Python tensorflow.python.ops.gen_array_ops._slice() Examples

The following are 5 code examples of tensorflow.python.ops.gen_array_ops._slice(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.python.ops.gen_array_ops , or try the search function .
Example #1
Source File: array_ops.py    From lambda-packs with MIT License 4 votes vote down vote up
def slice(input_, begin, size, name=None):
  # pylint: disable=redefined-builtin
  """Extracts a slice from a tensor.

  This operation extracts a slice of size `size` from a tensor `input` starting
  at the location specified by `begin`. The slice `size` is represented as a
  tensor shape, where `size[i]` is the number of elements of the 'i'th dimension
  of `input` that you want to slice. The starting location (`begin`) for the
  slice is represented as an offset in each dimension of `input`. In other
  words, `begin[i]` is the offset into the 'i'th dimension of `input` that you
  want to slice from.

  `begin` is zero-based; `size` is one-based. If `size[i]` is -1,
  all remaining elements in dimension i are included in the
  slice. In other words, this is equivalent to setting:

  `size[i] = input.dim_size(i) - begin[i]`

  This operation requires that:

  `0 <= begin[i] <= begin[i] + size[i] <= Di  for i in [0, n]`

  For example:

  ```python
  # 'input' is [[[1, 1, 1], [2, 2, 2]],
  #             [[3, 3, 3], [4, 4, 4]],
  #             [[5, 5, 5], [6, 6, 6]]]
  tf.slice(input, [1, 0, 0], [1, 1, 3]) ==> [[[3, 3, 3]]]
  tf.slice(input, [1, 0, 0], [1, 2, 3]) ==> [[[3, 3, 3],
                                              [4, 4, 4]]]
  tf.slice(input, [1, 0, 0], [2, 1, 3]) ==> [[[3, 3, 3]],
                                             [[5, 5, 5]]]
  ```

  Args:
    input_: A `Tensor`.
    begin: An `int32` or `int64` `Tensor`.
    size: An `int32` or `int64` `Tensor`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` the same type as `input`.
  """
  return gen_array_ops._slice(input_, begin, size, name=name)


# pylint: disable=invalid-name 
Example #2
Source File: array_ops.py    From auto-alt-text-lambda-api with MIT License 4 votes vote down vote up
def slice(input_, begin, size, name=None):
  # pylint: disable=redefined-builtin
  """Extracts a slice from a tensor.

  This operation extracts a slice of size `size` from a tensor `input` starting
  at the location specified by `begin`. The slice `size` is represented as a
  tensor shape, where `size[i]` is the number of elements of the 'i'th dimension
  of `input` that you want to slice. The starting location (`begin`) for the
  slice is represented as an offset in each dimension of `input`. In other
  words, `begin[i]` is the offset into the 'i'th dimension of `input` that you
  want to slice from.

  `begin` is zero-based; `size` is one-based. If `size[i]` is -1,
  all remaining elements in dimension i are included in the
  slice. In other words, this is equivalent to setting:

  `size[i] = input.dim_size(i) - begin[i]`

  This operation requires that:

  `0 <= begin[i] <= begin[i] + size[i] <= Di  for i in [0, n]`

  For example:

  ```python
  # 'input' is [[[1, 1, 1], [2, 2, 2]],
  #             [[3, 3, 3], [4, 4, 4]],
  #             [[5, 5, 5], [6, 6, 6]]]
  tf.slice(input, [1, 0, 0], [1, 1, 3]) ==> [[[3, 3, 3]]]
  tf.slice(input, [1, 0, 0], [1, 2, 3]) ==> [[[3, 3, 3],
                                              [4, 4, 4]]]
  tf.slice(input, [1, 0, 0], [2, 1, 3]) ==> [[[3, 3, 3]],
                                             [[5, 5, 5]]]
  ```

  Args:
    input_: A `Tensor`.
    begin: An `int32` or `int64` `Tensor`.
    size: An `int32` or `int64` `Tensor`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` the same type as `input`.
  """
  return gen_array_ops._slice(input_, begin, size, name=name)


# pylint: disable=invalid-name 
Example #3
Source File: array_ops.py    From deep_image_model with Apache License 2.0 4 votes vote down vote up
def slice(input_, begin, size, name=None):
  # pylint: disable=redefined-builtin
  """Extracts a slice from a tensor.

  This operation extracts a slice of size `size` from a tensor `input` starting
  at the location specified by `begin`. The slice `size` is represented as a
  tensor shape, where `size[i]` is the number of elements of the 'i'th dimension
  of `input` that you want to slice. The starting location (`begin`) for the
  slice is represented as an offset in each dimension of `input`. In other
  words, `begin[i]` is the offset into the 'i'th dimension of `input` that you
  want to slice from.

  `begin` is zero-based; `size` is one-based. If `size[i]` is -1,
  all remaining elements in dimension i are included in the
  slice. In other words, this is equivalent to setting:

  `size[i] = input.dim_size(i) - begin[i]`

  This operation requires that:

  `0 <= begin[i] <= begin[i] + size[i] <= Di  for i in [0, n]`

  For example:

  ```python
  # 'input' is [[[1, 1, 1], [2, 2, 2]],
  #             [[3, 3, 3], [4, 4, 4]],
  #             [[5, 5, 5], [6, 6, 6]]]
  tf.slice(input, [1, 0, 0], [1, 1, 3]) ==> [[[3, 3, 3]]]
  tf.slice(input, [1, 0, 0], [1, 2, 3]) ==> [[[3, 3, 3],
                                              [4, 4, 4]]]
  tf.slice(input, [1, 0, 0], [2, 1, 3]) ==> [[[3, 3, 3]],
                                             [[5, 5, 5]]]
  ```

  Args:
    input_: A `Tensor`.
    begin: An `int32` or `int64` `Tensor`.
    size: An `int32` or `int64` `Tensor`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` the same type as `input`.
  """
  return gen_array_ops._slice(input_, begin, size, name=name)


# pylint: disable=invalid-name 
Example #4
Source File: array_ops.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 4 votes vote down vote up
def slice(input_, begin, size, name=None):
  # pylint: disable=redefined-builtin
  """Extracts a slice from a tensor.

  This operation extracts a slice of size `size` from a tensor `input` starting
  at the location specified by `begin`. The slice `size` is represented as a
  tensor shape, where `size[i]` is the number of elements of the 'i'th dimension
  of `input` that you want to slice. The starting location (`begin`) for the
  slice is represented as an offset in each dimension of `input`. In other
  words, `begin[i]` is the offset into the 'i'th dimension of `input` that you
  want to slice from.

  Note that @{tf.Tensor.__getitem__} is typically a more pythonic way to
  perform slices, as it allows you to write `foo[3:7, :-2]` instead of
  `tf.slice([3, 0], [4, foo.get_shape()[1]-2])`.

  `begin` is zero-based; `size` is one-based. If `size[i]` is -1,
  all remaining elements in dimension i are included in the
  slice. In other words, this is equivalent to setting:

  `size[i] = input.dim_size(i) - begin[i]`

  This operation requires that:

  `0 <= begin[i] <= begin[i] + size[i] <= Di  for i in [0, n]`

  For example:

  ```python
  t = tf.constant([[[1, 1, 1], [2, 2, 2]],
                   [[3, 3, 3], [4, 4, 4]],
                   [[5, 5, 5], [6, 6, 6]]])
  tf.slice(t, [1, 0, 0], [1, 1, 3])  # [[[3, 3, 3]]]
  tf.slice(t, [1, 0, 0], [1, 2, 3])  # [[[3, 3, 3],
                                     #   [4, 4, 4]]]
  tf.slice(t, [1, 0, 0], [2, 1, 3])  # [[[3, 3, 3]],
                                     #  [[5, 5, 5]]]
  ```

  Args:
    input_: A `Tensor`.
    begin: An `int32` or `int64` `Tensor`.
    size: An `int32` or `int64` `Tensor`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` the same type as `input`.
  """
  return gen_array_ops._slice(input_, begin, size, name=name)


# pylint: disable=invalid-name 
Example #5
Source File: array_ops.py    From keras-lambda with MIT License 4 votes vote down vote up
def slice(input_, begin, size, name=None):
  # pylint: disable=redefined-builtin
  """Extracts a slice from a tensor.

  This operation extracts a slice of size `size` from a tensor `input` starting
  at the location specified by `begin`. The slice `size` is represented as a
  tensor shape, where `size[i]` is the number of elements of the 'i'th dimension
  of `input` that you want to slice. The starting location (`begin`) for the
  slice is represented as an offset in each dimension of `input`. In other
  words, `begin[i]` is the offset into the 'i'th dimension of `input` that you
  want to slice from.

  `begin` is zero-based; `size` is one-based. If `size[i]` is -1,
  all remaining elements in dimension i are included in the
  slice. In other words, this is equivalent to setting:

  `size[i] = input.dim_size(i) - begin[i]`

  This operation requires that:

  `0 <= begin[i] <= begin[i] + size[i] <= Di  for i in [0, n]`

  For example:

  ```python
  # 'input' is [[[1, 1, 1], [2, 2, 2]],
  #             [[3, 3, 3], [4, 4, 4]],
  #             [[5, 5, 5], [6, 6, 6]]]
  tf.slice(input, [1, 0, 0], [1, 1, 3]) ==> [[[3, 3, 3]]]
  tf.slice(input, [1, 0, 0], [1, 2, 3]) ==> [[[3, 3, 3],
                                              [4, 4, 4]]]
  tf.slice(input, [1, 0, 0], [2, 1, 3]) ==> [[[3, 3, 3]],
                                             [[5, 5, 5]]]
  ```

  Args:
    input_: A `Tensor`.
    begin: An `int32` or `int64` `Tensor`.
    size: An `int32` or `int64` `Tensor`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` the same type as `input`.
  """
  return gen_array_ops._slice(input_, begin, size, name=name)


# pylint: disable=invalid-name