Python keras.layers.SpatialDropout3D() Examples
The following are 10
code examples of keras.layers.SpatialDropout3D().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
keras.layers
, or try the search function
.

Example #1
Source Project: nni Author: microsoft File: layers.py License: MIT License | 6 votes |
def keras_dropout(layer, rate): """ Keras dropout layer. """ from keras import layers input_dim = len(layer.input.shape) if input_dim == 2: return layers.SpatialDropout1D(rate) elif input_dim == 3: return layers.SpatialDropout2D(rate) elif input_dim == 4: return layers.SpatialDropout3D(rate) else: return layers.Dropout(rate)
Example #2
Source Project: DeepLearning_Wavelet-LSTM Author: hello-sea File: core_test.py License: MIT License | 5 votes |
def test_dropout(): layer_test(layers.Dropout, kwargs={'rate': 0.5}, input_shape=(3, 2)) layer_test(layers.Dropout, kwargs={'rate': 0.5, 'noise_shape': [3, 1]}, input_shape=(3, 2)) layer_test(layers.Dropout, kwargs={'rate': 0.5, 'noise_shape': [None, 1]}, input_shape=(3, 2)) layer_test(layers.SpatialDropout1D, kwargs={'rate': 0.5}, input_shape=(2, 3, 4)) for data_format in ['channels_last', 'channels_first']: for shape in [(4, 5), (4, 5, 6)]: if data_format == 'channels_last': input_shape = (2,) + shape + (3,) else: input_shape = (2, 3) + shape layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D, kwargs={'rate': 0.5, 'data_format': data_format}, input_shape=input_shape) # Test invalid use cases with pytest.raises(ValueError): layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D, kwargs={'rate': 0.5, 'data_format': 'channels_middle'}, input_shape=input_shape)
Example #3
Source Project: DeepLearning_Wavelet-LSTM Author: hello-sea File: core_test.py License: MIT License | 5 votes |
def test_dropout(): layer_test(layers.Dropout, kwargs={'rate': 0.5}, input_shape=(3, 2)) layer_test(layers.Dropout, kwargs={'rate': 0.5, 'noise_shape': [3, 1]}, input_shape=(3, 2)) layer_test(layers.Dropout, kwargs={'rate': 0.5, 'noise_shape': [None, 1]}, input_shape=(3, 2)) layer_test(layers.SpatialDropout1D, kwargs={'rate': 0.5}, input_shape=(2, 3, 4)) for data_format in ['channels_last', 'channels_first']: for shape in [(4, 5), (4, 5, 6)]: if data_format == 'channels_last': input_shape = (2,) + shape + (3,) else: input_shape = (2, 3) + shape layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D, kwargs={'rate': 0.5, 'data_format': data_format}, input_shape=input_shape) # Test invalid use cases with pytest.raises(ValueError): layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D, kwargs={'rate': 0.5, 'data_format': 'channels_middle'}, input_shape=input_shape)
Example #4
Source Project: DeepLearning_Wavelet-LSTM Author: hello-sea File: core_test.py License: MIT License | 5 votes |
def test_dropout(): layer_test(layers.Dropout, kwargs={'rate': 0.5}, input_shape=(3, 2)) layer_test(layers.Dropout, kwargs={'rate': 0.5, 'noise_shape': [3, 1]}, input_shape=(3, 2)) layer_test(layers.Dropout, kwargs={'rate': 0.5, 'noise_shape': [None, 1]}, input_shape=(3, 2)) layer_test(layers.SpatialDropout1D, kwargs={'rate': 0.5}, input_shape=(2, 3, 4)) for data_format in ['channels_last', 'channels_first']: for shape in [(4, 5), (4, 5, 6)]: if data_format == 'channels_last': input_shape = (2,) + shape + (3,) else: input_shape = (2, 3) + shape layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D, kwargs={'rate': 0.5, 'data_format': data_format}, input_shape=input_shape) # Test invalid use cases with pytest.raises(ValueError): layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D, kwargs={'rate': 0.5, 'data_format': 'channels_middle'}, input_shape=input_shape)
Example #5
Source Project: DeepLearning_Wavelet-LSTM Author: hello-sea File: core_test.py License: MIT License | 5 votes |
def test_dropout(): layer_test(layers.Dropout, kwargs={'rate': 0.5}, input_shape=(3, 2)) layer_test(layers.Dropout, kwargs={'rate': 0.5, 'noise_shape': [3, 1]}, input_shape=(3, 2)) layer_test(layers.Dropout, kwargs={'rate': 0.5, 'noise_shape': [None, 1]}, input_shape=(3, 2)) layer_test(layers.SpatialDropout1D, kwargs={'rate': 0.5}, input_shape=(2, 3, 4)) for data_format in ['channels_last', 'channels_first']: for shape in [(4, 5), (4, 5, 6)]: if data_format == 'channels_last': input_shape = (2,) + shape + (3,) else: input_shape = (2, 3) + shape layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D, kwargs={'rate': 0.5, 'data_format': data_format}, input_shape=input_shape) # Test invalid use cases with pytest.raises(ValueError): layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D, kwargs={'rate': 0.5, 'data_format': 'channels_middle'}, input_shape=input_shape)
Example #6
Source Project: DeepLearning_Wavelet-LSTM Author: hello-sea File: core_test.py License: MIT License | 5 votes |
def test_dropout(): layer_test(layers.Dropout, kwargs={'rate': 0.5}, input_shape=(3, 2)) layer_test(layers.Dropout, kwargs={'rate': 0.5, 'noise_shape': [3, 1]}, input_shape=(3, 2)) layer_test(layers.Dropout, kwargs={'rate': 0.5, 'noise_shape': [None, 1]}, input_shape=(3, 2)) layer_test(layers.SpatialDropout1D, kwargs={'rate': 0.5}, input_shape=(2, 3, 4)) for data_format in ['channels_last', 'channels_first']: for shape in [(4, 5), (4, 5, 6)]: if data_format == 'channels_last': input_shape = (2,) + shape + (3,) else: input_shape = (2, 3) + shape layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D, kwargs={'rate': 0.5, 'data_format': data_format}, input_shape=input_shape) # Test invalid use cases with pytest.raises(ValueError): layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D, kwargs={'rate': 0.5, 'data_format': 'channels_middle'}, input_shape=input_shape)
Example #7
Source Project: DeepLearning_Wavelet-LSTM Author: hello-sea File: core_test.py License: MIT License | 5 votes |
def test_dropout(): layer_test(layers.Dropout, kwargs={'rate': 0.5}, input_shape=(3, 2)) layer_test(layers.Dropout, kwargs={'rate': 0.5, 'noise_shape': [3, 1]}, input_shape=(3, 2)) layer_test(layers.Dropout, kwargs={'rate': 0.5, 'noise_shape': [None, 1]}, input_shape=(3, 2)) layer_test(layers.SpatialDropout1D, kwargs={'rate': 0.5}, input_shape=(2, 3, 4)) for data_format in ['channels_last', 'channels_first']: for shape in [(4, 5), (4, 5, 6)]: if data_format == 'channels_last': input_shape = (2,) + shape + (3,) else: input_shape = (2, 3) + shape layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D, kwargs={'rate': 0.5, 'data_format': data_format}, input_shape=input_shape) # Test invalid use cases with pytest.raises(ValueError): layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D, kwargs={'rate': 0.5, 'data_format': 'channels_middle'}, input_shape=input_shape)
Example #8
Source Project: DeepLearning_Wavelet-LSTM Author: hello-sea File: core_test.py License: MIT License | 5 votes |
def test_dropout(): layer_test(layers.Dropout, kwargs={'rate': 0.5}, input_shape=(3, 2)) layer_test(layers.Dropout, kwargs={'rate': 0.5, 'noise_shape': [3, 1]}, input_shape=(3, 2)) layer_test(layers.Dropout, kwargs={'rate': 0.5, 'noise_shape': [None, 1]}, input_shape=(3, 2)) layer_test(layers.SpatialDropout1D, kwargs={'rate': 0.5}, input_shape=(2, 3, 4)) for data_format in ['channels_last', 'channels_first']: for shape in [(4, 5), (4, 5, 6)]: if data_format == 'channels_last': input_shape = (2,) + shape + (3,) else: input_shape = (2, 3) + shape layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D, kwargs={'rate': 0.5, 'data_format': data_format}, input_shape=input_shape) # Test invalid use cases with pytest.raises(ValueError): layer_test(layers.SpatialDropout2D if len(shape) == 2 else layers.SpatialDropout3D, kwargs={'rate': 0.5, 'data_format': 'channels_middle'}, input_shape=input_shape)
Example #9
Source Project: 3DUnetCNN Author: ellisdg File: isensee2017.py License: MIT License | 5 votes |
def create_context_module(input_layer, n_level_filters, dropout_rate=0.3, data_format="channels_first"): convolution1 = create_convolution_block(input_layer=input_layer, n_filters=n_level_filters) dropout = SpatialDropout3D(rate=dropout_rate, data_format=data_format)(convolution1) convolution2 = create_convolution_block(input_layer=dropout, n_filters=n_level_filters) return convolution2
Example #10
Source Project: Keras-Brats-Improved-Unet3d Author: MLearing File: isensee2017.py License: MIT License | 5 votes |
def create_context_module(input_layer, n_level_filters, dropout_rate=0.3, data_format="channels_first"): convolution1 = create_convolution_block(input_layer=input_layer, n_filters=n_level_filters) dropout = SpatialDropout3D(rate=dropout_rate, data_format=data_format)(convolution1) convolution2 = create_convolution_block(input_layer=dropout, n_filters=n_level_filters) return convolution2