.array([np.amax(x[lowerbound:upperbound+1])]) index = np.where(x == mag)[0] if mag < 0: return mag, index harmonics = 2 limit = 0.0625 # "1/8 octave" startpos = index[0] + int(round(np.log2(harmonics-limit)/unit_len)) if startpos <= max_index: # "for example, 100hz-200hz is one octave, 200hz-250hz is 1/4octave" endpos = index[0] + int(round(np.log2(harmonics + limit)/unit_len)) endpos = min(max_index, endpos) # "find the maximum value at right side of last maximum" mag2 = np.amax(x[startpos:endpos+1]) index2 = np.where(x[startpos:] == mag2)[0][0] + startpos if mag2 > 0: mag = np.append(mag, mag2) index = np.append(index, index2) return mag, index # ---- vda ----- # func_Get_SHRP does not use this, because CHECK_VOICING is always 0
Example 26
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_ufunclike.py License: MIT License | 5 votes |
def test_fix(self): a = nx.array([[1.0, 1.1, 1.5, 1.8], [-1.0, -1.1, -1.5, -1.8]]) out = nx.zeros(a.shape, float) tgt = nx.array([[1., 1., 1., 1.], [-1., -1., -1., -1.]]) res = ufl.fix(a) assert_equal(res, tgt) res = ufl.fix(a, out) assert_equal(res, tgt) assert_equal(out, tgt) assert_equal(ufl.fix(3.14), 3)
Example 27
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_ufunclike.py License: MIT License | 5 votes |
def test_fix_with_subclass(self): class MyArray(nx.ndarray): def __new__(cls, data, metadata=None): res = nx.array(data, copy=True).view(cls) res.metadata = metadata return res def __array_wrap__(self, obj, context=None): if isinstance(obj, MyArray): obj.metadata = self.metadata return obj def __array_finalize__(self, obj): self.metadata = getattr(obj, 'metadata', None) return self a = nx.array([1.1, -1.1]) m = MyArray(a, metadata='foo') f = ufl.fix(m) assert_array_equal(f, nx.array([1, -1])) assert_(isinstance(f, MyArray)) assert_equal(f.metadata, 'foo') # check 0d arrays don't decay to scalars m0d = m[0,...] m0d.metadata = 'bar' f0d = ufl.fix(m0d) assert_(isinstance(f0d, MyArray)) assert_equal(f0d.metadata, 'bar')
Example 28
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_ufunclike.py License: MIT License | 5 votes |
def test_deprecated(self): # NumPy 1.13.0, 2017-04-26 assert_warns(DeprecationWarning, ufl.fix, [1, 2], y=nx.empty(2)) assert_warns(DeprecationWarning, ufl.isposinf, [1, 2], y=nx.empty(2)) assert_warns(DeprecationWarning, ufl.isneginf, [1, 2], y=nx.empty(2))
Example 29
Project: qiskit-aer Author: Qiskit File: operators.py License: Apache License 2.0 | 5 votes |
def jmat(j, *args): """Higher-order spin operators: Args: j (float): Spin of operator args (str): Which operator to return 'x','y','z','+','-'. If no args given, then output is ['x','y','z'] Returns: Qobj: Requested spin operator(s). Raises: TypeError: Invalid input. """ if (np.fix(2 * j) != 2 * j) or (j < 0): raise TypeError('j must be a non-negative integer or half-integer') if not args: return jmat(j, 'x'), jmat(j, 'y'), jmat(j, 'z') if args[0] == '+': A = _jplus(j) elif args[0] == '-': A = _jplus(j).getH() elif args[0] == 'x': A = 0.5 * (_jplus(j) + _jplus(j).getH()) elif args[0] == 'y': A = -0.5 * 1j * (_jplus(j) - _jplus(j).getH()) elif args[0] == 'z': A = _jz(j) else: raise TypeError('Invalid type') return Qobj(A)
Example 30
Project: trax Author: google File: math_ops.py License: Apache License 2.0 | 5 votes |
def fix(x): def f(x): return tf.where(x < 0, tf.math.ceil(x), tf.math.floor(x)) return _scalar(f, x, True)