Python numpy.delete() Examples
The following are 30 code examples for showing how to use numpy.delete(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: cat-bbs Author: aleju File: common.py License: MIT License | 6 votes |
def draw_heatmap(img, heatmap, alpha=0.5): """Draw a heatmap overlay over an image.""" assert len(heatmap.shape) == 2 or \ (len(heatmap.shape) == 3 and heatmap.shape[2] == 1) assert img.dtype in [np.uint8, np.int32, np.int64] assert heatmap.dtype in [np.float32, np.float64] if img.shape[0:2] != heatmap.shape[0:2]: heatmap_rs = np.clip(heatmap * 255, 0, 255).astype(np.uint8) heatmap_rs = ia.imresize_single_image( heatmap_rs[..., np.newaxis], img.shape[0:2], interpolation="nearest" ) heatmap = np.squeeze(heatmap_rs) / 255.0 cmap = plt.get_cmap('jet') heatmap_cmapped = cmap(heatmap) heatmap_cmapped = np.delete(heatmap_cmapped, 3, 2) heatmap_cmapped = heatmap_cmapped * 255 mix = (1-alpha) * img + alpha * heatmap_cmapped mix = np.clip(mix, 0, 255).astype(np.uint8) return mix
Example 2
Project: EXOSIMS Author: dsavransky File: starkAYO_staticSchedule.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def sacrificeStarCbyT(self, sInds, t_dets, fZ, fEZ, WA, overheadTime): """Sacrifice the worst performing CbyT star Args: sInds[nStars] - indicies of stars in the list t_dets[nStars] - time to observe each star (in days) fZ[nStars] - zodiacal light for each target fEZ - 0 WA - inner working angle of the instrument overheadTime - overheadTime added to each observation Return: sInds[nStars] - indicies of stars in the list t_dets[nStars] - time to observe each star (in days) sacrificedStarTime - time to distribute in days """ CbyT = self.Completeness.comp_per_intTime(t_dets*u.d, self.TargetList, sInds, self.valfZmin[sInds], fEZ, WA, self.mode, self.Cb[sInds], self.Csp[sInds])/t_dets#takes 5 seconds to do 1 time for all stars sacrificeIndex = np.argmin(CbyT)#finds index of star to sacrifice #Need index of sacrificed star by this point sacrificedStarTime = t_dets[sacrificeIndex] + overheadTime#saves time being sacrificed sInds = np.delete(sInds,sacrificeIndex) t_dets = np.delete(t_dets,sacrificeIndex) return sInds, t_dets, sacrificedStarTime
Example 3
Project: Modeling-Cloth Author: the3dadvantage File: ModelingCloth.py License: MIT License | 6 votes |
def create_vertex_groups(groups=['common', 'not_used'], weights=[0.0, 0.0], ob=None): '''Creates vertex groups and sets weights. "groups" is a list of strings for the names of the groups. "weights" is a list of weights corresponding to the strings. Each vertex is assigned a weight for each vertex group to avoid calling vertex weights that are not assigned. If the groups are already present, the previous weights will be preserved. To reset weights delete the created groups''' if ob is None: ob = bpy.context.object vg = ob.vertex_groups for g in range(0, len(groups)): if groups[g] not in vg.keys(): # Don't create groups if there are already there vg.new(groups[g]) vg[groups[g]].add(range(0,len(ob.data.vertices)), weights[g], 'REPLACE') else: vg[groups[g]].add(range(0,len(ob.data.vertices)), 0, 'ADD') # This way we avoid resetting the weights for existing groups.
Example 4
Project: Modeling-Cloth Author: the3dadvantage File: ModelingCloth.py License: MIT License | 6 votes |
def create_sew_edges(): bpy.ops.mesh.bridge_edge_loops() bpy.ops.mesh.delete(type='ONLY_FACE') return #highlight a sew edge #compare vertex counts #subdivide to match counts #distribute and smooth back into mesh #create sew lines # sewing functions ---------------->>>
Example 5
Project: prunnable-layers-pytorch Author: alexfjw File: prunable_nn_test.py License: GNU General Public License v3.0 | 6 votes |
def test_pruneFeatureMap_ShouldPruneRightParams(self): dropped_index = 0 output = self.module(self.input) torch.autograd.backward(output, self.upstream_gradient) old_weight_size = self.module.weight.size() old_bias_size = self.module.bias.size() old_out_channels = self.module.out_channels old_weight_values = self.module.weight.data.cpu().numpy() # ensure that the chosen index is dropped self.module.prune_feature_map(dropped_index) # check bias size self.assertEqual(self.module.bias.size()[0], (old_bias_size[0]-1)) # check output channels self.assertEqual(self.module.out_channels, old_out_channels-1) _, *other_old_weight_sizes = old_weight_size # check weight size self.assertEqual(self.module.weight.size(), (old_weight_size[0]-1, *other_old_weight_sizes)) # check weight value expected = np.delete(old_weight_values, dropped_index , 0) self.assertTrue(np.array_equal(self.module.weight.data.cpu().numpy(), expected))
Example 6
Project: prunnable-layers-pytorch Author: alexfjw File: prunable_nn_test.py License: GNU General Public License v3.0 | 6 votes |
def test_PLinearDropInputs_ShouldDropRightParams(self): dropped_index = 0 # assume input is 2x2x2, 2 layers of 2x2 input_shape = (2, 2, 2) module = pnn.PLinear(8, 10) old_num_features = module.in_features old_weight = module.weight.data.cpu().numpy() resized_old_weight = np.resize(old_weight, (module.out_features, *input_shape)) module.drop_inputs(input_shape, dropped_index) new_shape = module.weight.size() # ensure that the chosen index is dropped expected_weight = np.resize(np.delete(resized_old_weight, dropped_index, 1), new_shape) output = module.weight.data.cpu().numpy() self.assertTrue(np.array_equal(output, expected_weight)) # ensure num features is reduced self.assertTrue(module.in_features, old_num_features-1)
Example 7
Project: prunnable-layers-pytorch Author: alexfjw File: prunable_nn_test.py License: GNU General Public License v3.0 | 6 votes |
def test_PBatchNorm2dDropInputChannel_ShouldDropRightParams(self): dropped_index = 0 module = pnn.PBatchNorm2d(2) old_num_features = module.num_features old_bias = module.bias.data.cpu().numpy() old_weight = module.weight.data.cpu().numpy() module.drop_input_channel(dropped_index) # ensure that the chosen index is dropped expected_weight = np.delete(old_weight, dropped_index, 0) self.assertTrue(np.array_equal(module.weight.data.cpu().numpy(), expected_weight)) expected_bias = np.delete(old_bias, dropped_index, 0) self.assertTrue(np.array_equal(module.bias.data.cpu().numpy(), expected_bias)) # ensure num features is reduced self.assertTrue(module.num_features, old_num_features-1)
Example 8
Project: NeuroKit Author: neuropsychology File: signal_fixpeaks.py License: MIT License | 6 votes |
def _correct_misaligned(misaligned_idcs, peaks): corrected_peaks = peaks.copy() misaligned_idcs = np.array(misaligned_idcs) # Make sure to not generate negative indices, or indices that exceed # the total number of peaks. prev_peaks and next_peaks must have the # same number of elements. valid_idcs = np.logical_and( misaligned_idcs > 1, misaligned_idcs < len(corrected_peaks) - 1 # pylint: disable=E1111 ) misaligned_idcs = misaligned_idcs[valid_idcs] prev_peaks = corrected_peaks[[i - 1 for i in misaligned_idcs]] next_peaks = corrected_peaks[[i + 1 for i in misaligned_idcs]] half_ibi = (next_peaks - prev_peaks) / 2 peaks_interp = prev_peaks + half_ibi # Shift the R-peaks from the old to the new position. corrected_peaks = np.delete(corrected_peaks, misaligned_idcs) corrected_peaks = np.concatenate((corrected_peaks, peaks_interp)).astype(int) corrected_peaks.sort(kind="mergesort") return corrected_peaks
Example 9
Project: NeuroKit Author: neuropsychology File: rsp_findpeaks.py License: MIT License | 6 votes |
def _rsp_findpeaks_biosppy(rsp_cleaned, sampling_rate): extrema = _rsp_findpeaks_extrema(rsp_cleaned) extrema, amplitudes = _rsp_findpeaks_outliers(rsp_cleaned, extrema, amplitude_min=0) peaks, troughs = _rsp_findpeaks_sanitize(extrema, amplitudes) # Apply minimum period outlier-criterion (exclude inter-breath-intervals # that produce breathing rate larger than 35 breaths per minute. outlier_idcs = np.where((np.diff(peaks) / sampling_rate) < 1.7)[0] peaks = np.delete(peaks, outlier_idcs) troughs = np.delete(troughs, outlier_idcs) info = {"RSP_Peaks": peaks, "RSP_Troughs": troughs} return info
Example 10
Project: NeuroKit Author: neuropsychology File: rsp_findpeaks.py License: MIT License | 6 votes |
def _rsp_findpeaks_outliers(rsp_cleaned, extrema, amplitude_min=0.3): # Only consider those extrema that have a minimum vertical distance to # their direct neighbor, i.e., define outliers in absolute amplitude # difference between neighboring extrema. vertical_diff = np.abs(np.diff(rsp_cleaned[extrema])) median_diff = np.median(vertical_diff) min_diff = np.where(vertical_diff > (median_diff * amplitude_min))[0] extrema = extrema[min_diff] # Make sure that the alternation of peaks and troughs is unbroken. If # alternation of sign in extdiffs is broken, remove the extrema that # cause the breaks. amplitudes = rsp_cleaned[extrema] extdiffs = np.sign(np.diff(amplitudes)) extdiffs = np.add(extdiffs[0:-1], extdiffs[1:]) removeext = np.where(extdiffs != 0)[0] + 1 extrema = np.delete(extrema, removeext) amplitudes = np.delete(amplitudes, removeext) return extrema, amplitudes
Example 11
Project: H3DNet Author: zaiweizhang File: nms.py License: MIT License | 6 votes |
def nms_crnr_dist(boxes, conf, overlap_threshold): I = np.argsort(conf) pick = [] while (I.size!=0): last = I.size i = I[-1] pick.append(i) scores = [] for ind in I[:-1]: scores.append(bbox_corner_dist_measure(boxes[i,:], boxes[ind, :])) I = np.delete(I, np.concatenate(([last-1], np.where(np.array(scores)>overlap_threshold)[0]))) return pick
Example 12
Project: View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition Author: microsoft File: data_cnn.py License: MIT License | 6 votes |
def compute_max_min(self, ske_joints): max_vals, min_vals = list(), list() for ske_joint in ske_joints: zero_row = [] if self.dataset == 'NTU': for i in range(len(ske_joint)): if (ske_joint[i, :] == np.zeros((1, 150))).all(): zero_row.append(i) ske_joint = np.delete(ske_joint, zero_row, axis=0) if (ske_joint[:, 0:75] == np.zeros((ske_joint.shape[0], 75))).all(): ske_joint = np.delete(ske_joint, range(75), axis=1) elif (ske_joint[:, 75:150] == np.zeros((ske_joint.shape[0], 75))).all(): ske_joint = np.delete(ske_joint, range(75, 150), axis=1) max_val = ske_joint.max() min_val = ske_joint.min() max_vals.append(float(max_val)) min_vals.append(float(min_val)) max_vals, min_vals = np.array(max_vals), np.array(min_vals) return max_vals.max(), min_vals.min()
Example 13
Project: recruit Author: Frank-qlu File: test_series.py License: Apache License 2.0 | 6 votes |
def test_line_area_nan_series(self): values = [1, 2, np.nan, 3] s = Series(values) ts = Series(values, index=tm.makeDateIndex(k=4)) for d in [s, ts]: ax = _check_plot_works(d.plot) masked = ax.lines[0].get_ydata() # remove nan for comparison purpose exp = np.array([1, 2, 3], dtype=np.float64) tm.assert_numpy_array_equal(np.delete(masked.data, 2), exp) tm.assert_numpy_array_equal( masked.mask, np.array([False, False, True, False])) expected = np.array([1, 2, 0, 3], dtype=np.float64) ax = _check_plot_works(d.plot, stacked=True) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) ax = _check_plot_works(d.plot.area) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected) ax = _check_plot_works(d.plot.area, stacked=False) tm.assert_numpy_array_equal(ax.lines[0].get_ydata(), expected)
Example 14
Project: fenics-topopt Author: zfergus File: utils.py License: MIT License | 5 votes |
def deleterowcol(A, delrow, delcol): """Assumes that matrix is in symmetric csc form !""" m = A.shape[0] keep = np.delete(np.arange(0, m), delrow) A = A[keep, :] keep = np.delete(np.arange(0, m), delcol) A = A[:, keep] return A
Example 15
Project: fenics-topopt Author: zfergus File: utils.py License: MIT License | 5 votes |
def deleterowcol(A, delrow, delcol): """Assumes that matrix is in symmetric csc form !""" m = A.shape[0] keep = np.delete(np.arange(0, m), delrow) A = A[keep, :] keep = np.delete(np.arange(0, m), delcol) A = A[:, keep] return A
Example 16
Project: animal-tracking Author: colinlaney File: track.py License: Creative Commons Zero v1.0 Universal | 5 votes |
def drawFloorCrop(event, x, y, flags, params): global perspectiveMatrix, name, RENEW_TETRAGON imgCroppingPolygon = np.zeros_like(params['imgFloorCorners']) if event == cv2.EVENT_RBUTTONUP: cv2.destroyWindow(f'Floor Corners for {name}') if len(params['croppingPolygons'][name]) > 4 and event == cv2.EVENT_LBUTTONUP: RENEW_TETRAGON = True h = params['imgFloorCorners'].shape[0] # delete 5th extra vertex of the floor cropping tetragon params['croppingPolygons'][name] = np.delete(params['croppingPolygons'][name], -1, 0) params['croppingPolygons'][name] = params['croppingPolygons'][name] - [h,0] # Sort cropping tetragon vertices counter-clockwise starting with top left params['croppingPolygons'][name] = counterclockwiseSort(params['croppingPolygons'][name]) # Get the matrix of perspective transformation params['croppingPolygons'][name] = np.reshape(params['croppingPolygons'][name], (4,2)) tetragonVertices = np.float32(params['croppingPolygons'][name]) tetragonVerticesUpd = np.float32([[0,0], [0,h], [h,h], [h,0]]) perspectiveMatrix[name] = cv2.getPerspectiveTransform(tetragonVertices, tetragonVerticesUpd) if event == cv2.EVENT_LBUTTONDOWN: if len(params['croppingPolygons'][name]) == 4 and RENEW_TETRAGON: params['croppingPolygons'][name] = np.array([[0,0]]) RENEW_TETRAGON = False if len(params['croppingPolygons'][name]) == 1: params['croppingPolygons'][name][0] = [x,y] params['croppingPolygons'][name] = np.append(params['croppingPolygons'][name], [[x,y]], axis=0) if event == cv2.EVENT_MOUSEMOVE and not (len(params['croppingPolygons'][name]) == 4 and RENEW_TETRAGON): params['croppingPolygons'][name][-1] = [x,y] if len(params['croppingPolygons'][name]) > 1: cv2.fillPoly( imgCroppingPolygon, [np.reshape( params['croppingPolygons'][name], (len(params['croppingPolygons'][name]),2) )], BGR_COLOR['green'], cv2.LINE_AA) imgCroppingPolygon = cv2.addWeighted(params['imgFloorCorners'], 1.0, imgCroppingPolygon, 0.5, 0.) cv2.imshow(f'Floor Corners for {name}', imgCroppingPolygon)
Example 17
Project: neuropythy Author: noahbenson File: core.py License: GNU Affero General Public License v3.0 | 5 votes |
def value(self, params): params = flattest(params) n = len(params) ii = np.arange(n) res = np.zeros(n) for ((mn,mx), f) in self.pieces_with_default: if len(ii) == 0: break k = np.where((params >= mn) & (params <= mx))[0] if len(k) == 0: continue kk = ii[k] res[kk] = f.value(params[k]) ii = np.delete(ii, k) params = np.delete(params, k) return res
Example 18
Project: neuropythy Author: noahbenson File: core.py License: GNU Affero General Public License v3.0 | 5 votes |
def jacobian(self, params, into=None): params = flattest(params) n = len(params) ii = np.arange(n) (rs,cs,zs) = ([],[],[]) for ((mn,mx), f) in self.pieces_with_default: if len(ii) == 0: break k = np.where((params >= mn) & (params <= mx))[0] if len(k) == 0: continue kk = ii[k] j = f.jacobian(params[k]) if j.shape[0] == 1 and j.shape[1] > 1: j = repmat(j, j.shape[1], 1) (rj,cj,vj) = sps.find(j) rs.append(kk[rj]) cs.append(kk[cj]) zs.append(vj) ii = np.delete(ii, k) params = np.delete(params, k) (rs,cs,zs) = [np.concatenate(us) if len(us) > 0 else [] for us in (rs,cs,zs)] dz = sps.csr_matrix((zs, (rs,cs)), shape=(n,n)) return safe_into(into, dz)
Example 19
Project: fullrmc Author: bachiraoun File: Engine.py License: GNU Affero General Public License v3.0 | 5 votes |
def _on_collector_collect_atom(self, realIndex): assert not self._atomsCollector.is_collected(realIndex), LOGGER.error("Trying to collect atom index %i which is already collected."%realIndex) relativeIndex = self._atomsCollector.get_relative_index(realIndex) # create dataDict and remove dataDict = {} dataDict['realCoordinates'] = self.__realCoordinates[relativeIndex,:] dataDict['boxCoordinates'] = self.__boxCoordinates[relativeIndex, :] dataDict['moleculesIndex'] = self.__moleculesIndex[relativeIndex] dataDict['moleculesName'] = self.__moleculesName[relativeIndex] dataDict['elementsIndex'] = self.__elementsIndex[relativeIndex] dataDict['allElements'] = self.__allElements[relativeIndex] dataDict['namesIndex'] = self.__namesIndex[relativeIndex] dataDict['allNames'] = self.__allNames[relativeIndex] assert self.__numberOfAtomsPerElement[dataDict['allElements']]-1>0, LOGGER.error("Collecting last atom of any element type is not allowed. It's better to restart your simulation without any '%s' rather than removing them all!"%dataDict['allElements']) # collect atom self._atomsCollector.collect(index=realIndex, dataDict=dataDict) # collect all constraints BEFORE removing data from engine. for c in self.__constraints: c._on_collector_collect_atom(realIndex=realIndex) # remove data from engine AFTER collecting constraints data. self.__realCoordinates = np.delete(self.__realCoordinates, relativeIndex, axis=0) self.__boxCoordinates = np.delete(self.__boxCoordinates, relativeIndex, axis=0) self.__moleculesIndex = np.delete(self.__moleculesIndex,relativeIndex, axis=0) self.__moleculesName.pop(relativeIndex) self.__elementsIndex = np.delete(self.__elementsIndex, relativeIndex, axis=0) self.__allElements.pop(relativeIndex) self.__namesIndex = np.delete(self.__namesIndex, relativeIndex, axis=0) self.__allNames.pop(relativeIndex) # adjust other attributes self.__numberOfAtomsPerName[dataDict['allNames']] -= 1 self.__numberOfAtomsPerElement[dataDict['allElements']] -= 1 #self.__elements = sorted(set(self.__allElements)) # no element should disappear self.__names = sorted(set(self.__names)) self.__numberOfMolecules = len(set(self.__moleculesIndex)) # update number density in periodic boundary conditions only if self.__isPBC: self.__numberDensity = FLOAT_TYPE(self.numberOfAtoms) / FLOAT_TYPE(self.__volume)
Example 20
Project: fullrmc Author: bachiraoun File: Engine.py License: GNU Affero General Public License v3.0 | 5 votes |
def delete_frame(self, frame): """ Delete frame data from Engine as well as from repository . :Parameters: #. frame (string): The frame to delete. """ isNormalFrame, isMultiframe, isSubframe = self.get_frame_category(frame) assert frame != self.__usedFrame, LOGGER.error("It's not allowed to delete the used frame '%s'. Change used frame using Engine.set_used_frame method and try again"%frame) if isMultiframe: _multi = self.usedFrame.split(os.sep)[0] assert frame != _multi, LOGGER.error("It's not allowed to delete multiframe '%s' of used frame '%s'. Change used frame using Engine.set_used_frame method and try again"%(_multi,self.usedFrame)) if isNormalFrame: _f = [f for f in self.__frames if self.__frames[f] is None] assert len(_f)>=1, LOGGER.error("No traditional frames found. This shouldn't have happened. PLEASE REPORT") assert len(_f)>=2, LOGGER.error("It's not allowed to delete the last traditional frame in engine '%s'"%(_f[0],)) if isSubframe: _name = frame.split(os.sep)[0] if len(self.__frames[_name]['frames_name']) == 1: LOGGER.usage("Deleting last subframe '%s' of multiframe '%s' has resulted in deleting the multiframe"%(frame, _name)) frame = _name isNormalFrame = False isSubframe = False isMultiframe = True # remove frame directory if self.__repository is not None: self.__repository.remove_directory(relativePath=frame, clean=True) # reset frames if isNormalFrame or isMultiframe: self.__frames.pop(frame) else: _multiframe, _subframe = frame.split(os.sep) self.__frames[_multiframe]['frames_name'] = [frm for frm in self.__frames[_multiframe]['frames_name'] if frm !=_subframe] # save frames if self.__repository is not None: self.__repository.update_file(value=self.__frames, relativePath='_Engine__frames')
Example 21
Project: fullrmc Author: bachiraoun File: AtomicCoordinationConstraints.py License: GNU Affero General Public License v3.0 | 5 votes |
def _on_collector_collect_atom(self, realIndex): # get relative index relativeIndex = self._atomsCollector.get_relative_index(realIndex) # create data dict dataDict = {} # cores indexes coresIndexes = [] for idx, ci in enumerate(self.__coresIndexes): coresIndexes.append( np.where(ci==relativeIndex)[0] ) ci = np.delete(ci, coresIndexes[-1], axis=0) ci[np.where(ci>relativeIndex)[0]] -= 1 self.__coresIndexes[idx] = ci dataDict['coresIndexes'] = coresIndexes # shells indexes shellsIndexes = [] for idx, si in enumerate(self.__shellsIndexes): shellsIndexes.append( np.where(si==relativeIndex)[0] ) si = np.delete(si, shellsIndexes[-1], axis=0) si[np.where(si>relativeIndex)[0]] -= 1 self.__shellsIndexes[idx] = si dataDict['shellsIndexes'] = shellsIndexes # asCorDefIdxs and inShellDefIdxs dataDict['asCoreDefIdxs'] = self.__asCoreDefIdxs.pop(relativeIndex) dataDict['inShellDefIdxs'] = self.__inShellDefIdxs.pop(relativeIndex) # correct number of cores without collecting for idx, ci in enumerate(coresIndexes): self.__numberOfCores[idx] -= len(ci) # collect atom self._atomsCollector.collect(realIndex, dataDict=dataDict)
Example 22
Project: fullrmc Author: bachiraoun File: DistanceConstraints.py License: GNU Affero General Public License v3.0 | 5 votes |
def _on_collector_collect_atom(self, realIndex): # get relative index relativeIndex = self._atomsCollector.get_relative_index(realIndex) # create dataDict dataDict = {} dataDict['typesIndex'] = self.typesIndex[relativeIndex] dataDict['allTypes'] = self.allTypes[relativeIndex] # reduce all indexes above relativeIndex in typesIndex # delete data self.__typesIndex = np.delete(self.__typesIndex, relativeIndex, axis=0) self.__allTypes = np.delete(self.__allTypes, relativeIndex, axis=0) self.__numberOfAtomsPerType[dataDict['allTypes']] -= 1 # collect atom self._atomsCollector.collect(realIndex, dataDict=dataDict)
Example 23
Project: dynamic-training-with-apache-mxnet-on-aws Author: awslabs File: eval_metric.py License: Apache License 2.0 | 5 votes |
def _recall_prec(self, record, count): """ get recall and precision from internal records """ record = np.delete(record, np.where(record[:, 1].astype(int) == 0)[0], axis=0) sorted_records = record[record[:,0].argsort()[::-1]] tp = np.cumsum(sorted_records[:, 1].astype(int) == 1) fp = np.cumsum(sorted_records[:, 1].astype(int) == 2) if count <= 0: recall = tp * 0.0 else: recall = tp / float(count) prec = tp.astype(float) / (tp + fp) return recall, prec
Example 24
Project: pywr Author: pywr File: test_parameters.py License: GNU General Public License v3.0 | 5 votes |
def test_scenario_daily_profile(self, simple_linear_model): model = simple_linear_model scenario = Scenario(model, 'A', 2) values = np.array([np.arange(366, dtype=np.float64), np.arange(366, 0, -1, dtype=np.float64)]) # Remove values for 29th feb as not testing leap year in this func expected_values = np.delete(values.T, 59, 0) p = ScenarioDailyProfileParameter.load(model, {"scenario": "A", "values": values}) AssertionRecorder(model, p, expected_data=expected_values) model.setup() model.run()
Example 25
Project: EXOSIMS Author: dsavransky File: evenlyDistributePointsOnSphere.py License: BSD 3-Clause "New" or "Revised" License | 5 votes |
def secondSmallest(d_diff_pts): """For a list of points, return the value and ind of the second smallest args: d_diff_pts - numy array of floats of distances between points returns: secondSmallest_value - secondSmallest_ind - """ tmp_inds = np.arange(len(d_diff_pts)) tmp_inds_min0 = np.argmin(d_diff_pts) tmp_inds = np.delete(tmp_inds, tmp_inds_min0) tmp_d_diff_pts =np.delete(d_diff_pts, tmp_inds_min0) secondSmallest_value = min(tmp_d_diff_pts) secondSmallest_ind = np.argmin(np.abs(d_diff_pts - secondSmallest_value)) return secondSmallest_value, secondSmallest_ind
Example 26
Project: Modeling-Cloth Author: the3dadvantage File: ModelingCloth.py License: MIT License | 5 votes |
def init_cloth(self, context): global data, extra_data data = bpy.context.scene.modeling_cloth_data_set extra_data = bpy.context.scene.modeling_cloth_data_set_extra extra_data['alert'] = False extra_data['drag_alert'] = False extra_data['last_object'] = self extra_data['clicked'] = False # object collisions colliders = [i for i in bpy.data.objects if i.modeling_cloth_object_collision] if len(colliders) == 0: extra_data['colliders'] = None # iterate through dict: for i, j in d.items() if self.modeling_cloth: cloth = create_instance() # generate an instance of the class data[cloth.name] = cloth # store class in dictionary using the object name as a key cull = [] # can't delete dict items while iterating for i, value in data.items(): if not value.ob.modeling_cloth: cull.append(i) # store keys to delete for i in cull: del data[i] # # could keep the handler unless there are no modeling cloth objects active # # if handler_frame in bpy.app.handlers.frame_change_post: # bpy.app.handlers.frame_change_post.remove(handler_frame) # # if len(data) > 0: # bpy.app.handlers.frame_change_post.append(handler_frame)
Example 27
Project: prunnable-layers-pytorch Author: alexfjw File: prunable_nn_test.py License: GNU General Public License v3.0 | 5 votes |
def test_dropInputChannel_ShouldDropRightValues(self): dropped_index = 0 old_weight_values = self.module.weight.data.cpu().numpy() # ensure that the chosen index is dropped self.module.drop_input_channel(dropped_index) expected = np.delete(old_weight_values, dropped_index, 1) self.assertTrue(np.array_equal(self.module.weight.data.cpu().numpy(), expected))
Example 28
Project: Bidirectiona-LSTM-for-text-summarization- Author: DeepsMoseli File: word2vec.py License: MIT License | 5 votes |
def cutoffSequences(data,artLen,sumlen): data2={"article":[],"summaries":[]} for k in range(len(data["article"])): if len(data["article"][k])<artLen or len(data["summaries"][k])<sumlen: #data["article"]=np.delete(data["article"],k,0) #data["article"]=np.delete(data["summaries"],k,0) pass else: data2["article"].append(data["article"][k][:artLen]) data2["summaries"].append(data["summaries"][k][:sumlen]) return data2
Example 29
Project: pymoo Author: msu-coinlab File: reference_direction.py License: Apache License 2.0 | 5 votes |
def select_points_with_maximum_distance(X, n_select, selected=[]): n_points, n_dim = X.shape # calculate the distance matrix D = cdist(X, X) # if no selection provided pick randomly in the beginning if len(selected) == 0: selected = [np.random.randint(len(X))] # create variables to store what selected and what not not_selected = [i for i in range(n_points) if i not in selected] # remove unnecessary points dist_to_closest_selected = D[:, selected].min(axis=1) # now select the points until sufficient ones are found while len(selected) < n_select: # find point that has the maximum distance to all others index_in_not_selected = dist_to_closest_selected[not_selected].argmax() I = not_selected[index_in_not_selected] # add the closest distance to selected point is_closer = D[I] < dist_to_closest_selected dist_to_closest_selected[is_closer] = D[I][is_closer] # add it to the selected and remove from not selected selected.append(I) not_selected = np.delete(not_selected, index_in_not_selected) return selected
Example 30
Project: interpret-text Author: interpretml File: utils_introspective_rationale.py License: MIT License | 5 votes |
def generate_data(batch, use_cuda): """Create a formatted and ordered data batch to use in the three player model. :param batch: A pandas dataframe containing the tokens, masks, counts, and labels associated with a batch of data :type batch: DataFrame :param use_cuda: whether to use CUDA :type use_cuda: bool :return: formatted and ordered tokens (x), masks (m), and labels (y) associated with a batch of data :rtype: dict """ # sort for rnn happiness batch.sort_values("counts", inplace=True, ascending=False) x_mask = np.stack(batch["mask"], axis=0) # drop all zero columns zero_col_idxs = np.argwhere(np.all(x_mask[..., :] == 0, axis=0)) x_mask = np.delete(x_mask, zero_col_idxs, axis=1) x_mat = np.stack(batch["tokens"], axis=0) # drop all zero columns x_mat = np.delete(x_mat, zero_col_idxs, axis=1) y_vec = np.stack(batch["labels"], axis=0) batch_x_ = Variable(torch.from_numpy(x_mat)).to(torch.int64) batch_m_ = Variable(torch.from_numpy(x_mask)).type(torch.FloatTensor) batch_y_ = Variable(torch.from_numpy(y_vec)).to(torch.int64) if use_cuda: batch_x_ = batch_x_.cuda() batch_m_ = batch_m_.cuda() batch_y_ = batch_y_.cuda() return {"x": batch_x_, "m": batch_m_, "y": batch_y_}