Python numpy.uintp() Examples
The following are 30 code examples for showing how to use numpy.uintp(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: recruit Author: Frank-qlu File: test_indexing.py License: Apache License 2.0 | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example 2
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_indexing.py License: MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if # that is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example 3
Project: vnpy_crypto Author: birforce File: test_indexing.py License: MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example 4
Project: eran Author: eth-sri File: deeppoly_nodes.py License: Apache License 2.0 | 6 votes |
def __init__(self, filters, strides, pad_top, pad_left, bias, image_shape, input_names, output_name, output_shape): """ collects the information needed for the conv_handle_intermediate_relu_layer transformer and brings it into the required shape Arguments --------- filters : numpy.ndarray the actual 4D filter of the convolutional layer strides : numpy.ndarray 1D with to elements, stride in height and width direction bias : numpy.ndarray the bias of the layer image_shape : numpy.ndarray 1D array of ints with 3 entries [height, width, channels] representing the shape of the of the image that is passed to the conv-layer """ self.image_shape = np.ascontiguousarray(image_shape, dtype=np.uintp) self.filters = np.ascontiguousarray(filters, dtype=np.double) self.strides = np.ascontiguousarray(strides, dtype=np.uintp) self.bias = np.ascontiguousarray(bias, dtype=np.double) self.out_size = (c_size_t * 3)(output_shape[1], output_shape[2], output_shape[3]) self.pad_top = pad_top self.pad_left = pad_left add_input_output_information_deeppoly(self, input_names, output_name, output_shape)
Example 5
Project: eran Author: eth-sri File: deeppoly_nodes.py License: Apache License 2.0 | 6 votes |
def __init__(self, input_shape, window_size, strides, pad_top, pad_left, input_names, output_name, output_shape,is_maxpool): """ collects the information needed for the handle_pool_layer transformer and brings it into the required shape Arguments --------- input_shape : numpy.ndarray 1D array of ints with 3 entries [height, width, channels] representing the shape of the of the image that is passed to the conv-layer window_size : numpy.ndarray 1D array of ints with 2 entries [height, width] representing the window's size in these directions strides : numpy.ndarray 1D array of ints with 2 entries [height, width] representing the stride in these directions """ self.input_shape = np.ascontiguousarray(input_shape, dtype=np.uintp) self.window_size = np.ascontiguousarray(window_size, dtype=np.uintp) self.strides = np.ascontiguousarray(strides, dtype=np.uintp) self.pad_top = pad_top self.pad_left = pad_left self.output_shape = (c_size_t * 3)(output_shape[1],output_shape[2],output_shape[3]) self.is_maxpool = is_maxpool add_input_output_information_deeppoly(self, input_names, output_name, output_shape)
Example 6
Project: eran Author: eth-sri File: refine_relu.py License: Apache License 2.0 | 6 votes |
def update_relu_expr_bounds(man, element, layerno, lower_bound_expr, upper_bound_expr, lbi, ubi): for var in upper_bound_expr.keys(): uexpr = upper_bound_expr[var].expr varsid = upper_bound_expr[var].varsid bound = upper_bound_expr[var].bound k = len(varsid) varsid = np.ascontiguousarray(varsid, dtype=np.uintp) for j in range(k): nnz_u = 0 for l in range(k): if uexpr[l+1] != 0: nnz_u+=1 #if nnz_l > 1: #lexpr = np.ascontiguousarray(lexpr, dtype=np.double) #update_relu_lower_bound_for_neuron(man, element, layerno, varsid[j], lexpr, varsid, k) if nnz_u > 1 and bound < 2*ubi[var]: uexpr = np.ascontiguousarray(uexpr, dtype=np.double) update_relu_upper_bound_for_neuron(man, element, layerno, varsid[j], uexpr, varsid, k)
Example 7
Project: BrainSpace Author: MICA-MNI File: data_object.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def _numpy2cells(cells): if cells.ndim == 1: offset = 0 n_cells = 0 while offset < cells.size: offset += cells[offset] + 1 n_cells += 1 vtk_cells = cells else: n_cells, n_points_cell = cells.shape vtk_cells = np.empty((n_cells, n_points_cell + 1), dtype=np.uintp) vtk_cells[:, 0] = n_points_cell vtk_cells[:, 1:] = cells vtk_cells = vtk_cells.ravel() # cells = dsa.numpyTovtkDataArray(vtk_cells, array_type=VTK_ID_TYPE) ca = BSCellArray() ca.SetCells(n_cells, vtk_cells) return ca.VTKObject
Example 8
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_indexing.py License: MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example 9
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_indexing.py License: MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example 10
Project: predictive-maintenance-using-machine-learning Author: awslabs File: test_indexing.py License: Apache License 2.0 | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example 11
Project: pySINDy Author: luckystarufo File: test_indexing.py License: MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example 12
Project: mxnet-lambda Author: awslabs File: test_indexing.py License: Apache License 2.0 | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example 13
Project: ImageFusion Author: pfchai File: test_indexing.py License: MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if # that is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example 14
Project: elasticintel Author: securityclippy File: test_indexing.py License: GNU General Public License v3.0 | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example 15
Project: coffeegrindsize Author: jgagneastro File: test_indexing.py License: MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example 16
Project: Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda Author: PacktPublishing File: test_indexing.py License: MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example 17
Project: twitter-stock-recommendation Author: alvarobartt File: test_indexing.py License: MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if that # is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example 18
Project: keras-lambda Author: sunilmallya File: test_indexing.py License: MIT License | 6 votes |
def test_same_kind_index_casting(self): # Indexes should be cast with same-kind and not safe, even if # that is somewhat unsafe. So test various different code paths. index = np.arange(5) u_index = index.astype(np.uintp) arr = np.arange(10) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5) assert_array_equal(arr, np.arange(10)) arr = np.arange(10).reshape(5, 2) assert_array_equal(arr[index], arr[u_index]) arr[u_index] = np.arange(5)[:,None] assert_array_equal(arr, np.arange(5)[:,None].repeat(2, axis=1)) arr = np.arange(25).reshape(5, 5) assert_array_equal(arr[u_index, u_index], arr[index, index])
Example 19
Project: me-ica Author: ME-ICA File: test_round_trip.py License: GNU Lesser General Public License v2.1 | 5 votes |
def test_round_trip(): scaling_type = np.float32 rng = np.random.RandomState(20111121) N = 10000 sd_10s = range(-20, 51, 5) iuint_types = np.sctypes['int'] + np.sctypes['uint'] # Remove intp types, which cannot be set into nifti header datatype iuint_types.remove(np.intp) iuint_types.remove(np.uintp) f_types = [np.float32, np.float64] # Expanding standard deviations for i, sd_10 in enumerate(sd_10s): sd = 10.0**sd_10 V_in = rng.normal(0, sd, size=(N,1)) for j, in_type in enumerate(f_types): for k, out_type in enumerate(iuint_types): check_arr(sd_10, V_in, in_type, out_type, scaling_type) # Spread integers across range for i, sd in enumerate(np.linspace(0.05, 0.5, 5)): for j, in_type in enumerate(iuint_types): info = np.iinfo(in_type) mn, mx = info.min, info.max type_range = mx - mn center = type_range / 2.0 + mn # float(sd) because type_range can be type 'long' width = type_range * float(sd) V_in = rng.normal(center, width, size=(N,1)) for k, out_type in enumerate(iuint_types): check_arr(sd, V_in, in_type, out_type, scaling_type)
Example 20
Project: recruit Author: Frank-qlu File: test_dtype.py License: Apache License 2.0 | 5 votes |
def test_equivalent_dtype_hashing(self): # Make sure equivalent dtypes with different type num hash equal uintp = np.dtype(np.uintp) if uintp.itemsize == 4: left = uintp right = np.dtype(np.uint32) else: left = uintp right = np.dtype(np.ulonglong) assert_(left == right) assert_(hash(left) == hash(right))
Example 21
Project: recruit Author: Frank-qlu File: test_dtype.py License: Apache License 2.0 | 5 votes |
def test_void_pointer(self): self.check(ctypes.c_void_p, np.uintp)
Example 22
Project: westpa Author: westpa File: data_manager.py License: MIT License | 5 votes |
def get_children(self, segment): '''Return all segments which have the given segment as a parent''' if segment.n_iter == self.current_iteration: return [] # Examine the segment index from the following iteration to see who has this segment # as a parent. We don't need to worry about the number of parents each segment # has, since each has at least one, and indexing on the offset into the parents array # gives the primary parent ID with self.lock: iter_group = self.get_iter_group(segment.n_iter+1) seg_index = iter_group['seg_index'][...] # This is one of the slowest pieces of code I've ever written... #seg_index = iter_group['seg_index'][...] #seg_ids = [seg_id for (seg_id,row) in enumerate(seg_index) # if all_parent_ids[row['parents_offset']] == segment.seg_id] #return self.get_segments_by_id(segment.n_iter+1, seg_ids) if self.we_h5file_version < 5: parents = iter_group['parents'][seg_index['parent_offsets']] else: parents = seg_index['parent_id'] all_seg_ids = numpy.arange(seg_index.len(), dtype=numpy.uintp) seg_ids = all_seg_ids[parents == segment.seg_id] # the above will return a scalar if only one is found, so convert # to a list if necessary try: len(seg_ids) except TypeError: seg_ids = [seg_ids] return self.get_segments(segment.n_iter+1, seg_ids) # The following are dictated by the SimManager interface
Example 23
Project: eran Author: eth-sri File: deeppoly_nodes.py License: Apache License 2.0 | 5 votes |
def get_xpp(self): """ helper function to get pointers to the rows of self.weights. Return ------ output : numpy.ndarray pointers to the rows of the matrix """ return (self.weights.__array_interface__['data'][0]+ np.arange(self.weights.shape[0])*self.weights.strides[0]).astype(np.uintp)
Example 24
Project: eran Author: eth-sri File: deeppoly_nodes.py License: Apache License 2.0 | 5 votes |
def __init__(self, indexes, input_names, output_name, output_shape): """ collects the information needed for the handle_gather_layer transformer and brings it into the required shape Arguments --------- indexes : numpy.ndarray 1D array of ints with 3 entries [height, width, channels] representing the shape of the of the image that is passed to the conv-layer window_size : numpy.ndarray 1D array of ints with 2 entries [height, width] representing the window's size in these directions strides : numpy.ndarray 1D array of ints with 2 entries [height, width] representing the stride in these directions """ self.indexes = np.ascontiguousarray(indexes, dtype=np.uintp) add_input_output_information_deeppoly(self, input_names, output_name, output_shape)
Example 25
Project: eran Author: eth-sri File: deepzono_nodes.py License: Apache License 2.0 | 5 votes |
def __init__(self, image_shape, filters, strides, pad_top, pad_left, input_names, output_name, output_shape): """ Arguments --------- image_shape : numpy.ndarray of shape [height, width, channels] filters : numpy.ndarray the 4D array with the filter weights strides : numpy.ndarray of shape [height, width] padding : str type of padding, either 'VALID' or 'SAME' input_names : iterable iterable with the name of the second addend output_name : str name of this node's output output_shape : iterable iterable of ints with the shape of the output of this node """ add_input_output_information(self, input_names, output_name, output_shape) self.image_size = np.ascontiguousarray(image_shape, dtype=np.uintp) self.filters = np.ascontiguousarray(filters, dtype=np.double) self.strides = np.ascontiguousarray(strides, dtype=np.uintp) self.output_shape = (c_size_t * 3)(output_shape[1], output_shape[2], output_shape[3]) self.pad_top = pad_top self.pad_left = pad_left
Example 26
Project: eran Author: eth-sri File: deepzono_nodes.py License: Apache License 2.0 | 5 votes |
def __init__(self, image_shape, window_size, strides, pad_top, pad_left, input_names, output_name, output_shape, is_maxpool): """ Arguments --------- image_shape : numpy.ndarray 1D array of shape [height, width, channels] window_size : numpy.ndarray 1D array of shape [height, width] representing the window's size in these directions strides : numpy.ndarray 1D array of shape [height, width] representing the stride in these directions padding : str type of padding, either 'VALID' or 'SAME' input_names : iterable iterable with the name of node output we apply maxpool on output_name : str name of this node's output output_shape : iterable iterable of ints with the shape of the output of this node """ add_input_output_information(self, input_names, output_name, output_shape) self.window_size = np.ascontiguousarray(window_size, dtype=np.uintp) self.input_shape = np.ascontiguousarray(image_shape, dtype=np.uintp) self.stride = np.ascontiguousarray(strides, dtype=np.uintp) self.pad_top = pad_top self.pad_left = pad_left self.output_shape = (c_size_t * 3)(output_shape[1], output_shape[2], output_shape[3]) self.is_maxpool = is_maxpool
Example 27
Project: eran Author: eth-sri File: deepzono_nodes.py License: Apache License 2.0 | 5 votes |
def __init__(self, indexes, input_names, output_name, output_shape): """ collects the information needed for the handle_gather_layer transformer and brings it into the required shape Arguments --------- indexes : numpy.ndarray array of ints representing the entries of the of the input that are passed to the next layer """ add_input_output_information(self, [input_names[0]], output_name, output_shape) self.indexes = np.ascontiguousarray(indexes, dtype=np.uintp)
Example 28
Project: Computable Author: ktraunmueller File: test_datatypes.py License: MIT License | 5 votes |
def test_map_coordinates_dts(): # check that ndimage accepts different data types for interpolation data = np.array([[4, 1, 3, 2], [7, 6, 8, 5], [3, 5, 3, 6]]) shifted_data = np.array([[0, 0, 0, 0], [0, 4, 1, 3], [0, 7, 6, 8]]) idx = np.indices(data.shape) dts = (np.uint8, np.uint16, np.uint32, np.uint64, np.int8, np.int16, np.int32, np.int64, np.intp, np.uintp, np.float32, np.float64) for order in range(0, 6): for data_dt in dts: these_data = data.astype(data_dt) for coord_dt in dts: # affine mapping mat = np.eye(2, dtype=coord_dt) off = np.zeros((2,), dtype=coord_dt) out = ndimage.affine_transform(these_data, mat, off) assert_array_almost_equal(these_data, out) # map coordinates coords_m1 = idx.astype(coord_dt) - 1 coords_p10 = idx.astype(coord_dt) + 10 out = ndimage.map_coordinates(these_data, coords_m1, order=order) assert_array_almost_equal(out, shifted_data) # check constant fill works out = ndimage.map_coordinates(these_data, coords_p10, order=order) assert_array_almost_equal(out, np.zeros((3,4))) # check shift and zoom out = ndimage.shift(these_data, 1) assert_array_almost_equal(out, shifted_data) out = ndimage.zoom(these_data, 1) assert_array_almost_equal(these_data, out)
Example 29
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_dtype.py License: MIT License | 5 votes |
def test_equivalent_dtype_hashing(self): # Make sure equivalent dtypes with different type num hash equal uintp = np.dtype(np.uintp) if uintp.itemsize == 4: left = uintp right = np.dtype(np.uint32) else: left = uintp right = np.dtype(np.ulonglong) assert_(left == right) assert_(hash(left) == hash(right))
Example 30
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_dtype.py License: MIT License | 5 votes |
def test_void_pointer(self): self.check(ctypes.c_void_p, np.uintp)