Python numpy.vander() Examples
The following are 30 code examples for showing how to use numpy.vander(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: Computable Author: ktraunmueller File: interpolate.py License: MIT License | 6 votes |
def __call__(self, xnew): saveshape = np.shape(xnew) xnew = np.ravel(xnew) res = np.empty_like(xnew) mask = (xnew >= self.a) & (xnew <= self.b) res[~mask] = self.fill xx = xnew.compress(mask) indxs = np.searchsorted(self.breaks, xx)-1 indxs = indxs.clip(0, len(self.breaks)) pp = self.coeffs diff = xx - self.breaks.take(indxs) V = np.vander(diff, N=self.K) # values = np.diag(dot(V,pp[:,indxs])) values = array([dot(V[k, :], pp[:, indxs[k]]) for k in xrange(len(xx))]) res[mask] = values res.shape = saveshape return res
Example 2
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_interpolate.py License: MIT License | 6 votes |
def _ppoly_eval_2(coeffs, breaks, xnew, fill=np.nan): """Evaluate piecewise polynomial manually (another way)""" a = breaks[0] b = breaks[-1] K = coeffs.shape[0] saveshape = np.shape(xnew) xnew = np.ravel(xnew) res = np.empty_like(xnew) mask = (xnew >= a) & (xnew <= b) res[~mask] = fill xx = xnew.compress(mask) indxs = np.searchsorted(breaks, xx)-1 indxs = indxs.clip(0, len(breaks)) pp = coeffs diff = xx - breaks.take(indxs) V = np.vander(diff, N=K) values = np.array([np.dot(V[k, :], pp[:, indxs[k]]) for k in xrange(len(xx))]) res[mask] = values res.shape = saveshape return res
Example 3
Project: koala Author: vallettea File: excellib.py License: GNU General Public License v3.0 | 6 votes |
def linest(*args, **kwargs): # Excel reference: https://support.office.com/en-us/article/LINEST-function-84d7d0d9-6e50-4101-977a-fa7abf772b6d Y = list(args[0].values()) X = list(args[1].values()) if len(args) == 3: const = args[2] if isinstance(const,str): const = (const.lower() == "true") else: const = True degree = kwargs.get('degree',1) # build the vandermonde matrix A = np.vander(X, degree+1) if not const: # force the intercept to zero A[:,-1] = np.zeros((1,len(X))) # perform the fit (coefs, residuals, rank, sing_vals) = np.linalg.lstsq(A, Y) return coefs
Example 4
Project: Assimulo Author: modelon-community File: odepack.py License: GNU Lesser General Public License v3.0 | 6 votes |
def Nordsieck_RKn(self,t0,y,sw0): s=self.number_of_steps H=(s-1)*self.H co_nord=[N.array([1./2,1.]),N.array([2./5,3./5,1.])] l=size(y,0) y0=y[0,:] yf=self.f(t0,y0,sw0) if l==3: co=N.array([co_nord[0]]) nord_n=N.vander(co_nord[0],self.number_of_steps+1) b=y[1:]-y0-co.T*yf nord=Sc.solve(nord_n[0:2,0:2],b) elif l==4: co=N.array([co_nord[1]]) nord_n=N.vander(co_nord[1],self.number_of_steps+1) b=y[1:]-y0-H*co.T*yf nord=Sc.solve(nord_n[0:3,0:3],b) nord=N.vstack((y0,H*yf,nord[::-1])) return nord
Example 5
Project: recruit Author: Frank-qlu File: extras.py License: Apache License 2.0 | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example 6
Project: lambda-packs Author: ryfeus File: extras.py License: MIT License | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example 7
Project: lambda-packs Author: ryfeus File: extras.py License: MIT License | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example 8
Project: auto-alt-text-lambda-api Author: abhisuri97 File: extras.py License: MIT License | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example 9
Project: vnpy_crypto Author: birforce File: extras.py License: MIT License | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example 10
Project: vnpy_crypto Author: birforce File: tsatools.py License: MIT License | 5 votes |
def detrend(x, order=1, axis=0): """ Detrend an array with a trend of given order along axis 0 or 1 Parameters ---------- x : array_like, 1d or 2d data, if 2d, then each row or column is independently detrended with the same trendorder, but independent trend estimates order : int specifies the polynomial order of the trend, zero is constant, one is linear trend, two is quadratic trend axis : int axis can be either 0, observations by rows, or 1, observations by columns Returns ------- detrended data series : ndarray The detrended series is the residual of the linear regression of the data on the trend of given order. """ if x.ndim == 2 and int(axis) == 1: x = x.T elif x.ndim > 2: raise NotImplementedError('x.ndim > 2 is not implemented until it is needed') nobs = x.shape[0] if order == 0: # Special case demean resid = x - x.mean(axis=0) else: trends = np.vander(np.arange(float(nobs)), N=order + 1) beta = np.linalg.pinv(trends).dot(x) resid = x - np.dot(trends, beta) if x.ndim == 2 and int(axis) == 1: resid = resid.T return resid
Example 11
Project: vnpy_crypto Author: birforce File: outliers_influence.py License: MIT License | 5 votes |
def reset_ramsey(res, degree=5): '''Ramsey's RESET specification test for linear models This is a general specification test, for additional non-linear effects in a model. Notes ----- The test fits an auxiliary OLS regression where the design matrix, exog, is augmented by powers 2 to degree of the fitted values. Then it performs an F-test whether these additional terms are significant. If the p-value of the f-test is below a threshold, e.g. 0.1, then this indicates that there might be additional non-linear effects in the model and that the linear model is mis-specified. References ---------- http://en.wikipedia.org/wiki/Ramsey_RESET_test ''' order = degree + 1 k_vars = res.model.exog.shape[1] #vander without constant and x: y_fitted_vander = np.vander(res.fittedvalues, order)[:, :-2] #drop constant exog = np.column_stack((res.model.exog, y_fitted_vander)) res_aux = OLS(res.model.endog, exog).fit() #r_matrix = np.eye(degree, exog.shape[1], k_vars) r_matrix = np.eye(degree-1, exog.shape[1], k_vars) #df1 = degree - 1 #df2 = exog.shape[0] - degree - res.df_model (without constant) return res_aux.f_test(r_matrix) #, r_matrix, res_aux
Example 12
Project: Computable Author: ktraunmueller File: extras.py License: MIT License | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example 13
Project: Computable Author: ktraunmueller File: test_graph_laplacian.py License: MIT License | 5 votes |
def test_graph_laplacian(): mats = ('np.arange(10) * np.arange(10)[:, np.newaxis]', 'np.ones((7, 7))', 'np.eye(19)', 'sparse.diags([1, 1], [-1, 1], shape=(4,4))', 'sparse.diags([1, 1], [-1, 1], shape=(4,4)).todense()', 'np.asarray(sparse.diags([1, 1], [-1, 1], shape=(4,4)).todense())', 'np.vander(np.arange(4)) + np.vander(np.arange(4)).T', ) for mat_str in mats: for normed in (True, False): yield _check_graph_laplacian, mat_str, normed
Example 14
Project: Computable Author: ktraunmueller File: test_iterative.py License: MIT License | 5 votes |
def test_gmres_basic(): A = np.vander(np.arange(10) + 1)[:, ::-1] b = np.zeros(10) b[0] = 1 x = np.linalg.solve(A, b) x_gm, err = gmres(A, b, restart=5, maxiter=1) assert_allclose(x_gm[0], 0.359, rtol=1e-2)
Example 15
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: extras.py License: MIT License | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example 16
Project: trax Author: google File: lax_numpy_test.py License: Apache License 2.0 | 5 votes |
def testVander(self, shape, dtype, n, increasing, rng_factory): rng = rng_factory() def onp_fun(arg): arg = arg.astype(onp.float32) if dtype == lnp.bfloat16 else arg return onp.vander(arg, N=n, increasing=increasing) lnp_fun = lambda arg: lnp.vander(arg, N=n, increasing=increasing) args_maker = lambda: [rng([shape], dtype)] # np.vander seems to return float64 for all floating types. We could obey # those semantics, but they seem like a bug. self._CheckAgainstNumpy(onp_fun, lnp_fun, args_maker, check_dtypes=False, tol={onp.float32: 1e-3}) self._CompileAndCheck( lnp_fun, args_maker, check_dtypes=False, check_incomplete_shape=True)
Example 17
Project: trax Author: google File: array_ops.py License: Apache License 2.0 | 5 votes |
def vander(x, N=None, increasing=False): # pylint: disable=missing-docstring,invalid-name x = asarray(x).data x_shape = tf.shape(x) N = N or x_shape[0] N_temp = utils.get_static_value(N) # pylint: disable=invalid-name if N_temp is not None: N = N_temp if N < 0: raise ValueError('N must be nonnegative') else: tf.debugging.Assert(N >= 0, [N]) rank = tf.rank(x) rank_temp = utils.get_static_value(rank) if rank_temp is not None: rank = rank_temp if rank != 1: raise ValueError('x must be a one-dimensional array') else: tf.debugging.Assert(rank == 1, [rank]) if increasing: start = 0 limit = N delta = 1 else: start = N - 1 limit = -1 delta = -1 x = tf.expand_dims(x, -1) return utils.tensor_to_ndarray( tf.math.pow(x, tf.cast(tf.range(start, limit, delta), dtype=x.dtype)))
Example 18
Project: GraphicDesignPatternByPython Author: Relph1119 File: extras.py License: MIT License | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example 19
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_graph_laplacian.py License: MIT License | 5 votes |
def test_symmetric_graph_laplacian(): symmetric_mats = ('np.arange(10) * np.arange(10)[:, np.newaxis]', 'np.ones((7, 7))', 'np.eye(19)', 'sparse.diags([1, 1], [-1, 1], shape=(4,4))', 'sparse.diags([1, 1], [-1, 1], shape=(4,4)).todense()', 'np.asarray(sparse.diags([1, 1], [-1, 1], shape=(4,4)).todense())', 'np.vander(np.arange(4)) + np.vander(np.arange(4)).T') for mat_str in symmetric_mats: for normed in True, False: _check_symmetric_graph_laplacian(mat_str, normed)
Example 20
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_iterative.py License: MIT License | 5 votes |
def test_gmres_basic(): A = np.vander(np.arange(10) + 1)[:, ::-1] b = np.zeros(10) b[0] = 1 x = np.linalg.solve(A, b) with suppress_warnings() as sup: sup.filter(DeprecationWarning, ".*called without specifying.*") x_gm, err = gmres(A, b, restart=5, maxiter=1) assert_allclose(x_gm[0], 0.359, rtol=1e-2)
Example 21
Project: predictive-maintenance-using-machine-learning Author: awslabs File: extras.py License: Apache License 2.0 | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example 22
Project: Fluid-Designer Author: Microvellum File: extras.py License: GNU General Public License v3.0 | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example 23
Project: pySINDy Author: luckystarufo File: extras.py License: MIT License | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example 24
Project: mxnet-lambda Author: awslabs File: extras.py License: Apache License 2.0 | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example 25
Project: quadpy Author: nschloe File: _albrecht.py License: GNU General Public License v3.0 | 5 votes |
def albrecht_5(): # The values are solutions of # 6317094x^3 - 10022245*x^2 + 4149900*x - 336375 = 0 sigma2 = roots([6317094, -10022245, 4149900, -336375]) A = numpy.vander(sigma2, increasing=True).T b = numpy.array([frac(168899, 1350000), frac(7661, 180000), frac(71, 3000)]) B = linear_solve(A, b) sqrt19 = sqrt(19) # ERR Stroud incorrectly lists sqrt(10) for s1. s1, s2 = sqrt((125 - pm_ * 10 * sqrt19) / 366) # ERR Stroud incorrectly lists 749489_3_.0 instead of 749489_2_.0 C1, C2 = (7494892 + pm_ * 1053263 * sqrt19) / 205200000 D = frac(81, 3125) u = sqrt(frac(5, 6)) * cos(pi / 8) v = sqrt(frac(5, 6)) * sin(pi / 8) data = [ (B[0], fsd(2, (sqrt(sigma2[0]), 1))), (B[1], fsd(2, (sqrt(sigma2[1]), 1))), (B[2], fsd(2, (sqrt(sigma2[2]), 1))), (C1, pm([s1, s1])), (C2, pm([s2, s2])), (D, fsd(2, (u, 1), (v, 1))), ] points, weights = untangle(data) return S2Scheme("Albrecht 5", weights, points, 11, _source)
Example 26
Project: quadpy Author: nschloe File: _albrecht.py License: GNU General Public License v3.0 | 5 votes |
def albrecht_6(): # The values are solutions of # 11025*x^3 - 19020*x^2 + 9370*x - 1212 = 0 sigma2 = roots([11025, -19020, 9370, -1212]) A = numpy.vander(sigma2, increasing=True).T b = numpy.array([frac(1432433, 18849024), frac(1075, 31104), frac(521, 25920)]) B = linear_solve(A, b) B0 = frac(2615, 43632) C = frac(16807, 933120) alpha = 2 * numpy.arange(10) * pi / 10 rs = numpy.array([cos(alpha), sin(alpha)]).T alpha = (2 * numpy.arange(10) + 1) * pi / 10 uv = numpy.array([cos(alpha), sin(alpha)]).T data = [ (B0, z(2)), (B[0], sqrt(sigma2[0]) * rs), (B[1], sqrt(sigma2[1]) * rs), (B[2], sqrt(sigma2[2]) * rs), (C, sqrt(frac(6, 7)) * uv), ] points, weights = untangle(data) return S2Scheme("Albrecht 6", weights, points, 13, _source)
Example 27
Project: quadpy Author: nschloe File: _albrecht.py License: GNU General Public License v3.0 | 5 votes |
def albrecht_7(): alpha = 2 * numpy.arange(8) * pi / 8 s = numpy.array([cos(alpha), sin(alpha)]).T alpha = (2 * numpy.arange(8) + 1) * pi / 8 t = numpy.array([cos(alpha), sin(alpha)]).T sqrt21 = sqrt(21) wt1, wt2 = (4998 + pm_ * 343 * sqrt21) / 253125 tau1, tau2 = sqrt((21 - pm_ * sqrt21) / 28) # The values are solutions of # 4960228*x^4 - 10267740*x^3 + 6746490*x^2 - 1476540*x + 70425 = 0 sigma2 = roots([4960228, -10267740, 6746490, -1476540, 70425]) A = numpy.vander(sigma2, increasing=True).T b = numpy.array( [frac(57719, 675000), frac(9427, 270000), frac(193, 9000), frac(113, 7200)] ) ws = linear_solve(A, b) data = [ (ws[0], sqrt(sigma2[0]) * s), (ws[1], sqrt(sigma2[1]) * s), (ws[2], sqrt(sigma2[2]) * s), (ws[3], sqrt(sigma2[3]) * s), (wt1, tau1 * t), (wt2, tau2 * t), ] points, weights = untangle(data) return S2Scheme("Albrecht 7", weights, points, 15, _source)
Example 28
Project: quadpy Author: nschloe File: _albrecht.py License: GNU General Public License v3.0 | 5 votes |
def albrecht_8(): alpha = 2 * numpy.arange(10) * pi / 10 s = numpy.array([cos(alpha), sin(alpha)]).T alpha = (2 * numpy.arange(10) + 1) * pi / 10 t = numpy.array([cos(alpha), sin(alpha)]).T m0 = frac(496439663, 13349499975) sqrt7 = sqrt(7) wt1, wt2 = (125504 + pm_ * 16054 * sqrt7) / 8751645 tau1, tau2 = sqrt((14 - pm_ * sqrt7) / 18) # The values are solutions of # 160901628*x^4 - 364759920*x^3 + 274856190*x^2 - 76570340*x # + 6054195 = 0 sigma2 = roots([160901628, -364759920, 274856190, -76570340, 6054195]) A = numpy.vander(sigma2, increasing=True).T b = numpy.array( [ frac(121827491812, 1802182496625), frac(48541, 1666980), frac(977, 55566), frac(671, 52920), ] ) ws = linear_solve(A, b) data = [ (m0, z(2)), (ws[0], sqrt(sigma2[0]) * s), (ws[1], sqrt(sigma2[1]) * s), (ws[2], sqrt(sigma2[2]) * s), (ws[3], sqrt(sigma2[3]) * s), (wt1, tau1 * t), (wt2, tau2 * t), ] points, weights = untangle(data) return S2Scheme("Albrecht 8", weights, points, 17, _source)
Example 29
Project: ImageFusion Author: pfchai File: extras.py License: MIT License | 5 votes |
def vander(x, n=None): """ Masked values in the input array result in rows of zeros. """ _vander = np.vander(x, n) m = getmask(x) if m is not nomask: _vander[m] = 0 return _vander
Example 30
Project: learning-circuits Author: HazyResearch File: learning_vandermonde.py License: Apache License 2.0 | 5 votes |
def _setup(self, config): torch.manual_seed(config['seed']) self.model = ButterflyProduct(size=config['size'], complex=False, fixed_order=config['fixed_order'], softmax_fn=config['softmax_fn']) if (not config['fixed_order']) and config['softmax_fn'] == 'softmax': self.semantic_loss_weight = config['semantic_loss_weight'] self.optimizer = optim.Adam(self.model.parameters(), lr=config['lr']) self.n_steps_per_epoch = config['n_steps_per_epoch'] size = config['size'] # Need to transpose as dct acts on rows of matrix np.eye, not columns n = size np.random.seed(0) x = np.random.randn(n) V = np.vander(x, increasing=True) self.target_matrix = torch.tensor(V, dtype=torch.float) arange_ = np.arange(size) dct_perm = np.concatenate((arange_[::2], arange_[::-2])) br_perm = bitreversal_permutation(size) assert config['perm'] in ['id', 'br', 'dct'] if config['perm'] == 'id': self.perm = torch.arange(size) elif config['perm'] == 'br': self.perm = br_perm elif config['perm'] == 'dct': self.perm = torch.arange(size)[dct_perm][br_perm] else: assert False, 'Wrong perm in config'