Python pylab.ylim() Examples

The following are 30 code examples of pylab.ylim(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module pylab , or try the search function .
Example #1
Source File: __init__.py    From EDeN with MIT License 7 votes vote down vote up
def plot_roc_curve(y_true, y_score, size=None):
    """plot_roc_curve."""
    false_positive_rate, true_positive_rate, thresholds = roc_curve(
        y_true, y_score)
    if size is not None:
        plt.figure(figsize=(size, size))
        plt.axis('equal')
    plt.plot(false_positive_rate, true_positive_rate, lw=2, color='navy')
    plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
    plt.xlabel('False positive rate')
    plt.ylabel('True positive rate')
    plt.ylim([-0.05, 1.05])
    plt.xlim([-0.05, 1.05])
    plt.grid()
    plt.title('Receiver operating characteristic AUC={0:0.2f}'.format(
        roc_auc_score(y_true, y_score))) 
Example #2
Source File: proj3d.py    From opticspy with MIT License 7 votes vote down vote up
def test_proj():
    import pylab
    M = test_proj_make_M()

    ts = ['%d' % i for i in [0,1,2,3,0,4,5,6,7,4]]
    xs, ys, zs = [0,1,1,0,0, 0,1,1,0,0], [0,0,1,1,0, 0,0,1,1,0], \
            [0,0,0,0,0, 1,1,1,1,1]
    xs, ys, zs = [np.array(v)*300 for v in (xs, ys, zs)]
    #
    test_proj_draw_axes(M, s=400)
    txs, tys, tzs = proj_transform(xs, ys, zs, M)
    ixs, iys, izs = inv_transform(txs, tys, tzs, M)

    pylab.scatter(txs, tys, c=tzs)
    pylab.plot(txs, tys, c='r')
    for x, y, t in zip(txs, tys, ts):
        pylab.text(x, y, t)

    pylab.xlim(-0.2, 0.2)
    pylab.ylim(-0.2, 0.2)

    pylab.show() 
Example #3
Source File: proj3d.py    From opticspy with MIT License 7 votes vote down vote up
def test_lines_dists():
    import pylab
    ax = pylab.gca()

    xs, ys = (0,30), (20,150)
    pylab.plot(xs, ys)
    points = list(zip(xs, ys))
    p0, p1 = points

    xs, ys = (0,0,20,30), (100,150,30,200)
    pylab.scatter(xs, ys)

    dist = line2d_seg_dist(p0, p1, (xs[0], ys[0]))
    dist = line2d_seg_dist(p0, p1, np.array((xs, ys)))
    for x, y, d in zip(xs, ys, dist):
        c = Circle((x, y), d, fill=0)
        ax.add_patch(c)

    pylab.xlim(-200, 200)
    pylab.ylim(-200, 200)
    pylab.show() 
Example #4
Source File: plot_mh_analysis.py    From SelfTarget with MIT License 6 votes vote down vote up
def compareMHK562lines(all_result_outputs, label='', y_axis = 'Percent Non-Null Reads', data_label='RegrLines'):

    dirnames = [x[1] for x in all_result_outputs]
    clrs = ['silver','grey','darkgreen','green','lightgreen','royalblue','dodgerblue','skyblue','mediumpurple','orchid','red','orange','salmon']

    fig = PL.figure(figsize=(6,6))
    leg_handles = []
    mh_lens = [3,4,5,6,7,8,9,10,11,12,13,14,15]
    for mh_len, clr in zip(mh_lens,clrs):
        regr_lines = [x[0][data_label][mh_len] for x in all_result_outputs]
        mean_line = np.mean([x[:2] for x in regr_lines], axis=0)
        leg_handles.append(PL.plot(mean_line[0], mean_line[1], label='MH Len=%d  (R=%.1f)' % (mh_len,np.mean([x[2] for x in regr_lines])) , linewidth=2, color=clr )[0])
    PL.xlabel('Distance between nearest ends of\nmicrohomologous sequences',fontsize=16)
    PL.ylabel('Correspondng microhomology-mediated deletion\n as percent of total mutated reads',fontsize=16)
    PL.tick_params(labelsize=16)
    PL.legend(handles=[x for x in reversed(leg_handles)], loc='upper right')
    PL.ylim((0,80))
    PL.xlim((0,20))
    PL.xticks(range(0,21,5))
    PL.show(block=False)  
    saveFig('mh_regr_lines_K562') 
Example #5
Source File: util.py    From Azimuth with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def addqqplotinfo(qnull,M,xl='-log10(P) observed',yl='-log10(P) expected',xlim=None,ylim=None,alphalevel=0.05,legendlist=None,fixaxes=False):    
    distr='log10'
    pl.plot([0,qnull.max()], [0,qnull.max()],'k')
    pl.ylabel(xl)
    pl.xlabel(yl)
    if xlim is not None:
        pl.xlim(xlim)
    if ylim is not None:
        pl.ylim(ylim)        
    if alphalevel is not None:
        if distr == 'log10':
            betaUp, betaDown, theoreticalPvals = _qqplot_bar(M=M,alphalevel=alphalevel,distr=distr)
            lower = -sp.log10(theoreticalPvals-betaDown)
            upper = -sp.log10(theoreticalPvals+betaUp)
            pl.fill_between(-sp.log10(theoreticalPvals),lower,upper,color="grey",alpha=0.5)
            #pl.plot(-sp.log10(theoreticalPvals),lower,'g-.')
            #pl.plot(-sp.log10(theoreticalPvals),upper,'g-.')
    if legendlist is not None:
        leg = pl.legend(legendlist, loc=4, numpoints=1)
        # set the markersize for the legend
        for lo in leg.legendHandles:
            lo.set_markersize(10)

    if fixaxes:
        fix_axes() 
Example #6
Source File: rectify.py    From facade-segmentation with MIT License 6 votes vote down vote up
def plot_original(self):
        import pylab
        pylab.title('original')
        pylab.imshow(self.data)

        for line in self.lines:
            p0, p1 = line
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='blue', alpha=0.3)

        for line in self.vlines:
            p0, p1 = line
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')

        for line in self.hlines:
            p0, p1 = line
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')

        pylab.axis('image');
        pylab.grid(c='yellow', lw=1)
        pylab.plt.yticks(np.arange(0, self.l, 100.0));
        pylab.xlim(0, self.w)
        pylab.ylim(self.l, 0) 
Example #7
Source File: rectify.py    From facade-segmentation with MIT License 6 votes vote down vote up
def plot_rectified(self):
        import pylab
        pylab.title('rectified')
        pylab.imshow(self.rectified)

        for line in self.vlines:
            p0, p1 = line
            p0 = self.inv_transform(p0)
            p1 = self.inv_transform(p1)
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='green')

        for line in self.hlines:
            p0, p1 = line
            p0 = self.inv_transform(p0)
            p1 = self.inv_transform(p1)
            pylab.plot((p0[0], p1[0]), (p0[1], p1[1]), c='red')

        pylab.axis('image');
        pylab.grid(c='yellow', lw=1)
        pylab.plt.yticks(np.arange(0, self.l, 100.0));
        pylab.xlim(0, self.w)
        pylab.ylim(self.l, 0) 
Example #8
Source File: plot_i1_summaries.py    From SelfTarget with MIT License 6 votes vote down vote up
def i1RepeatNucleotides(data, label=''):
    merged_data = mergeWithIndelData(data)
    nt_mean_percs, nts = [], ['A','T','G','C']
    for nt in nts:
        nt_data  = merged_data.loc[merged_data['Repeat Nucleotide Left'] == nt]  
        nt_mean_percs.append((nt_data['I1_Rpt Left Reads - NonAmb']*100.0/nt_data['Total reads']).mean())
    PL.figure(figsize=(3,3))
    PL.bar(range(4),nt_mean_percs)
    for i in range(4):
        PL.text(i-0.25,nt_mean_percs[i]+0.8,'%.1f' % nt_mean_percs[i])
    PL.xticks(range(4),nts)
    PL.ylim((0,26))
    PL.xlabel('PAM distal nucleotide\nadjacent to the cut site')
    PL.ylabel('I1 repeated left nucleotide\nas percent of total mutated reads')
    PL.show(block=False)
    saveFig('i1_rtp_nt_%s' % label) 
Example #9
Source File: plot_i1_summaries.py    From SelfTarget with MIT License 6 votes vote down vote up
def plotMergedI1Repeats(all_result_outputs, label=''):
    merged_data = mergeSamples(all_result_outputs, ['I1_Rpt Left Reads - NonAmb','Total reads'], data_label='i1IndelData', merge_on=['Oligo Id','Repeat Nucleotide Left'])
    nt_mean_percs, nts = [], ['A','T','G','C']
    for nt in nts:
        nt_data  = merged_data.loc[merged_data['Repeat Nucleotide Left'] == nt]  
        nt_mean_percs.append((nt_data['I1_Rpt Left Reads - NonAmb Sum']*100.0/nt_data['Total reads Sum']).mean())
    PL.figure(figsize=(3,3))
    PL.bar(range(4),nt_mean_percs)
    for i in range(4):
        PL.text(i-0.25,nt_mean_percs[i]+0.8,'%.1f' % nt_mean_percs[i])
    PL.xticks(range(4),nts)
    PL.ylim((0,26))
    PL.xlabel('PAM distal nucleotide\nadjacent to the cut site')
    PL.ylabel('I1 repeated left nucleotide\nas percent of total mutated reads')
    PL.show(block=False)
    saveFig('i1_rtp_nt') 
Example #10
Source File: megafacade.py    From facade-segmentation with MIT License 6 votes vote down vote up
def _plot_background(self, bgimage):
        import pylab as pl
        # Show the portion of the image behind this facade
        left, right = self.facade_left, self.facade_right
        top, bottom = 0, self.mega_facade.rectified.shape[0]
        if bgimage is not None:
            pl.imshow(bgimage[top:bottom, left:right], extent=(left, right, bottom, top))
        else:
            # Fit the facade in the plot
            y0, y1 = pl.ylim()
            x0, x1 = pl.xlim()
            x0 = min(x0, left)
            x1 = max(x1, right)
            y0 = min(y0, top)
            y1 = max(y1, bottom)
            pl.xlim(x0, x1)
            pl.ylim(y1, y0) 
Example #11
Source File: analyser.py    From spotpy with MIT License 6 votes vote down vote up
def plot_Geweke(parameterdistribution,parametername):
    '''Input:  Takes a list of sampled values for a parameter and his name as a string
       Output: Plot as seen for e.g. in BUGS or PyMC'''
    import matplotlib.pyplot as plt

    # perform the Geweke test
    Geweke_values = _Geweke(parameterdistribution)

    # plot the results
    fig = plt.figure()
    plt.plot(Geweke_values,label=parametername)
    plt.legend()
    plt.title(parametername + '- Geweke_Test')
    plt.xlabel('Subinterval')
    plt.ylabel('Geweke Test')
    plt.ylim([-3,3])

    # plot the delimiting line
    plt.plot( [2]*len(Geweke_values), 'r-.')
    plt.plot( [-2]*len(Geweke_values), 'r-.') 
Example #12
Source File: proj3d.py    From matplotlib-4-abaqus with MIT License 6 votes vote down vote up
def test_proj():
    import pylab
    M = test_proj_make_M()

    ts = ['%d' % i for i in [0,1,2,3,0,4,5,6,7,4]]
    xs, ys, zs = [0,1,1,0,0, 0,1,1,0,0], [0,0,1,1,0, 0,0,1,1,0], \
            [0,0,0,0,0, 1,1,1,1,1]
    xs, ys, zs = [np.array(v)*300 for v in (xs, ys, zs)]
    #
    test_proj_draw_axes(M, s=400)
    txs, tys, tzs = proj_transform(xs, ys, zs, M)
    ixs, iys, izs = inv_transform(txs, tys, tzs, M)

    pylab.scatter(txs, tys, c=tzs)
    pylab.plot(txs, tys, c='r')
    for x, y, t in zip(txs, tys, ts):
        pylab.text(x, y, t)

    pylab.xlim(-0.2, 0.2)
    pylab.ylim(-0.2, 0.2)

    pylab.show() 
Example #13
Source File: proj3d.py    From matplotlib-4-abaqus with MIT License 6 votes vote down vote up
def test_lines_dists():
    import pylab
    ax = pylab.gca()

    xs, ys = (0,30), (20,150)
    pylab.plot(xs, ys)
    points = zip(xs, ys)
    p0, p1 = points

    xs, ys = (0,0,20,30), (100,150,30,200)
    pylab.scatter(xs, ys)

    dist = line2d_seg_dist(p0, p1, (xs[0], ys[0]))
    dist = line2d_seg_dist(p0, p1, np.array((xs, ys)))
    for x, y, d in zip(xs, ys, dist):
        c = Circle((x, y), d, fill=0)
        ax.add_patch(c)

    pylab.xlim(-200, 200)
    pylab.ylim(-200, 200)
    pylab.show() 
Example #14
Source File: proj3d.py    From Computable with MIT License 6 votes vote down vote up
def test_proj():
    import pylab
    M = test_proj_make_M()

    ts = ['%d' % i for i in [0,1,2,3,0,4,5,6,7,4]]
    xs, ys, zs = [0,1,1,0,0, 0,1,1,0,0], [0,0,1,1,0, 0,0,1,1,0], \
            [0,0,0,0,0, 1,1,1,1,1]
    xs, ys, zs = [np.array(v)*300 for v in (xs, ys, zs)]
    #
    test_proj_draw_axes(M, s=400)
    txs, tys, tzs = proj_transform(xs, ys, zs, M)
    ixs, iys, izs = inv_transform(txs, tys, tzs, M)

    pylab.scatter(txs, tys, c=tzs)
    pylab.plot(txs, tys, c='r')
    for x, y, t in zip(txs, tys, ts):
        pylab.text(x, y, t)

    pylab.xlim(-0.2, 0.2)
    pylab.ylim(-0.2, 0.2)

    pylab.show() 
Example #15
Source File: proj3d.py    From Computable with MIT License 6 votes vote down vote up
def test_lines_dists():
    import pylab
    ax = pylab.gca()

    xs, ys = (0,30), (20,150)
    pylab.plot(xs, ys)
    points = zip(xs, ys)
    p0, p1 = points

    xs, ys = (0,0,20,30), (100,150,30,200)
    pylab.scatter(xs, ys)

    dist = line2d_seg_dist(p0, p1, (xs[0], ys[0]))
    dist = line2d_seg_dist(p0, p1, np.array((xs, ys)))
    for x, y, d in zip(xs, ys, dist):
        c = Circle((x, y), d, fill=0)
        ax.add_patch(c)

    pylab.xlim(-200, 200)
    pylab.ylim(-200, 200)
    pylab.show() 
Example #16
Source File: plot_old_new_predictions.py    From SelfTarget with MIT License 6 votes vote down vote up
def plotInFrameCorr(data):
    
    shi_data = pd.read_csv(getHighDataDir() + '/shi_deepseq_frame_shifts.txt',sep='\t')

    label1, label2 = 'New In Frame Perc', 'Predicted In Frame Per'
    PL.figure(figsize=(4,4))

    xdata, ydata = data[label1], data[label2]
    PL.plot(xdata,ydata, '.',alpha=0.15)
    PL.plot(shi_data['Measured Frame Shift'], shi_data['Predicted Frame Shift'], '^', color='orange')
    for x,y,id in zip(shi_data['Measured Frame Shift'], shi_data['Predicted Frame Shift'],shi_data['ID']):
        if x-y > 10:
            PL.text(x,y,id.split('/')[1][:-21])
    PL.plot([0,100],[0,100],'k--')
    PL.title('R=%.3f' % (pearsonr(xdata, ydata)[0]))
    PL.xlabel('percent in frame mutations (measured)')
    PL.ylabel('percent in frame mutations (predicted)')
    PL.ylim((0,80))
    PL.xlim((0,80))
    PL.show(block=False)
    saveFig('in_frame_corr_%s_%s' % (label1.replace(' ','_'),label2.replace(' ','_'))) 
Example #17
Source File: View.py    From Deep-Spying with Apache License 2.0 6 votes vote down vote up
def plot_barchart(self, data, labels, colors, xlabel, ylabel, xticks, legendloc=1):
        self.big_figure()

        index = np.arange(len(data[0][0]))
        bar_width = 0.25

        pylab.grid("on", axis='y')
        pylab.ylim([0.5, 1.0])

        for i in range(0, len(data)):
            rects = pylab.bar(bar_width / 2 + index + (i * bar_width), data[i][0], bar_width,
                              alpha=0.5, color=colors[i],
                              yerr=data[i][1],
                              error_kw={'ecolor': '0.3'},
                              label=labels[i])

        pylab.legend(loc=legendloc, prop={'size': 12})

        pylab.xlabel(xlabel)
        pylab.ylabel(ylabel)
        pylab.xticks(bar_width / 2 + index + ((bar_width * (len(data[0]) + 1)) / len(data[0])), xticks) 
Example #18
Source File: main.py    From scTDA with GNU General Public License v3.0 6 votes vote down vote up
def plot_CDR_correlation(self, doplot=True):
        """
        Displays correlation between sampling time points and CDR. It returns the two
        parameters of the linear fit, Pearson's r, p-value and standard error. If optional argument 'doplot' is
        False, the plot is not displayed.
        """
        pel2, tol = self.get_gene(self.rootlane, ignore_log=True)
        pel = numpy.array([pel2[m] for m in self.pl])*tol
        dr2 = self.get_gene('_CDR')[0]
        dr = numpy.array([dr2[m] for m in self.pl])
        po = scipy.stats.linregress(pel, dr)
        if doplot:
            pylab.scatter(pel, dr, s=9.0, alpha=0.7, c='r')
            pylab.xlim(min(pel), max(pel))
            pylab.ylim(0, max(dr)*1.1)
            pylab.xlabel(self.rootlane)
            pylab.ylabel('CDR')
            xk = pylab.linspace(min(pel), max(pel), 50)
            pylab.plot(xk, po[1]+po[0]*xk, 'k--', linewidth=2.0)
            pylab.show()
        return po 
Example #19
Source File: dispersion.py    From luscan-devel with GNU General Public License v2.0 5 votes vote down vote up
def dispersion_plot(text, words, ignore_case=False):
    """
    Generate a lexical dispersion plot.

    :param text: The source text
    :type text: list(str) or enum(str)
    :param words: The target words
    :type words: list of str
    :param ignore_case: flag to set if case should be ignored when searching text
    :type ignore_case: bool
    """

    try:
        import pylab
    except ImportError:
        raise ValueError('The plot function requires the matplotlib package (aka pylab).'
                     'See http://matplotlib.sourceforge.net/')

    text = list(text)
    words.reverse()

    if ignore_case:
        words_to_comp = map(str.lower, words)
        text_to_comp = map(str.lower, text)
    else:
        words_to_comp = words
        text_to_comp = text

    points = [(x,y) for x in range(len(text_to_comp))
                    for y in range(len(words_to_comp))
                    if text_to_comp[x] == words_to_comp[y]]
    if points:
        x, y = zip(*points)
    else:
        x = y = ()
    pylab.plot(x, y, "b|", scalex=.1)
    pylab.yticks(range(len(words)), words, color="b")
    pylab.ylim(-1, len(words))
    pylab.title("Lexical Dispersion Plot")
    pylab.xlabel("Word Offset")
    pylab.show() 
Example #20
Source File: c10_20_6_figures.py    From Python-for-Finance-Second-Edition with MIT License 5 votes vote down vote up
def graph(text,text2=''): 
    pl.xticks(())
    pl.yticks(())
    pl.xlim(0,30)
    pl.ylim(0,20) 
    pl.plot([x,x],[0,3])
    pl.text(x,-2,"X");
    pl.text(0,x,"X")
    pl.text(x,x*1.7, text, ha='center', va='center',size=10, alpha=.5) 
    pl.text(-5,10,text2,size=25) 
Example #21
Source File: util.py    From Azimuth with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def qqplotp(pv,fileout = None, alphalevel = 0.05,legend=None,xlim=None,ylim=None,ycoord=10,plotsize="652x526",title=None,dohist=True, numbins=50, figsize=[5,5], markersize=2):
     '''
     Read in p-values from filein and make a qqplot adn histogram.
     If fileout is provided, saves the qqplot only at present.
     Searches through p until one is found.   '''       
     
     import pylab as pl     
     pl.ion()     
     
     fs=8     
     h1=qqplot(pv, fileout, alphalevel,legend,xlim,ylim,addlambda=True, figsize=figsize, markersize=markersize)
     #lambda_gc=estimate_lambda(pv)
     #pl.legend(["gc="+ '%1.3f' % lambda_gc],loc=2)     
     pl.title(title,fontsize=fs)
     
     wm=pl.get_current_fig_manager()
     #e.g. "652x526+100+10
     xcoord=100     
     #wm.window.wm_geometry(plotsize + "+" + str(xcoord) + "+" + str(ycoord))

     if dohist:
         h2=pvalhist(pv, numbins=numbins, figsize=figsize)
         pl.title(title,fontsize=fs)
         #wm=pl.get_current_fig_manager()
         width_height=plotsize.split("x")
         buffer=10
         xcoord=int(xcoord + float(width_height[0])+buffer)
         #wm.window.wm_geometry(plotsize + "+" + str(xcoord) + "+" + str(ycoord))
     else: h2=None

     return h1,h2 
Example #22
Source File: plot_permutations.py    From TFCE_mediation with GNU General Public License v3.0 5 votes vote down vote up
def run(opts):
	arg_permutations = str(opts.input[0])
	perm_tfce_max = np.genfromtxt(arg_permutations, delimiter=',')
	p_array=np.zeros(perm_tfce_max.shape)
	sorted_perm_tfce_max=sorted(perm_tfce_max, reverse=True)
	num_perm=perm_tfce_max.shape[0]
	perm_tfce_mean = perm_tfce_max.mean()
	perm_tfce_std = perm_tfce_max.std()
	perm_tfce_max_val = int(sorted_perm_tfce_max[0])
	perm_tfce_min_val = int(sorted_perm_tfce_max[(num_perm-1)])

	for j in range(num_perm):
		p_array[j] = 1 - np.true_divide(j,num_perm)

	sig=int(num_perm*0.05)
	firstquater=sorted_perm_tfce_max[int(num_perm*0.75)]
	median=sorted_perm_tfce_max[int(num_perm*0.50)]
	thirdquater=sorted_perm_tfce_max[int(num_perm*0.25)]
	sig_tfce=sorted_perm_tfce_max[sig]
	pl.hist(perm_tfce_max, 100, range=[0,perm_tfce_max_val], label='Max TFCE scores')
	ylim = pl.ylim()

	pl.plot([sig_tfce,sig_tfce], ylim, '--g', linewidth=3,label='P[FWE]=0.05')
	pl.text((sig_tfce*1.4),(ylim[1]*.5), r"$\mu=%0.2f,\ \sigma=%0.2f$" "\n" r"$Critical\ TFCE\ value=%0.0f$" "\n" r"$[%d,\ %d,\ %d,\ %d,\ %d]$" % (perm_tfce_mean,perm_tfce_std,sig_tfce,perm_tfce_min_val,firstquater, median, thirdquater, perm_tfce_max_val), size='medium')
	pl.ylim(ylim)
	pl.legend()
	pl.xlabel('Permutation scores')
	save("%s.hist" % arg_permutations, ext="png", close=False, verbose=True)
	pl.show() 
Example #23
Source File: util.py    From Azimuth with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def fix_axes(buffer=0.1):
    '''
    Makes x and y max the same, and the lower limits 0.
    '''    
    maxlim=max(pl.xlim()[1],pl.ylim()[1])    
    pl.xlim([0-buffer,maxlim+buffer])
    pl.ylim([0-buffer,maxlim+buffer]) 
Example #24
Source File: plot_old_new.py    From SelfTarget with MIT License 5 votes vote down vote up
def runAnalysis():
	
    data = pd.read_csv(getHighDataDir() + '/old_new_kl_summaries.txt', sep='\t').fillna(-1.0)
    kl_cols = [x for x in data.columns if 'KL' in x and 'Class KL' not in x and 'Old v Old' not in x]
    max_kl = 9
    PL.figure(figsize=(2.5,4))
    bps= []
    box_types = [('C2','Within Library'),('C0','Between Library')]
    for i,(clr,box_type) in enumerate(box_types):
        col_box_data = [data[col] for col in kl_cols if renameCol(col) == box_type]
        pos = [2*x + i + 1 for x in range(len(col_box_data))]
        print('KL', box_type, np.median(col_box_data, axis=1))
        bps.append(PL.boxplot(col_box_data, positions=pos,patch_artist=True,boxprops=dict(facecolor=clr),showfliers=False))
    PL.xticks([1.5,3.5,5.5],['Same\ngRNA','Other\ngRNA','Other\ngRNA\n(Rpt)'])
    PL.plot([2.5, 2.5],[0, max_kl],'-', color='silver')
    PL.plot([4.5, 4.5],[0, max_kl],'-', color='silver')
    PL.xlim((0.5,6.5))
    PL.ylim((0,max_kl))
    PL.ylabel('KL')
    PL.subplots_adjust(left=0.1,right=0.95,top=0.95, bottom=0.25)
    PL.legend([bp["boxes"][0] for bp in bps],[x[1] for x in box_types], loc='upper left')
    PL.show(block=False)
    saveFig('kl_compare_old_new_KL') 
Example #25
Source File: plot.py    From SelfTarget with MIT License 5 votes vote down vote up
def plotBoxPlotSummary(all_result_outputs, label='', data_label='', y_label='', plot_label='', cl_order=[]):
    data_values = [x[0][data_label][0].values for x in all_result_outputs]
    #sample_names = [getSimpleName(x[1]) + '\n(Median reads = %d)' % x[0][data_label][1] for x in all_result_outputs]
    sample_names = [getSimpleName(x[1]) for x in all_result_outputs]
    if len(cl_order)>0:
        cell_lines = [' '.join(x.split()[:-2]) for x in sample_names]
        print(cell_lines)
        reordered_data, reordered_sample_names = [],[]
        for cell_line in cl_order:
            for i, cline in enumerate(cell_lines):
                if cline == cell_line:
                      reordered_data.append(data_values[i])
                      reordered_sample_names.append(sample_names[i])
        sample_names = reordered_sample_names
        data_values = reordered_data

    PL.figure(figsize=(5,5))
    for i,dvs in enumerate(data_values):
        print(np.median(dvs))
        PL.boxplot([dvs], positions=[i], showfliers=True, sym='.', widths=0.8)
    PL.xticks(range(len(sample_names)), sample_names, rotation='vertical')
    PL.xlim((-0.5,len(sample_names)-0.5))
    PL.ylim((0,5))
    PL.ylabel(y_label)   
    PL.title(label)
    PL.subplots_adjust(bottom=0.3)
    PL.show(block=False)
    saveFig( '%s_%s' % (plot_label, sanitizeLabel(label))) 
Example #26
Source File: test_mi.py    From rapidtide with Apache License 2.0 5 votes vote down vote up
def test_calc_MI(display=False):
    inlen = 1000
    offset = 100
    filename1 = "testdata/lforegressor.txt"
    filename2 = "testdata/lforegressor.txt"
    sig1 = tide_io.readvec(filename1)
    sig2 = np.power(sig1, 2.0)
    sig3 = np.power(sig1, 3.0)
    
    kstart = 3
    kend = 100
    linmivals = []
    sqmivals = []
    cubemivals = []
    for clustersize in range(kstart, kend, 2):
        linmivals.append(calc_MI(sig1, sig1, clustersize) / np.log(clustersize))
        sqmivals.append(calc_MI(sig2, sig1, clustersize) / np.log(clustersize))
        cubemivals.append(calc_MI(sig3, sig1, clustersize) / np.log(clustersize))

    if display:
        plt.figure()
        #plt.ylim([-1.0, 3.0])
        plt.plot(np.array(range(kstart, kend, 2)), np.array(linmivals), 'r')
        plt.plot(np.array(range(kstart, kend, 2)), np.array(sqmivals), 'g')
        plt.plot(np.array(range(kstart, kend, 2)), np.array(cubemivals), 'b')
        #print('maximum occurs at offset', np.argmax(stdcorrelate_result) - midpoint + 1)
        plt.legend(['Mutual information', 'Squared mutual information', 'Cubed mutual information'])
        plt.show()

    aethresh = 10
    np.testing.assert_almost_equal(1.0, 1.0, 1e-5) 
Example #27
Source File: test_aliasedcorrelate.py    From rapidtide with Apache License 2.0 5 votes vote down vote up
def test_aliasedcorrelate(display=False):
    Fs_hi = 10.0
    Fs_lo = 1.0
    siginfo = [[1.0, 1.36129345], [0.33, 2.0]]
    modamp = 0.01
    inlenhi = 1000
    inlenlo = 100
    offset = 0.5
    width = 2.5
    rangepts = 101
    timerange = np.linspace(0.0, width, num=101) - width / 2.0
    hiaxis = np.linspace(0.0, 2.0 * np.pi * inlenhi / Fs_hi, num=inlenhi, endpoint=False)
    loaxis = np.linspace(0.0, 2.0 * np.pi * inlenlo / Fs_lo, num=inlenlo, endpoint=False)
    sighi = hiaxis * 0.0
    siglo = loaxis * 0.0
    for theinfo in siginfo:
        sighi += theinfo[0] * np.sin(theinfo[1] * hiaxis)
        siglo += theinfo[0] * np.sin(theinfo[1] * loaxis)
    aliasedcorrelate_result = aliasedcorrelate(sighi, Fs_hi, siglo, Fs_lo, timerange, padvalue=width)

    thecorrelator = aliasedcorrelator(sighi, Fs_hi, Fs_lo, timerange, padvalue=width)
    aliasedcorrelate_result2 = thecorrelator.apply(siglo, 0.0)
    
    if display:
        plt.figure()
        #plt.ylim([-1.0, 3.0])
        plt.plot(hiaxis, sighi, 'k')
        plt.scatter(loaxis, siglo, c='r')
        plt.legend(['sighi', 'siglo'])

        plt.figure()
        plt.plot(timerange, aliasedcorrelate_result, 'k')
        plt.plot(timerange, aliasedcorrelate_result2, 'r')
        print('maximum occurs at offset', timerange[np.argmax(aliasedcorrelate_result)])

        plt.show()

    #assert (fastcorrelate_result == stdcorrelate_result).all
    aethresh = 10
    #np.testing.assert_almost_equal(fastcorrelate_result, stdcorrelate_result, aethresh) 
Example #28
Source File: __init__.py    From EDeN with MIT License 5 votes vote down vote up
def draw_graph_row(graphs,
                   index=0,
                   contract=True,
                   n_graphs_per_line=5,
                   size=4,
                   xlim=None,
                   ylim=None,
                   **args):
    """draw_graph_row."""
    dim = len(graphs)
    size_y = size
    size_x = size * n_graphs_per_line * args.get('size_x_to_y_ratio', 1)
    plt.figure(figsize=(size_x, size_y))

    if xlim is not None:
        plt.xlim(xlim)
        plt.ylim(ylim)
    else:
        plt.xlim(xmax=3)

    for i in range(dim):
        plt.subplot(1, n_graphs_per_line, i + 1)
        graph = graphs[i]
        draw_graph(graph,
                   size=None,
                   pos=graph.graph.get('pos_dict', None),
                   **args)
    if args.get('file_name', None) is None:
        plt.show()
    else:
        row_file_name = '%d_' % (index) + args['file_name']
        plt.savefig(row_file_name,
                    bbox_inches='tight',
                    transparent=True,
                    pad_inches=0)
        plt.close() 
Example #29
Source File: megafacade.py    From facade-segmentation with MIT License 5 votes vote down vote up
def plot(self, bgimage=None):
        import pylab as pl

        self._plot_background(bgimage)
        ax = pl.gca()
        y0, y1 = pl.ylim()
        # r is the width of the thick line we use to show the facade colors
        r = 5
        patch = pl.Rectangle((self.facade_left + r, self.sky_line + r),
                             self.width - 2 * r,
                             self.door_line - self.sky_line - 2 * r,
                             color=self.color, fill=False, lw=2 * r)
        ax.add_patch(patch)

        pl.text((self.facade_right + self.facade_left) / 2.,
                (self.door_line + self.sky_line) / 2.,
                '$\sigma^2={:0.2f}$'.format(self.uncertainty_for_windows()))

        patch = pl.Rectangle((self.facade_left + r, self.door_line + r),
                             self.width - 2 * r,
                             y0 - self.door_line - 2 * r,
                             color=self.mezzanine_color, fill=False, lw=2 * r)
        ax.add_patch(patch)

        # Plot the left and right edges in yellow
        pl.vlines([self.facade_left, self.facade_right], self.sky_line, y0, colors='yellow')

        # Plot the door line and the roof line
        pl.hlines([self.door_line, self.sky_line], self.facade_left, self.facade_right, linestyles='dashed',
                  colors='yellow')

        self.window_grid.plot() 
Example #30
Source File: __init__.py    From EDeN with MIT License 5 votes vote down vote up
def plot_precision_recall_curve(y_true, y_score, size=None):
    """plot_precision_recall_curve."""
    precision, recall, thresholds = precision_recall_curve(y_true, y_score)
    if size is not None:
        plt.figure(figsize=(size, size))
        plt.axis('equal')
    plt.plot(recall, precision, lw=2, color='navy')
    plt.xlabel('Recall')
    plt.ylabel('Precision')
    plt.ylim([-0.05, 1.05])
    plt.xlim([-0.05, 1.05])
    plt.grid()
    plt.title('Precision-Recall AUC={0:0.2f}'.format(average_precision_score(
        y_true, y_score)))