Python tensorflow.contrib.seq2seq.TrainingHelper() Examples

The following are 8 code examples of tensorflow.contrib.seq2seq.TrainingHelper(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.contrib.seq2seq , or try the search function .
Example #1
Source File: seq2seq_decoder_estimator.py    From icecaps with MIT License 6 votes vote down vote up
def build_train_decoder(self):
        with tf.name_scope('train_decoder'):
            training_helper = TrainingHelper(inputs=self.inputs_dense,
                                             sequence_length=self.inputs_length,
                                             time_major=False,
                                             name='training_helper')
            with tf.name_scope('basic_decoder'):
                training_decoder = BasicDecoder(cell=self.cell,
                                                helper=training_helper,
                                                initial_state=self.initial_state,
                                                output_layer=self.output_layer)
            with tf.name_scope('dynamic_decode'):
                (outputs, self.last_state, self.outputs_length) = (seq2seq.dynamic_decode(
                    decoder=training_decoder,
                    output_time_major=False,
                    impute_finished=True,
                    maximum_iterations=self.inputs_max_length))
                self.logits = tf.identity(outputs.rnn_output)
                self.log_probs = tf.nn.log_softmax(self.logits)
                self.gs_hypotheses = tf.argmax(self.log_probs, -1) 
Example #2
Source File: lm.py    From avsr-tf1 with GNU General Public License v3.0 5 votes vote down vote up
def _build_decoder_train(self):
        self._decoder_train_inputs = tf.nn.embedding_lookup(self._embedding_matrix, self._labels_padded_GO)

        if self._mode == 'train':
            sampler = seq2seq.ScheduledEmbeddingTrainingHelper(
                inputs=self._decoder_train_inputs,
                sequence_length=self._labels_length,
                embedding=self._embedding_matrix,
                sampling_probability=self._sampling_probability_outputs,
            )
        else:
            sampler = seq2seq.TrainingHelper(
                inputs=self._decoder_train_inputs,
                sequence_length=self._labels_length,
            )

        cells = self._decoder_cells

        decoder_train = seq2seq.BasicDecoder(
            cell=cells,
            helper=sampler,
            initial_state=self._decoder_initial_state,
            output_layer=self._dense_layer,
        )

        outputs, _, _ = seq2seq.dynamic_decode(
            decoder_train,
            output_time_major=False,
            impute_finished=True,
            swap_memory=False,
        )

        logits = outputs.rnn_output
        self.decoder_train_outputs = logits
        self.average_log_likelihoods = self._compute_likelihood(logits)
        print('') 
Example #3
Source File: attention_predictor.py    From aster with MIT License 5 votes vote down vote up
def _build_decoder(self, decoder_cell, batch_size):
    embedding_fn = functools.partial(tf.one_hot, depth=self.num_classes)
    output_layer = tf.layers.Dense(
      self.num_classes,
      activation=None,
      use_bias=True,
      kernel_initializer=tf.variance_scaling_initializer(),
      bias_initializer=tf.zeros_initializer())
    if self._is_training:
      train_helper = seq2seq.TrainingHelper(
        embedding_fn(self._groundtruth_dict['decoder_inputs']),
        sequence_length=self._groundtruth_dict['decoder_lengths'],
        time_major=False)
      decoder = seq2seq.BasicDecoder(
        cell=decoder_cell,
        helper=train_helper,
        initial_state=decoder_cell.zero_state(batch_size, tf.float32),
        output_layer=output_layer)
    else:
      decoder = seq2seq.BeamSearchDecoder(
        cell=decoder_cell,
        embedding=embedding_fn,
        start_tokens=tf.fill([batch_size], self.start_label),
        end_token=self.end_label,
        initial_state=decoder_cell.zero_state(batch_size * self._beam_width, tf.float32),
        beam_width=self._beam_width,
        output_layer=output_layer,
        length_penalty_weight=0.0)
    return decoder 
Example #4
Source File: helpers.py    From language with Apache License 2.0 5 votes vote down vote up
def next_inputs(self, time, outputs, state, sample_ids, name=None):
    """Compute the next inputs and state."""
    del sample_ids  # Unused.
    with tf.name_scope(name, "ScheduledContinuousEmbeddingNextInputs",
                       [time, outputs, state]):
      # Get ground truth next inputs.
      (finished, base_next_inputs,
       state) = contrib_seq2seq.TrainingHelper.next_inputs(
           self, time, outputs, state, name=name)

      # Get generated next inputs.
      all_finished = tf.reduce_all(finished)
      generated_next_inputs = tf.cond(
          all_finished,
          # If we're finished, the next_inputs value doesn't matter
          lambda: outputs,
          lambda: outputs)

      # Sample mixing weights.
      weight_sampler = tf.distributions.Dirichlet(
          concentration=self._mixing_concentration)
      weight = weight_sampler.sample(
          sample_shape=self.batch_size, seed=self._scheduling_seed)
      alpha, beta = weight, 1 - weight

      # Mix the inputs.
      next_inputs = alpha * base_next_inputs + beta * generated_next_inputs

      return finished, next_inputs, state 
Example #5
Source File: seq2seq_decoder_estimator.py    From icecaps with MIT License 5 votes vote down vote up
def build_mmi_decoder(self):
        with tf.name_scope('mmi_scorer'):
            training_helper = TrainingHelper(inputs=self.inputs_dense,
                                             sequence_length=self.inputs_length,
                                             time_major=False,
                                             name='mmi_training_helper')
            with tf.name_scope('mmi_basic_decoder'):
                training_decoder = MMIDecoder(cell=self.cell,
                                              helper=training_helper,
                                              initial_state=self.initial_state,
                                              output_layer=self.output_layer)
            with tf.name_scope('mmi_dynamic_decoder'):
                (outputs, self.last_state, self.outputs_length) = seq2seq.dynamic_decode(
                    decoder=training_decoder,
                    output_time_major=False,
                    impute_finished=True,
                    maximum_iterations=self.inputs_max_length)

            self.scores_raw = tf.identity(
                tf.transpose(outputs.scores, [1, 2, 0]))
            targets = self.features["targets"]
            targets = tf.cast(targets, dtype=tf.int32)
            target_len = tf.cast(tf.count_nonzero(
                targets - self.vocab.end_token_id, -1), dtype=tf.int32)
            max_target_len = tf.reduce_max(target_len)
            pruned_targets = tf.slice(targets, [0, 0], [-1, max_target_len])

            index = (tf.range(0, max_target_len, 1)) * \
                tf.ones(shape=[self.batch_size, 1], dtype=tf.int32)
            row_no = tf.transpose(tf.range(
                0, self.batch_size, 1) * tf.ones(shape=(max_target_len, 1), dtype=tf.int32))
            indices = tf.stack([index, pruned_targets, row_no], axis=2)

            # Retrieve scores corresponding to indices
            batch_scores = tf.gather_nd(self.scores_raw, indices)
            self.mmi_scores = tf.reduce_sum(batch_scores, axis=1) 
Example #6
Source File: seq2seq.py    From retrosynthesis_planner with GNU General Public License v3.0 4 votes vote down vote up
def _make_train(self, decoder_cell, decoder_initial_state):
        # Assume 0 is the START token
        start_tokens = tf.zeros((self.batch_size,), dtype=tf.int32)
        y = tf.concat([tf.expand_dims(start_tokens, 1), self.y], 1)
        output_lengths = tf.reduce_sum(tf.to_int32(tf.not_equal(y, 1)), 1)

        # Reuse encoding embeddings
        inputs = layers.embed_sequence(
            y,
            vocab_size=self.vocab_size,
            embed_dim=self.embed_dim,
            scope='embed', reuse=True)

        # Prepare the decoder with the attention cell
        with tf.variable_scope('decode'):
            # Project to correct dimensions
            out_proj = tf.layers.Dense(self.vocab_size, name='output_proj')
            inputs = tf.layers.dense(inputs, self.hidden_size, name='input_proj')

            helper = seq2seq.TrainingHelper(inputs, output_lengths)
            decoder = seq2seq.BasicDecoder(
                cell=decoder_cell, helper=helper,
                initial_state=decoder_initial_state,
                output_layer=out_proj)
            max_len = tf.reduce_max(output_lengths)
            final_outputs, final_state, final_sequence_lengths = seq2seq.dynamic_decode(
                decoder=decoder, impute_finished=True, maximum_iterations=max_len)
            logits = final_outputs.rnn_output

        # Set valid timesteps to 1 and padded steps to 0,
        # so we only look at the actual sequence without the padding
        mask = tf.sequence_mask(output_lengths, maxlen=max_len, dtype=tf.float32)

        # Prioritize examples that the model was wrong on,
        # by setting weight=1 to any example where the prediction was not 1,
        # i.e. incorrect
        # weights = tf.to_float(tf.not_equal(y[:, :-1], 1))

        # Training and loss ops,
        # with gradient clipping (see [4])
        loss_op = seq2seq.sequence_loss(logits, self.y, weights=mask)
        optimizer = tf.train.AdamOptimizer(self.learning_rate)
        gradients, variables = zip(*optimizer.compute_gradients(loss_op))
        gradients, _ = tf.clip_by_global_norm(gradients, self.max_grad_norm)
        train_op = optimizer.apply_gradients(zip(gradients, variables))

        # Compute accuracy
        # Use the mask from before so we only compare
        # the relevant sequence lengths for each example
        pred = tf.argmax(logits, axis=2, output_type=tf.int32)
        pred = tf.boolean_mask(pred, mask)
        true = tf.boolean_mask(self.y, mask)
        accs = tf.cast(tf.equal(pred, true), tf.float32)
        accuracy_op = tf.reduce_mean(accs, name='acc')
        return loss_op, train_op, accuracy_op 
Example #7
Source File: seq2seq_model.py    From AmusingPythonCodes with MIT License 4 votes vote down vote up
def _build_model(self):
        with tf.variable_scope("embeddings"):
            self.source_embs = tf.get_variable(name="source_embs", shape=[self.cfg.source_vocab_size, self.cfg.emb_dim],
                                               dtype=tf.float32, trainable=True)
            self.target_embs = tf.get_variable(name="embeddings", shape=[self.cfg.vocab_size, self.cfg.emb_dim],
                                               dtype=tf.float32, trainable=True)
            source_emb = tf.nn.embedding_lookup(self.source_embs, self.enc_source)
            target_emb = tf.nn.embedding_lookup(self.target_embs, self.dec_target_in)
            print("source embedding shape: {}".format(source_emb.get_shape().as_list()))
            print("target input embedding shape: {}".format(target_emb.get_shape().as_list()))

        with tf.variable_scope("encoder"):
            if self.cfg.use_bi_rnn:
                with tf.variable_scope("bi-directional_rnn"):
                    cell_fw = GRUCell(self.cfg.num_units) if self.cfg.cell_type == "gru" else \
                        LSTMCell(self.cfg.num_units)
                    cell_bw = GRUCell(self.cfg.num_units) if self.cfg.cell_type == "gru" else \
                        LSTMCell(self.cfg.num_units)
                    bi_outputs, _ = bidirectional_dynamic_rnn(cell_fw, cell_bw, source_emb, dtype=tf.float32,
                                                              sequence_length=self.enc_seq_len)
                    source_emb = tf.concat(bi_outputs, axis=-1)
                    print("bi-directional rnn output shape: {}".format(source_emb.get_shape().as_list()))
            input_project = tf.layers.Dense(units=self.cfg.num_units, dtype=tf.float32, name="input_projection")
            source_emb = input_project(source_emb)
            print("encoder input projection shape: {}".format(source_emb.get_shape().as_list()))
            enc_cells = self._create_encoder_cell()
            self.enc_outputs, self.enc_states = dynamic_rnn(enc_cells, source_emb, sequence_length=self.enc_seq_len,
                                                            dtype=tf.float32)
            print("encoder output shape: {}".format(self.enc_outputs.get_shape().as_list()))

        with tf.variable_scope("decoder"):
            self.max_dec_seq_len = tf.reduce_max(self.dec_seq_len, name="max_dec_seq_len")
            self.dec_cells, self.dec_init_states = self._create_decoder_cell()
            # define input and output projection layer
            input_project = tf.layers.Dense(units=self.cfg.num_units, name="input_projection")
            self.dense_layer = tf.layers.Dense(units=self.cfg.vocab_size, name="output_projection")
            if self.mode == "train":  # either "train" or "decode"
                # for training
                target_emb = input_project(target_emb)
                train_helper = TrainingHelper(target_emb, sequence_length=self.dec_seq_len, name="train_helper")
                train_decoder = BasicDecoder(self.dec_cells, helper=train_helper, output_layer=self.dense_layer,
                                             initial_state=self.dec_init_states)
                self.dec_output, _, _ = dynamic_decode(train_decoder, impute_finished=True,
                                                       maximum_iterations=self.max_dec_seq_len)
                print("decoder output shape: {} (vocab size)".format(self.dec_output.rnn_output.get_shape().as_list()))

                # for decode
                start_token = tf.ones(shape=[self.batch_size, ], dtype=tf.int32) * self.cfg.target_dict[GO]
                end_token = self.cfg.target_dict[EOS]

                def inputs_project(inputs):
                    return input_project(tf.nn.embedding_lookup(self.target_embs, inputs))

                dec_helper = GreedyEmbeddingHelper(embedding=inputs_project, start_tokens=start_token,
                                                   end_token=end_token)
                infer_decoder = BasicDecoder(self.dec_cells, helper=dec_helper, initial_state=self.dec_init_states,
                                             output_layer=self.dense_layer)
                infer_dec_output, _, _ = dynamic_decode(infer_decoder, maximum_iterations=self.cfg.maximum_iterations)
                self.dec_predicts = infer_dec_output.sample_id 
Example #8
Source File: decoders.py    From language with Apache License 2.0 4 votes vote down vote up
def _build_helper(self, batch_size, embeddings, inputs, inputs_length,
                    mode, hparams, decoder_hparams):
    """Builds a helper instance for BasicDecoder."""
    # Auxiliary decoding mode at training time.
    if decoder_hparams.auxiliary:
      start_tokens = tf.fill([batch_size], text_encoder.PAD_ID)
      # helper = helpers.FixedContinuousEmbeddingHelper(
      #     embedding=embeddings,
      #     start_tokens=start_tokens,
      #     end_token=text_encoder.EOS_ID,
      #     num_steps=hparams.aux_decode_length)
      helper = contrib_seq2seq.SampleEmbeddingHelper(
          embedding=embeddings,
          start_tokens=start_tokens,
          end_token=text_encoder.EOS_ID,
          softmax_temperature=None)
    # Continuous decoding.
    elif hparams.decoder_continuous:
      # Scheduled mixing.
      if mode == tf.estimator.ModeKeys.TRAIN and hparams.scheduled_training:
        helper = helpers.ScheduledContinuousEmbeddingTrainingHelper(
            inputs=inputs,
            sequence_length=inputs_length,
            mixing_concentration=hparams.scheduled_mixing_concentration)
      # Pure continuous decoding (hard to train!).
      elif mode == tf.estimator.ModeKeys.TRAIN:
        helper = helpers.ContinuousEmbeddingTrainingHelper(
            inputs=inputs,
            sequence_length=inputs_length)
      # EVAL and PREDICT expect teacher forcing behavior.
      else:
        helper = contrib_seq2seq.TrainingHelper(
            inputs=inputs, sequence_length=inputs_length)
    # Standard decoding.
    else:
      # Scheduled sampling.
      if mode == tf.estimator.ModeKeys.TRAIN and hparams.scheduled_training:
        helper = contrib_seq2seq.ScheduledEmbeddingTrainingHelper(
            inputs=inputs,
            sequence_length=inputs_length,
            embedding=embeddings,
            sampling_probability=hparams.scheduled_sampling_probability)
      # Teacher forcing (also for EVAL and PREDICT).
      else:
        helper = contrib_seq2seq.TrainingHelper(
            inputs=inputs, sequence_length=inputs_length)
    return helper