Python numpy.array_equiv() Examples
The following are 30 code examples for showing how to use numpy.array_equiv(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: jesse Author: jesse-ai File: test_state_orderbook.py License: MIT License | 6 votes |
def test_fix_array_len(): from jesse.store.state_orderbook import _fix_array_len a = np.array([ 1, 2, 3, 4, 5 ], dtype=float) a = _fix_array_len(a, 7) b = np.array([ 1, 2, 3, 4, 5 ], dtype=float) assert np.array_equiv(a[:5], b) assert np.isnan(a[5]) assert np.isnan(a[6]) c = np.array([ 1, 2, 3, 4, 5 ], dtype=float) # assert that len has to be >= len(a) with pytest.raises(ValueError): _fix_array_len(c, 3)
Example 2
Project: odl Author: odlgroup File: weighting.py License: Mozilla Public License 2.0 | 6 votes |
def equiv(self, other): """Return True if other is an equivalent weighting. Returns ------- equivalent : bool ``True`` if ``other`` is a `Weighting` instance with the same `Weighting.impl`, which yields the same result as this weighting for any input, ``False`` otherwise. This is checked by entry-wise comparison of arrays/constants. """ # Optimization for equality if self == other: return True elif (not isinstance(other, Weighting) or self.exponent != other.exponent): return False elif isinstance(other, MatrixWeighting): return other.equiv(self) elif isinstance(other, ConstWeighting): return np.array_equiv(self.array, other.const) else: return np.array_equal(self.array, other.array)
Example 3
Project: neuralcoref Author: huggingface File: conllparser.py License: MIT License | 5 votes |
def check_numpy_array(feature, array, n_mentions_list, compressed=True): for n_mentions in n_mentions_list: if feature == FEATURES_NAMES[0]: assert array.shape[0] == len(n_mentions) if compressed: assert np.array_equiv( array[:, 3], np.array([len(n_mentions)] * len(n_mentions)) ) assert np.max(array[:, 2]) == len(n_mentions) - 1 assert np.min(array[:, 2]) == 0 elif feature == FEATURES_NAMES[1]: assert array.shape[0] == len(n_mentions) elif feature == FEATURES_NAMES[2]: assert array.shape[0] == len(n_mentions) assert np.array_equiv(array[:, 0], np.array(list(range(len(n_mentions))))) elif feature == FEATURES_NAMES[3]: assert array.shape[0] == len(n_mentions) assert np.array_equiv( array[:, 0], np.array([p * (p - 1) / 2 for p in range(len(n_mentions))]) ) elif feature == FEATURES_NAMES[4]: assert array.shape[0] == len(n_mentions) elif feature == FEATURES_NAMES[5]: assert array.shape[0] == len(n_mentions) elif feature == FEATURES_NAMES[6]: assert array.shape[0] == len(n_mentions) * (len(n_mentions) - 1) / 2 assert np.max(array) == len(n_mentions) - 2 elif feature == FEATURES_NAMES[7]: if compressed: assert array.shape[0] == len(n_mentions) * (len(n_mentions) - 1) / 2 assert np.max(array[:, 7]) == len(n_mentions) - 2 assert np.min(array[:, 7]) == 0 elif feature == FEATURES_NAMES[8]: assert array.shape[0] == len(n_mentions) * (len(n_mentions) - 1) / 2 ############################################################################################### ### PARALLEL FCT (has to be at top-level of the module to be pickled for multiprocessing) #####
Example 4
Project: recruit Author: Frank-qlu File: numeric.py License: Apache License 2.0 | 5 votes |
def array_equal(a1, a2): """ True if two arrays have the same shape and elements, False otherwise. Parameters ---------- a1, a2 : array_like Input arrays. Returns ------- b : bool Returns True if the arrays are equal. See Also -------- allclose: Returns True if two arrays are element-wise equal within a tolerance. array_equiv: Returns True if input arrays are shape consistent and all elements equal. Examples -------- >>> np.array_equal([1, 2], [1, 2]) True >>> np.array_equal(np.array([1, 2]), np.array([1, 2])) True >>> np.array_equal([1, 2], [1, 2, 3]) False >>> np.array_equal([1, 2], [1, 4]) False """ try: a1, a2 = asarray(a1), asarray(a2) except Exception: return False if a1.shape != a2.shape: return False return bool(asarray(a1 == a2).all())
Example 5
Project: recruit Author: Frank-qlu File: test_numeric.py License: Apache License 2.0 | 5 votes |
def test_array_equiv(self): res = np.array_equiv(np.array([1, 2]), np.array([1, 2])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([3, 4])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([1, 3])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 1]), np.array([1])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([2])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])) assert_(not res) assert_(type(res) is bool)
Example 6
Project: amen Author: algorithmic-music-exploration File: test_timing.py License: BSD 2-Clause "Simplified" License | 5 votes |
def test_get_samples_audio(): def get_samples_audio(audio): beat = audio.timings['beats'][0] samples, left_offset, right_offset = beat.get_samples() start = beat.time.delta * 1e-9 duration = beat.duration.delta * 1e-9 starting_sample, ending_sample = librosa.time_to_samples( [start, start + duration], beat.audio.sample_rate ) left_offsets, right_offsets = beat._get_offsets( starting_sample, ending_sample, beat.audio.num_channels ) start_sample = left_offsets[0] * -1 end_sample = len(samples[0]) - left_offsets[1] reset_samples = samples[0][start_sample:end_sample] original_samples = audio.raw_samples[0, starting_sample:ending_sample] return reset_samples, original_samples mono_reset_samples, mono_original_samples = get_samples_audio(mono_audio) assert np.array_equiv(mono_reset_samples, mono_original_samples) stereo_reset_samples, stereo_original_samples = get_samples_audio(stereo_audio) assert np.array_equiv(stereo_reset_samples, stereo_original_samples)
Example 7
Project: lambda-packs Author: ryfeus File: numeric.py License: MIT License | 5 votes |
def array_equal(a1, a2): """ True if two arrays have the same shape and elements, False otherwise. Parameters ---------- a1, a2 : array_like Input arrays. Returns ------- b : bool Returns True if the arrays are equal. See Also -------- allclose: Returns True if two arrays are element-wise equal within a tolerance. array_equiv: Returns True if input arrays are shape consistent and all elements equal. Examples -------- >>> np.array_equal([1, 2], [1, 2]) True >>> np.array_equal(np.array([1, 2]), np.array([1, 2])) True >>> np.array_equal([1, 2], [1, 2, 3]) False >>> np.array_equal([1, 2], [1, 4]) False """ try: a1, a2 = asarray(a1), asarray(a2) except Exception: return False if a1.shape != a2.shape: return False return bool(asarray(a1 == a2).all())
Example 8
Project: auto-alt-text-lambda-api Author: abhisuri97 File: test_numeric.py License: MIT License | 5 votes |
def test_array_equiv(self): res = np.array_equiv(np.array([1, 2]), np.array([1, 2])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([3, 4])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([1, 3])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 1]), np.array([1])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([2])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])) assert_(not res) assert_(type(res) is bool)
Example 9
Project: vnpy_crypto Author: birforce File: numeric.py License: MIT License | 5 votes |
def array_equal(a1, a2): """ True if two arrays have the same shape and elements, False otherwise. Parameters ---------- a1, a2 : array_like Input arrays. Returns ------- b : bool Returns True if the arrays are equal. See Also -------- allclose: Returns True if two arrays are element-wise equal within a tolerance. array_equiv: Returns True if input arrays are shape consistent and all elements equal. Examples -------- >>> np.array_equal([1, 2], [1, 2]) True >>> np.array_equal(np.array([1, 2]), np.array([1, 2])) True >>> np.array_equal([1, 2], [1, 2, 3]) False >>> np.array_equal([1, 2], [1, 4]) False """ try: a1, a2 = asarray(a1), asarray(a2) except Exception: return False if a1.shape != a2.shape: return False return bool(asarray(a1 == a2).all())
Example 10
Project: vnpy_crypto Author: birforce File: test_numeric.py License: MIT License | 5 votes |
def test_array_equiv(self): res = np.array_equiv(np.array([1, 2]), np.array([1, 2])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([3, 4])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([1, 3])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 1]), np.array([1])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([2])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])) assert_(not res) assert_(type(res) is bool)
Example 11
Project: ngraph-python Author: NervanaSystems File: test_ops_binary.py License: Apache License 2.0 | 5 votes |
def test_times_1(): cntk_op = C.times([1, 2, 3], [[4], [5], [6]]) cntk_ret = cntk_op.eval() ng_op, _ = CNTKImporter().import_model(cntk_op) ng_ret = ng.transformers.make_transformer().computation(ng_op)() assert np.array_equiv(cntk_ret, ng_ret)
Example 12
Project: ngraph-python Author: NervanaSystems File: test_ops_binary.py License: Apache License 2.0 | 5 votes |
def test_times_2(): cntk_op = C.times([[1, 2], [3, 4]], [[5, 6], [7, 8]]) cntk_ret = cntk_op.eval() ng_op, _ = CNTKImporter().import_model(cntk_op) ng_ret = ng.transformers.make_transformer().computation(ng_op)() assert np.array_equiv(cntk_ret, ng_ret)
Example 13
Project: ngraph-python Author: NervanaSystems File: test_ops_binary.py License: Apache License 2.0 | 5 votes |
def test_times_3(): cntk_op = C.times([1, 2, 3], [[4, 5], [6, 7], [8, 9]]) cntk_ret = cntk_op.eval() ng_op, _ = CNTKImporter().import_model(cntk_op) ng_ret = ng.transformers.make_transformer().computation(ng_op)() assert np.array_equiv(cntk_ret, ng_ret)
Example 14
Project: ngraph-python Author: NervanaSystems File: test_ops_binary.py License: Apache License 2.0 | 5 votes |
def test_times_4(): cntk_op = C.times([[1, 2, 3], [4, 5, 6]], [[7], [8], [9]]) cntk_ret = cntk_op.eval() ng_op, _ = CNTKImporter().import_model(cntk_op) ng_ret = ng.transformers.make_transformer().computation(ng_op)() assert np.array_equiv(cntk_ret, ng_ret)
Example 15
Project: ngraph-python Author: NervanaSystems File: test_ops_binary.py License: Apache License 2.0 | 5 votes |
def test_times_5(): cntk_op = C.times([[1, 2, 3], [4, 5, 6]], [[7, 8], [9, 10], [11, 12]]) cntk_ret = cntk_op.eval() ng_op, _ = CNTKImporter().import_model(cntk_op) ng_ret = ng.transformers.make_transformer().computation(ng_op)() assert np.array_equiv(cntk_ret, ng_ret)
Example 16
Project: robotreviewer Author: ijmarshall File: test_ml.py License: GNU General Public License v3.0 | 5 votes |
def test_decision_function(self): ''' test for MiniClassifier.decision_function(X) ''' X = self.util.load_sparse_csr("X_data.npz") dec = self.doc_clf.decision_function(X) # [ 1.50563252] decTest = np.float64([1.50563252]) ''' can't do: print(np.array_equal(dec, y)) print(np.array_equiv(dec, y)) since as decimals these will not pass ''' self.assertTrue(np.allclose(dec, decTest))
Example 17
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: numeric.py License: MIT License | 5 votes |
def array_equal(a1, a2): """ True if two arrays have the same shape and elements, False otherwise. Parameters ---------- a1, a2 : array_like Input arrays. Returns ------- b : bool Returns True if the arrays are equal. See Also -------- allclose: Returns True if two arrays are element-wise equal within a tolerance. array_equiv: Returns True if input arrays are shape consistent and all elements equal. Examples -------- >>> np.array_equal([1, 2], [1, 2]) True >>> np.array_equal(np.array([1, 2]), np.array([1, 2])) True >>> np.array_equal([1, 2], [1, 2, 3]) False >>> np.array_equal([1, 2], [1, 4]) False """ try: a1, a2 = asarray(a1), asarray(a2) except Exception: return False if a1.shape != a2.shape: return False return bool(asarray(a1 == a2).all())
Example 18
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_numeric.py License: MIT License | 5 votes |
def test_array_equiv(self): res = np.array_equiv(np.array([1, 2]), np.array([1, 2])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([3, 4])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([1, 3])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 1]), np.array([1])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([2])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])) assert_(not res) assert_(type(res) is bool)
Example 19
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: test_hierarchical.py License: MIT License | 5 votes |
def test_agglomerative_clustering_with_distance_threshold(linkage): # Check that we obtain the correct number of clusters with # agglomerative clustering with distance_threshold. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) n_samples = 100 X = rng.randn(n_samples, 50) connectivity = grid_to_graph(*mask.shape) # test when distance threshold is set to 10 distance_threshold = 10 for conn in [None, connectivity]: clustering = AgglomerativeClustering( n_clusters=None, distance_threshold=distance_threshold, connectivity=conn, linkage=linkage) clustering.fit(X) clusters_produced = clustering.labels_ num_clusters_produced = len(np.unique(clustering.labels_)) # test if the clusters produced match the point in the linkage tree # where the distance exceeds the threshold tree_builder = _TREE_BUILDERS[linkage] children, n_components, n_leaves, parent, distances = \ tree_builder(X, connectivity=conn, n_clusters=None, return_distance=True) num_clusters_at_threshold = np.count_nonzero( distances >= distance_threshold) + 1 # test number of clusters produced assert num_clusters_at_threshold == num_clusters_produced # test clusters produced clusters_at_threshold = _hc_cut(n_clusters=num_clusters_produced, children=children, n_leaves=n_leaves) assert np.array_equiv(clusters_produced, clusters_at_threshold)
Example 20
Project: GraphicDesignPatternByPython Author: Relph1119 File: numeric.py License: MIT License | 5 votes |
def array_equal(a1, a2): """ True if two arrays have the same shape and elements, False otherwise. Parameters ---------- a1, a2 : array_like Input arrays. Returns ------- b : bool Returns True if the arrays are equal. See Also -------- allclose: Returns True if two arrays are element-wise equal within a tolerance. array_equiv: Returns True if input arrays are shape consistent and all elements equal. Examples -------- >>> np.array_equal([1, 2], [1, 2]) True >>> np.array_equal(np.array([1, 2]), np.array([1, 2])) True >>> np.array_equal([1, 2], [1, 2, 3]) False >>> np.array_equal([1, 2], [1, 4]) False """ try: a1, a2 = asarray(a1), asarray(a2) except Exception: return False if a1.shape != a2.shape: return False return bool(asarray(a1 == a2).all())
Example 21
Project: GraphicDesignPatternByPython Author: Relph1119 File: test_numeric.py License: MIT License | 5 votes |
def test_array_equiv(self): res = np.array_equiv(np.array([1, 2]), np.array([1, 2])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([3, 4])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([1, 3])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 1]), np.array([1])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([2])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])) assert_(not res) assert_(type(res) is bool)
Example 22
Project: recsys2019 Author: logicai-io File: transformers.py License: Apache License 2.0 | 5 votes |
def fit(self, X): groups = X.columns.to_series().groupby(X.dtypes).groups self.duplicate_cols = [] for t, v in groups.items(): cs = X[v].columns vs = X[v] lcs = len(cs) for i in range(lcs): ia = vs.iloc[:, i].values for j in range(i + 1, lcs): ja = vs.iloc[:, j].values if np.array_equiv(ia, ja): self.duplicate_cols.append(cs[i]) break return self
Example 23
Project: brainiak Author: brainiak File: test_utils.py License: Apache License 2.0 | 5 votes |
def test_tri_sym_convert(): from brainiak.utils.utils import from_tri_2_sym, from_sym_2_tri import numpy as np sym = np.random.rand(3, 3) tri = from_sym_2_tri(sym) assert tri.shape[0] == 6,\ "from_sym_2_tri returned wrong result!" sym1 = from_tri_2_sym(tri, 3) assert sym1.shape[0] == sym1.shape[1],\ "from_tri_2_sym returned wrong shape!" tri1 = from_sym_2_tri(sym1) assert np.array_equiv(tri, tri1),\ "from_sym_2_tri returned wrong result!"
Example 24
Project: textpipe Author: textpipe File: doc.py License: MIT License | 5 votes |
def doc_vector(self): """ Returns document embeddings based on the words in the document. >>> import numpy >>> from textpipe.doc import Doc >>> numpy.array_equiv(Doc('a b').doc_vector, Doc('a b').doc_vector) True >>> numpy.array_equiv(Doc('a b').doc_vector, Doc('a a b').doc_vector) False """ return self.aggregate_word_vectors()
Example 25
Project: predictive-maintenance-using-machine-learning Author: awslabs File: numeric.py License: Apache License 2.0 | 5 votes |
def array_equal(a1, a2): """ True if two arrays have the same shape and elements, False otherwise. Parameters ---------- a1, a2 : array_like Input arrays. Returns ------- b : bool Returns True if the arrays are equal. See Also -------- allclose: Returns True if two arrays are element-wise equal within a tolerance. array_equiv: Returns True if input arrays are shape consistent and all elements equal. Examples -------- >>> np.array_equal([1, 2], [1, 2]) True >>> np.array_equal(np.array([1, 2]), np.array([1, 2])) True >>> np.array_equal([1, 2], [1, 2, 3]) False >>> np.array_equal([1, 2], [1, 4]) False """ try: a1, a2 = asarray(a1), asarray(a2) except Exception: return False if a1.shape != a2.shape: return False return bool(asarray(a1 == a2).all())
Example 26
Project: predictive-maintenance-using-machine-learning Author: awslabs File: test_numeric.py License: Apache License 2.0 | 5 votes |
def test_array_equiv(self): res = np.array_equiv(np.array([1, 2]), np.array([1, 2])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([1, 2, 3])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([3, 4])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([1, 3])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 1]), np.array([1])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 1]), np.array([[1], [1]])) assert_(res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([2])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([[1], [2]])) assert_(not res) assert_(type(res) is bool) res = np.array_equiv(np.array([1, 2]), np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])) assert_(not res) assert_(type(res) is bool)
Example 27
Project: pyq Author: KxSystems File: test_numpy.py License: Apache License 2.0 | 5 votes |
def test_symbol_list(): x = K(['a']) a = numpy.array(x) assert numpy.array_equiv(a, ['a']) x = K(['a'] * 3) a = numpy.array(x, 'O') assert a[0] is a[1] is a[2] == 'a'
Example 28
Project: pyq Author: KxSystems File: test_numpy.py License: Apache License 2.0 | 5 votes |
def test_table_to_array_all_types(dtype): c = numpy.zeros(1, dtype) t = +q('!', ['c'], (c,)) a = numpy.asarray(t) assert a.dtype.names == ('c',) assert numpy.array_equiv(c, a['c'])
Example 29
Project: pyq Author: KxSystems File: test_numpy.py License: Apache License 2.0 | 5 votes |
def test_enum_to_array(q): x = q('`sym?`a`b') a = numpy.array(['a', 'b'], dtype=object) assert numpy.array_equiv(x, a)
Example 30
Project: pyq Author: KxSystems File: test_numpy.py License: Apache License 2.0 | 5 votes |
def test_2d_roundtrip(dtype): a = numpy.zeros((3, 2), dtype) x = K(a) b = numpy.array(x) assert numpy.array_equiv(a, b)