Python numpy.ogrid() Examples
The following are 30 code examples for showing how to use numpy.ogrid(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: keras-utility-layer-collection Author: zimmerrol File: image.py License: MIT License | 6 votes |
def _bilinear_upsampling_weights(weight_shape): # weight_shape must be (width, height, n_channels, n_channels) if weight_shape[-1] != weight_shape[-2]: raise ValueError("Number of input channels must be the same as the number of input channels.") weight = np.zeros(weight_shape, dtype=np.float32) # create single upsampling kernel for one channel # according to http://warmspringwinds.github.io/tensorflow/tf-slim/2016/11/22/upsampling-and-image-segmentation-with-tensorflow-and-tf-slim/ grid = np.ogrid[:weight_shape[0], :weight_shape[1]] factors = [(s+1)//2 for s in weight_shape[:2]] centers = [(s+1)//2 - 0.5*(s%2 + 1) for s in weight_shape[:2]] upsampling_kernel = (1-abs(grid[0] - centers[0]) / factors[0]) * (1-abs(grid[1] - centers[1]) / factors[1]) for i in range(weight_shape[-1]): weight[:, :, i, i] = upsampling_kernel return weight
Example 2
Project: mars Author: mars-project File: core.py License: Apache License 2.0 | 6 votes |
def execute_agg(cls, ctx, op): axis = cls.get_arg_axis(op.axis, op.inputs[0].ndim) (vals, arg), device_id, xp = as_same_device( ctx[op.inputs[0].key], device=op.device, ret_extra=True) func_name = getattr(cls, '_func_name') arg_func = getattr(xp, func_name) with device(device_id): if xp.any(xp.isnan(vals)) and 'nan' in func_name: raise ValueError("All NaN slice encountered") if axis is None: local_args = arg_func(vals, axis=axis) arg = arg.ravel()[local_args] else: local_args = arg_func(vals, axis=axis) inds = np.ogrid[tuple(map(slice, local_args.shape))] if xp != np: inds = [xp.asarray(it) for it in inds] inds.insert(axis, local_args) arg = arg[tuple(inds)] ctx[op.outputs[0].key] = arg
Example 3
Project: mars Author: mars-project File: core.py License: Apache License 2.0 | 6 votes |
def execute_combine(cls, ctx, op): axis = cls.get_arg_axis(op.axis, op.inputs[0].ndim) (vals, arg), device_id, xp = as_same_device( ctx[op.inputs[0].key], device=op.device, ret_extra=True) func_name = getattr(cls, '_func_name') arg_func = getattr(xp, func_name) with device(device_id): if axis is None: local_args = arg_func(vals, axis=axis).reshape(op.outputs[0].shape) vals = vals.ravel()[local_args] arg = arg.ravel()[local_args] else: local_args = arg_func(vals, axis=axis) inds = np.ogrid[tuple(map(slice, local_args.shape))] if xp != np: inds = [xp.asarray(it) for it in inds] inds.insert(axis, local_args) inds_tuple = tuple(inds) vals = vals[inds_tuple].reshape(op.outputs[0].shape) arg = arg[inds_tuple].reshape(op.outputs[0].shape) ctx[op.outputs[0].key] = (vals, arg)
Example 4
Project: Semantic-Segmentation-using-Adversarial-Networks Author: oyam File: functions.py License: MIT License | 6 votes |
def bilinear_interpolation_kernel(in_channels, out_channels, ksize): """calculate a bilinear interpolation kernel Args: in_channels (int): Number of channels of input arrays. If ``None``, parameter initialization will be deferred until the first forward data pass at which time the size will be determined. out_channels (int): Number of channels of output arrays. ksize (int): Size of filters (a.k.a. kernels). """ factor = (ksize + 1) / 2 if ksize % 2 == 1: center = factor - 1 else: center = factor - 0.5 og = np.ogrid[:ksize, :ksize] k = (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor) W = np.zeros((in_channels, out_channels, ksize, ksize)).astype(np.float32) W[range(in_channels), range(out_channels), :, :] = k return W
Example 5
Project: hed-pytorch Author: meteorshowers File: models.py License: MIT License | 6 votes |
def make_bilinear_weights(size, num_channels): factor = (size + 1) // 2 if size % 2 == 1: center = factor - 1 else: center = factor - 0.5 og = np.ogrid[:size, :size] filt = (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor) # print(filt) filt = torch.from_numpy(filt) w = torch.zeros(num_channels, num_channels, size, size) w.requires_grad = False for i in range(num_channels): for j in range(num_channels): if i == j: w[i, j] = filt return w
Example 6
Project: gluon-cv Author: dmlc File: target_generator.py License: Apache License 2.0 | 6 votes |
def _gaussian_2d(shape, sigma=1): """Generate 2d gaussian. Parameters ---------- shape : tuple of int The shape of the gaussian. sigma : float Sigma for gaussian. Returns ------- float 2D gaussian kernel. """ m, n = [(ss - 1.) / 2. for ss in shape] y, x = np.ogrid[-m:m+1, -n:n+1] h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) h[h < np.finfo(h.dtype).eps * h.max()] = 0 return h
Example 7
Project: pywonderland Author: neozhaoliang File: kaleidoscope.py License: MIT License | 6 votes |
def main(imgsize): y, x = np.ogrid[6: -6: imgsize*2j, -6: 6: imgsize*2j] z = x + y*1j z = RiemannSphere(Klein(Mobius(Klein(z)))) # define colors in hsv space H = np.sin(z[0]*np.pi)**2 S = np.cos(z[1]*np.pi)**2 V = abs(np.sin(z[2]*np.pi) * np.cos(z[2]*np.pi))**0.2 HSV = np.stack((H, S, V), axis=2) # transform to rgb space img = hsv_to_rgb(HSV) fig = plt.figure(figsize=(imgsize/100.0, imgsize/100.0), dpi=100) ax = fig.add_axes([0, 0, 1, 1], aspect=1) ax.axis('off') ax.imshow(img) fig.savefig('kaleidoscope.png')
Example 8
Project: modred Author: belson17 File: util.py License: BSD 2-Clause "Simplified" License | 6 votes |
def Hankel(first_col, last_row=None): """ Construct a Hankel array, whose skew diagonals are constant. Args: ``first_col``: 1D array corresponding to first column of Hankel array. Kwargs: ``last_row``: 1D array corresponding to the last row of Hankel array. First element will be ignored. Default is an array of zeros of the same size as ``first_col``. Returns: Hankel: 2D array with dimensions ``[len(first_col), len(last_row)]``. """ first_col = np.array(first_col).flatten() if last_row is None: last_row = np.zeros(first_col.shape) else: last_row = last_row.flatten() unique_vals = np.concatenate((first_col, last_row[1:])) a, b = np.ogrid[0:len(first_col), 0:len(last_row)] indices = a + b return unique_vals[indices]
Example 9
Project: kite Author: pyrocko File: scene_processing.py License: GNU General Public License v3.0 | 6 votes |
def apply(self): sc = self.scene org = self.original factor = self.factor sx, sy = sc.displacement.shape gx, gy = num.ogrid[0:sx, 0:sy] regions = sy/factor * (gx/factor) + gy/factor indices = num.arange(regions.max() + 1) def block_downsample(arr): res = ndimage.mean( arr, labels=regions, index=indices) res.shape = (sx/factor, sy/factor) return res sc.displacement = block_downsample(sc.displacement) sc.theta = block_downsample(sc.theta) sc.phi = block_downsample(sc.phi) sc.frame.dLat = org['frame.dLat'] * self.factor sc.frame.dLon = org['frame.dLat'] * self.factor
Example 10
Project: neural-network-animation Author: miloharper File: test_backend_pgf.py License: MIT License | 6 votes |
def test_bbox_inches(): if not check_for('xelatex'): raise SkipTest('xelatex + pgf is required') rc_xelatex = {'font.family': 'serif', 'pgf.rcfonts': False} mpl.rcParams.update(rc_xelatex) Y, X = np.ogrid[-1:1:40j, -1:1:40j] fig = plt.figure() ax1 = fig.add_subplot(121) ax1.plot(range(5)) ax2 = fig.add_subplot(122) ax2.plot(range(5)) plt.tight_layout() bbox = ax1.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) compare_figure('pgf_bbox_inches.pdf', savefig_kwargs={'bbox_inches': bbox})
Example 11
Project: KCF-DSST-py Author: ryanfwy File: tracker.py License: MIT License | 6 votes |
def createHanningMats(self): hann2t, hann1t = np.ogrid[0:self.size_patch[0], 0:self.size_patch[1]] hann1t = 0.5 * (1 - np.cos(2 * np.pi * hann1t / (self.size_patch[1] - 1))) hann2t = 0.5 * (1 - np.cos(2 * np.pi * hann2t / (self.size_patch[0] - 1))) hann2d = hann2t * hann1t if self._hogfeatures: hann1d = hann2d.reshape(self.size_patch[0] * self.size_patch[1]) self.hann = np.zeros((self.size_patch[2], 1), np.float32) + hann1d #相当于把1D汉宁窗复制成多个通道 else: self.hann = hann2d self.hann = self.hann.astype(np.float32) # 创建高斯峰函数,函数只在第一帧的时候执行(高斯响应)
Example 12
Project: versa Author: Gordonjo File: mini_imagenet.py License: MIT License | 6 votes |
def onehottify_2d_array(a): """ https://stackoverflow.com/questions/36960320/convert-a-2d-matrix-to-a-3d-one-hot-matrix-numpy :param a: 2-dimensional array. :return: 3-dim array where last dim corresponds to one-hot encoded vectors. """ # https://stackoverflow.com/a/46103129/ @Divakar def all_idx(idx, axis): grid = np.ogrid[tuple(map(slice, idx.shape))] grid.insert(axis, idx) return tuple(grid) num_columns = a.max() + 1 out = np.zeros(a.shape + (num_columns,), dtype=int) out[all_idx(a, axis=2)] = 1 return out
Example 13
Project: Counting-ICCV-DSSINet Author: Legion56 File: density_gen.py License: MIT License | 6 votes |
def get(self, shape=(3, 3), sigma=0.5): if '%d_%d' % (int(shape[0]), int(sigma * 10)) not in self.kernel_set.keys(): m, n = [(ss - 1.0) / 2.0 for ss in shape] y, x = np.ogrid[-m:m + 1, -n:n + 1] h = np.exp(-(x * x + y * y) / (2.0 * sigma * sigma)) h[h < np.finfo(h.dtype).eps * h.max()] = 0 # import pdb # pdb.set_trace() t = h[0][int(m)] h[h < t] = 0 sumh = h.sum() if sumh != 0: h /= sumh self.kernel_set['%d_%d' % (int(shape[0]), int(sigma * 10))] = h return h else: return self.kernel_set['%d_%d' % (int(shape[0]), int(sigma * 10))]
Example 14
Project: dal Author: montrealrobotics File: utils.py License: MIT License | 6 votes |
def create_circular_mask(h, w, center=None, radius=None, angle=None, thick=0): # img = np.random.randint(0,2,(4,224,224)) # print (img.shape) # mask = create_circular_mask(224,224, center = (100,100), radius = 20) # img[3,~mask] = 0 # plt.imshow(img[3,:,:]) # plt.show() if center is None: # use the middle of the image center = [int(w/2), int(h/2)] if radius is None: # use the smallest distance between the center and image walls radius = min(center[0], center[1], w-center[0], h-center[1]) Y, X = np.ogrid[:h, :w] dist_from_center = np.sqrt((X - center[0])**2 + (Y-center[1])**2) if angle is None: mask = (dist_from_center <= radius) else: angle_from_center = np.arctan2(Y-center[1],X-center[0]) mask = (dist_from_center <= radius) & (np.abs(np.unwrap(angle_from_center-angle)) * dist_from_center <= thick) #(angle_from_center < angle+0.15/(dist_from_center+0.01)) & (angle_from_center > angle-0.15/(dist_from_center+0.01)) return mask
Example 15
Project: dal Author: montrealrobotics File: utils.py License: MIT License | 6 votes |
def create_circular_mask(h, w, center=None, radius=None, angle=None, thick=0): # img = np.random.randint(0,2,(4,224,224)) # print (img.shape) # mask = create_circular_mask(224,224, center = (100,100), radius = 20) # img[3,~mask] = 0 # plt.imshow(img[3,:,:]) # plt.show() if center is None: # use the middle of the image center = [int(w/2), int(h/2)] if radius is None: # use the smallest distance between the center and image walls radius = min(center[0], center[1], w-center[0], h-center[1]) Y, X = np.ogrid[:h, :w] dist_from_center = np.sqrt((X - center[0])**2 + (Y-center[1])**2) if angle is None: mask = (dist_from_center <= radius) else: angle_from_center = np.arctan2(Y-center[1],X-center[0]) mask = (dist_from_center <= radius) & (np.abs(np.unwrap(angle_from_center-angle)) * dist_from_center <= thick) #(angle_from_center < angle+0.15/(dist_from_center+0.01)) & (angle_from_center > angle-0.15/(dist_from_center+0.01)) return mask
Example 16
Project: dal Author: montrealrobotics File: utils.py License: MIT License | 6 votes |
def create_circular_mask(h, w, center=None, radius=None, angle=None, thick=0): # img = np.random.randint(0,2,(4,224,224)) # print (img.shape) # mask = create_circular_mask(224,224, center = (100,100), radius = 20) # img[3,~mask] = 0 # plt.imshow(img[3,:,:]) # plt.show() if center is None: # use the middle of the image center = [int(w/2), int(h/2)] if radius is None: # use the smallest distance between the center and image walls radius = min(center[0], center[1], w-center[0], h-center[1]) Y, X = np.ogrid[:h, :w] dist_from_center = np.sqrt((X - center[0])**2 + (Y-center[1])**2) if angle is None: mask = (dist_from_center <= radius) else: angle_from_center = np.arctan2(Y-center[1],X-center[0]) mask = (dist_from_center <= radius) & (np.abs(np.unwrap(angle_from_center-angle)) * dist_from_center <= thick) #(angle_from_center < angle+0.15/(dist_from_center+0.01)) & (angle_from_center > angle-0.15/(dist_from_center+0.01)) return mask
Example 17
Project: cross-season-segmentation Author: maunzzz File: misc.py License: MIT License | 6 votes |
def get_upsampling_weight(in_channels, out_channels, kernel_size): factor = (kernel_size + 1) // 2 if kernel_size % 2 == 1: center = factor - 1 else: center = factor - 0.5 og = np.ogrid[:kernel_size, :kernel_size] filt = (1 - abs(og[0] - center) / factor) * \ (1 - abs(og[1] - center) / factor) weight = np.zeros( (in_channels, out_channels, kernel_size, kernel_size), dtype=np.float64) weight[list(range(in_channels)), list(range(out_channels)), :, :] = filt return torch.from_numpy(weight).float()
Example 18
Project: CU-Net Author: zhiqiangdon File: HumanPts.py License: Apache License 2.0 | 6 votes |
def pts2resmap(pts, resmap_shape, radius): # generate multi-channel resmap, one map for each point pts_num = pts.shape[0] resmap = np.zeros((pts_num, resmap_shape[0], resmap_shape[1])) valid_pts = np.zeros((pts.shape)) for i in range(0, pts_num): # if vis_arr[i] == -1: # continue # note that here we can't use vis_arr to indicate whether to draw the annotation # because some pts are labeled visible but not within the effective crop area due to the # inaccurate person scale in the original annotation if pts[i][0] <= 0 or pts[i][1] <= 0 or \ pts[i][0] > resmap_shape[1] or pts[i][1] > resmap_shape[0]: continue y, x = np.ogrid[-pts[i][1]:resmap_shape[0] - pts[i][1], -pts[i][0]:resmap_shape[1] - pts[i][0]] mask = x * x + y * y <= radius * radius resmap[i][mask] = 1 valid_pts[i] = pts[i] # print('channel %d sum is %.f' % (i, np.sum(resmap[i]))) return resmap, valid_pts
Example 19
Project: python3_ios Author: holzschu File: test_backend_pgf.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_bbox_inches(): rc_xelatex = {'font.family': 'serif', 'pgf.rcfonts': False} mpl.rcParams.update(rc_xelatex) Y, X = np.ogrid[-1:1:40j, -1:1:40j] fig = plt.figure() ax1 = fig.add_subplot(121) ax1.plot(range(5)) ax2 = fig.add_subplot(122) ax2.plot(range(5)) plt.tight_layout() bbox = ax1.get_window_extent().transformed(fig.dpi_scale_trans.inverted()) compare_figure('pgf_bbox_inches.pdf', savefig_kwargs={'bbox_inches': bbox}, tol=0)
Example 20
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: init_fcnxs.py License: Apache License 2.0 | 5 votes |
def upsample_filt(size): factor = (size + 1) // 2 if size % 2 == 1: center = factor - 1.0 else: center = factor - 0.5 og = np.ogrid[:size, :size] return (1 - abs(og[0] - center) / factor) * \ (1 - abs(og[1] - center) / factor)
Example 21
Project: Parsing-R-CNN Author: soeaver File: bilinear_interpolation2d.py License: MIT License | 5 votes |
def __init__(self, in_channels, out_channels, up_scale): super().__init__() assert in_channels == out_channels assert up_scale % 2 == 0, 'Scale should be even' self.in_channes = in_channels self.out_channels = out_channels self.up_scale = int(up_scale) self.padding = up_scale // 2 def upsample_filt(size): factor = (size + 1) // 2 if size % 2 == 1: center = factor - 1 else: center = factor - 0.5 og = np.ogrid[:size, :size] return ((1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor)) kernel_size = up_scale * 2 bil_filt = upsample_filt(kernel_size) kernel = np.zeros( (in_channels, out_channels, kernel_size, kernel_size), dtype=np.float32 ) kernel[range(in_channels), range(out_channels), :, :] = bil_filt self.upconv = nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=self.up_scale, padding=self.padding) self.upconv.weight.data.copy_(torch.from_numpy(kernel)) self.upconv.bias.data.fill_(0) self.upconv.weight.requires_grad = False self.upconv.bias.requires_grad = False
Example 22
Project: VASPy Author: PytLab File: electro.py License: MIT License | 5 votes |
def plot_mcontour(self, ndim0, ndim1, z, show_mode): "use mayavi.mlab to plot contour." if not mayavi_installed: self.__logger.info("Mayavi is not installed on your device.") return #do 2d interpolation #get slice object s = np.s_[0:ndim0:1, 0:ndim1:1] x, y = np.ogrid[s] mx, my = np.mgrid[s] #use cubic 2d interpolation interpfunc = interp2d(x, y, z, kind='cubic') newx = np.linspace(0, ndim0, 600) newy = np.linspace(0, ndim1, 600) newz = interpfunc(newx, newy) #mlab face = mlab.surf(newx, newy, newz, warp_scale=2) mlab.axes(xlabel='x', ylabel='y', zlabel='z') mlab.outline(face) #save or show if show_mode == 'show': mlab.show() elif show_mode == 'save': mlab.savefig('mlab_contour3d.png') else: raise ValueError('Unrecognized show mode parameter : ' + show_mode) return
Example 23
Project: cycada_release Author: jhoffman File: fcn8s.py License: BSD 2-Clause "Simplified" License | 5 votes |
def get_upsample_filter(size): """Make a 2D bilinear kernel suitable for upsampling""" factor = (size + 1) // 2 if size % 2 == 1: center = factor - 1 else: center = factor - 0.5 og = np.ogrid[:size, :size] filter = (1 - abs(og[0] - center) / factor) * \ (1 - abs(og[1] - center) / factor) return torch.from_numpy(filter).float()
Example 24
Project: CornerNet-Lite-Pytorch Author: DataXujing File: utils.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def gaussian2D(shape, sigma=1): """ :param shape: (diameter, diameter) 直径,直径 :param sigma: (diameter / 6) :return: """ # 先拿到半径 m, n = [(ss - 1.) / 2. for ss in shape] y, x = np.ogrid[-m:m + 1, -n:n + 1] h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) h[h < np.finfo(h.dtype).eps * h.max()] = 0 return h
Example 25
Project: centernet_tensorflow_wilderface_voc Author: xggIoU File: create_label.py License: MIT License | 5 votes |
def creat_roiheatmap_ellipse(det_size_map): sigma_x = ((det_size_map[1] - 1) * 0.5 - 1) * 0.3 + 0.8 s_x = 2 * (sigma_x ** 2) sigma_y = ((det_size_map[0] - 1) * 0.5 - 1) * 0.3 + 0.8 s_y = 2 * (sigma_y ** 2) h, w = [(hw - 1.) / 2. for hw in det_size_map] y, x = np.ogrid[-h:h + 1, -w:w + 1] heatmap = np.exp(-x**2 / s_x - y**2 / s_y) return heatmap
Example 26
Project: centernet_tensorflow_wilderface_voc Author: xggIoU File: create_label.py License: MIT License | 5 votes |
def creat_roiheatmap_circle(det_size_map): min_size=min(det_size_map) sigma = ((min_size - 1) * 0.5 - 1) * 0.3 + 0.8 s_ = 2 * (sigma ** 2) h, w = [(hw - 1.) / 2. for hw in det_size_map] y, x = np.ogrid[-h:h + 1, -w:w + 1] heatmap = np.exp(-x**2 / s_ - y**2 / s_) return heatmap
Example 27
Project: LagouJob Author: lucasxlu File: hot_words_generator.py License: Apache License 2.0 | 5 votes |
def cal_and_show_job_impression_hot_words(self, interviewee_comments_dir='../spider/impression'): """ calculate and show hot words of Job Impression :param interviewee_comments_dir: :return: """ if not os.path.exists(interviewee_comments_dir) or len(os.listdir(interviewee_comments_dir)) == 0: print('Error! No valid content in {0}'.format(interviewee_comments_dir)) sys.exit(0) else: job_and_dir = {_: os.path.join(interviewee_comments_dir, _) for _ in os.listdir(interviewee_comments_dir)} for k, v in job_and_dir.items(): text = self.concat_all_text(v) jieba.analyse.set_stop_words(STOPWORDS_PATH) jieba.load_userdict(USER_CORPUS) hot_words_with_weights = jieba.analyse.extract_tags(text, topK=30, withWeight=True, allowPOS=()) frequencies = {_[0]: _[1] for _ in hot_words_with_weights} print(frequencies) x, y = np.ogrid[:300, :300] mask = (x - 150) ** 2 + (y - 150) ** 2 > 130 ** 2 mask = 255 * mask.astype(int) wordcloud = WordCloud(font_path='./msyh.ttf', width=600, height=300, background_color="white", repeat=False, mask=mask) wordcloud.generate_from_frequencies(frequencies) import matplotlib.pyplot as plt plt.imshow(wordcloud, interpolation='bilinear') plt.axis("off") plt.show()
Example 28
Project: LagouJob Author: lucasxlu File: hot_words_generator.py License: Apache License 2.0 | 5 votes |
def cal_and_show_jd_hot_words(self, jd_dir='../spider/jd'): """ calculate and show hot words of Job Description (JD) :param jd_dir: :return: """ if not os.path.exists(jd_dir) or len(os.listdir(jd_dir)) == 0: print('Error! No valid content in {0}'.format(jd_dir)) sys.exit(0) else: jd_and_dir = {_.split('.')[0]: os.path.join(jd_dir, _) for _ in os.listdir(jd_dir)} for k, v in jd_and_dir.items(): text = "".join(pd.read_excel(v)['详情描述']) jieba.analyse.set_stop_words(STOPWORDS_PATH) jieba.load_userdict(USER_CORPUS) hot_words_with_weights = jieba.analyse.extract_tags(text, topK=30, withWeight=True, allowPOS=()) frequencies = {_[0]: _[1] for _ in hot_words_with_weights} print(frequencies) x, y = np.ogrid[:300, :300] mask = (x - 150) ** 2 + (y - 150) ** 2 > 130 ** 2 mask = 255 * mask.astype(int) wordcloud = WordCloud(font_path='./msyh.ttf', width=600, height=300, background_color="white", repeat=False, mask=mask) wordcloud.generate_from_frequencies(frequencies) import matplotlib.pyplot as plt plt.imshow(wordcloud, interpolation='bilinear') plt.axis("off") plt.show()
Example 29
Project: lambda-packs Author: ryfeus File: special_matrices.py License: MIT License | 5 votes |
def circulant(c): """ Construct a circulant matrix. Parameters ---------- c : (N,) array_like 1-D array, the first column of the matrix. Returns ------- A : (N, N) ndarray A circulant matrix whose first column is `c`. See Also -------- toeplitz : Toeplitz matrix hankel : Hankel matrix solve_circulant : Solve a circulant system. Notes ----- .. versionadded:: 0.8.0 Examples -------- >>> from scipy.linalg import circulant >>> circulant([1, 2, 3]) array([[1, 3, 2], [2, 1, 3], [3, 2, 1]]) """ c = np.asarray(c).ravel() a, b = np.ogrid[0:len(c), 0:-len(c):-1] indx = a + b # `indx` is a 2D array of indices into `c`, arranged so that `c[indx]` is # the circulant matrix. return c[indx]
Example 30
Project: DSS Author: Andrew-Qibin File: run_saliency.py License: MIT License | 5 votes |
def upsample_filt(size): factor = (size + 1) // 2 if size % 2 == 1: center = factor - 1 else: center = factor - 0.5 og = np.ogrid[:size, :size] return (1 - abs(og[0] - center) / factor) * \ (1 - abs(og[1] - center) / factor) # set parameters s.t. deconvolutional layers compute bilinear interpolation # N.B. this is for deconvolution without groups