Python tensorflow.python.ops.linalg_ops.cholesky_solve() Examples

The following are 17 code examples of tensorflow.python.ops.linalg_ops.cholesky_solve(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.python.ops.linalg_ops , or try the search function .
Example #1
Source File: linear_operator_matrix.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def _solve(self, rhs, adjoint=False):
    if self._is_spd:
      return linalg_ops.cholesky_solve(self._chol, rhs)
    return linalg_ops.matrix_solve(self._matrix, rhs, adjoint=adjoint) 
Example #2
Source File: linear_operator_matrix.py    From keras-lambda with MIT License 5 votes vote down vote up
def _solve(self, rhs, adjoint=False):
    if self._is_spd:
      return linalg_ops.cholesky_solve(self._chol, rhs)
    return linalg_ops.matrix_solve(self._matrix, rhs, adjoint=adjoint) 
Example #3
Source File: operator_pd_vdvt_update.py    From keras-lambda with MIT License 5 votes vote down vote up
def _batch_sqrt_solve(self, rhs):
    # Recall the square root of this operator is M + VDV^T.
    # The Woodbury formula gives:
    # (M + VDV^T)^{-1}
    # = M^{-1} - M^{-1} V (D^{-1} + V^T M^{-1} V)^{-1} V^T M^{-1}
    # = M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    # where C is the capacitance matrix.
    m = self._operator
    v = self._v
    cchol = self._chol_capacitance(batch_mode=True)

    # The operators will use batch/singleton mode automatically.  We don't
    # override.
    # M^{-1} rhs
    minv_rhs = m.solve(rhs)
    # V^T M^{-1} rhs
    vt_minv_rhs = math_ops.matmul(v, minv_rhs, adjoint_a=True)
    # C^{-1} V^T M^{-1} rhs
    cinv_vt_minv_rhs = linalg_ops.cholesky_solve(cchol, vt_minv_rhs)
    # V C^{-1} V^T M^{-1} rhs
    v_cinv_vt_minv_rhs = math_ops.matmul(v, cinv_vt_minv_rhs)
    # M^{-1} V C^{-1} V^T M^{-1} rhs
    minv_v_cinv_vt_minv_rhs = m.solve(v_cinv_vt_minv_rhs)

    # M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    return minv_rhs - minv_v_cinv_vt_minv_rhs 
Example #4
Source File: operator_pd_vdvt_update.py    From keras-lambda with MIT License 5 votes vote down vote up
def _sqrt_solve(self, rhs):
    # Recall the square root of this operator is M + VDV^T.
    # The Woodbury formula gives:
    # (M + VDV^T)^{-1}
    # = M^{-1} - M^{-1} V (D^{-1} + V^T M^{-1} V)^{-1} V^T M^{-1}
    # = M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    # where C is the capacitance matrix.
    # TODO(jvdillon) Determine if recursively applying rank-1 updates is more
    # efficient.  May not be possible because a general n x n matrix can be
    # represeneted as n rank-1 updates, and solving with this matrix is always
    # done in O(n^3) time.
    m = self._operator
    v = self._v
    cchol = self._chol_capacitance(batch_mode=False)

    # The operators will use batch/singleton mode automatically.  We don't
    # override.
    # M^{-1} rhs
    minv_rhs = m.solve(rhs)
    # V^T M^{-1} rhs
    vt_minv_rhs = math_ops.matmul(v, minv_rhs, transpose_a=True)
    # C^{-1} V^T M^{-1} rhs
    cinv_vt_minv_rhs = linalg_ops.cholesky_solve(cchol, vt_minv_rhs)
    # V C^{-1} V^T M^{-1} rhs
    v_cinv_vt_minv_rhs = math_ops.matmul(v, cinv_vt_minv_rhs)
    # M^{-1} V C^{-1} V^T M^{-1} rhs
    minv_v_cinv_vt_minv_rhs = m.solve(v_cinv_vt_minv_rhs)

    # M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    return minv_rhs - minv_v_cinv_vt_minv_rhs 
Example #5
Source File: operator_pd_cholesky.py    From keras-lambda with MIT License 5 votes vote down vote up
def _batch_solve(self, rhs):
    return linalg_ops.cholesky_solve(self._chol, rhs) 
Example #6
Source File: utils.py    From noisy-K-FAC with Apache License 2.0 5 votes vote down vote up
def posdef_inv_cholesky(tensor, identity, damping):
    """Computes inverse(tensor + damping * identity) with Cholesky."""
    chol = linalg_ops.cholesky(tensor + damping * identity)
    return linalg_ops.cholesky_solve(chol, identity) 
Example #7
Source File: operator_pd_vdvt_update.py    From deep_image_model with Apache License 2.0 5 votes vote down vote up
def _batch_sqrt_solve(self, rhs):
    # Recall the square root of this operator is M + VDV^T.
    # The Woodbury formula gives:
    # (M + VDV^T)^{-1}
    # = M^{-1} - M^{-1} V (D^{-1} + V^T M^{-1} V)^{-1} V^T M^{-1}
    # = M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    # where C is the capacitance matrix.
    m = self._operator
    v = self._v
    cchol = self._chol_capacitance(batch_mode=True)

    # The operators will use batch/singleton mode automatically.  We don't
    # override.
    # M^{-1} rhs
    minv_rhs = m.solve(rhs)
    # V^T M^{-1} rhs
    vt_minv_rhs = math_ops.batch_matmul(v, minv_rhs, adj_x=True)
    # C^{-1} V^T M^{-1} rhs
    cinv_vt_minv_rhs = linalg_ops.cholesky_solve(cchol, vt_minv_rhs)
    # V C^{-1} V^T M^{-1} rhs
    v_cinv_vt_minv_rhs = math_ops.batch_matmul(v, cinv_vt_minv_rhs)
    # M^{-1} V C^{-1} V^T M^{-1} rhs
    minv_v_cinv_vt_minv_rhs = m.solve(v_cinv_vt_minv_rhs)

    # M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    return minv_rhs - minv_v_cinv_vt_minv_rhs 
Example #8
Source File: operator_pd_vdvt_update.py    From deep_image_model with Apache License 2.0 5 votes vote down vote up
def _sqrt_solve(self, rhs):
    # Recall the square root of this operator is M + VDV^T.
    # The Woodbury formula gives:
    # (M + VDV^T)^{-1}
    # = M^{-1} - M^{-1} V (D^{-1} + V^T M^{-1} V)^{-1} V^T M^{-1}
    # = M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    # where C is the capacitance matrix.
    # TODO(jvdillon) Determine if recursively applying rank-1 updates is more
    # efficient.  May not be possible because a general n x n matrix can be
    # represeneted as n rank-1 updates, and solving with this matrix is always
    # done in O(n^3) time.
    m = self._operator
    v = self._v
    cchol = self._chol_capacitance(batch_mode=False)

    # The operators will use batch/singleton mode automatically.  We don't
    # override.
    # M^{-1} rhs
    minv_rhs = m.solve(rhs)
    # V^T M^{-1} rhs
    vt_minv_rhs = math_ops.matmul(v, minv_rhs, transpose_a=True)
    # C^{-1} V^T M^{-1} rhs
    cinv_vt_minv_rhs = linalg_ops.cholesky_solve(cchol, vt_minv_rhs)
    # V C^{-1} V^T M^{-1} rhs
    v_cinv_vt_minv_rhs = math_ops.matmul(v, cinv_vt_minv_rhs)
    # M^{-1} V C^{-1} V^T M^{-1} rhs
    minv_v_cinv_vt_minv_rhs = m.solve(v_cinv_vt_minv_rhs)

    # M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    return minv_rhs - minv_v_cinv_vt_minv_rhs 
Example #9
Source File: operator_pd_cholesky.py    From deep_image_model with Apache License 2.0 5 votes vote down vote up
def _batch_solve(self, rhs):
    return linalg_ops.cholesky_solve(self._chol, rhs) 
Example #10
Source File: operator_pd_cholesky.py    From lambda-packs with MIT License 5 votes vote down vote up
def _batch_solve(self, rhs):
    return linalg_ops.cholesky_solve(self._chol, rhs) 
Example #11
Source File: operator_pd_vdvt_update.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def _batch_sqrt_solve(self, rhs):
    # Recall the square root of this operator is M + VDV^T.
    # The Woodbury formula gives:
    # (M + VDV^T)^{-1}
    # = M^{-1} - M^{-1} V (D^{-1} + V^T M^{-1} V)^{-1} V^T M^{-1}
    # = M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    # where C is the capacitance matrix.
    m = self._operator
    v = self._v
    cchol = self._chol_capacitance(batch_mode=True)

    # The operators will use batch/singleton mode automatically.  We don't
    # override.
    # M^{-1} rhs
    minv_rhs = m.solve(rhs)
    # V^T M^{-1} rhs
    vt_minv_rhs = math_ops.matmul(v, minv_rhs, adjoint_a=True)
    # C^{-1} V^T M^{-1} rhs
    cinv_vt_minv_rhs = linalg_ops.cholesky_solve(cchol, vt_minv_rhs)
    # V C^{-1} V^T M^{-1} rhs
    v_cinv_vt_minv_rhs = math_ops.matmul(v, cinv_vt_minv_rhs)
    # M^{-1} V C^{-1} V^T M^{-1} rhs
    minv_v_cinv_vt_minv_rhs = m.solve(v_cinv_vt_minv_rhs)

    # M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    return minv_rhs - minv_v_cinv_vt_minv_rhs 
Example #12
Source File: operator_pd_vdvt_update.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def _sqrt_solve(self, rhs):
    # Recall the square root of this operator is M + VDV^T.
    # The Woodbury formula gives:
    # (M + VDV^T)^{-1}
    # = M^{-1} - M^{-1} V (D^{-1} + V^T M^{-1} V)^{-1} V^T M^{-1}
    # = M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    # where C is the capacitance matrix.
    # TODO(jvdillon) Determine if recursively applying rank-1 updates is more
    # efficient.  May not be possible because a general n x n matrix can be
    # represeneted as n rank-1 updates, and solving with this matrix is always
    # done in O(n^3) time.
    m = self._operator
    v = self._v
    cchol = self._chol_capacitance(batch_mode=False)

    # The operators will use batch/singleton mode automatically.  We don't
    # override.
    # M^{-1} rhs
    minv_rhs = m.solve(rhs)
    # V^T M^{-1} rhs
    vt_minv_rhs = math_ops.matmul(v, minv_rhs, transpose_a=True)
    # C^{-1} V^T M^{-1} rhs
    cinv_vt_minv_rhs = linalg_ops.cholesky_solve(cchol, vt_minv_rhs)
    # V C^{-1} V^T M^{-1} rhs
    v_cinv_vt_minv_rhs = math_ops.matmul(v, cinv_vt_minv_rhs)
    # M^{-1} V C^{-1} V^T M^{-1} rhs
    minv_v_cinv_vt_minv_rhs = m.solve(v_cinv_vt_minv_rhs)

    # M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    return minv_rhs - minv_v_cinv_vt_minv_rhs 
Example #13
Source File: operator_pd_cholesky.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def _batch_solve(self, rhs):
    return linalg_ops.cholesky_solve(self._chol, rhs) 
Example #14
Source File: linear_operator_udvh_update.py    From lambda-packs with MIT License 5 votes vote down vote up
def _solve(self, rhs, adjoint=False, adjoint_arg=False):
    if self.base_operator.is_non_singular is False:
      raise ValueError(
          "Solve not implemented unless this is a perturbation of a "
          "non-singular LinearOperator.")
    # The Woodbury formula gives:
    # https://en.wikipedia.org/wiki/Woodbury_matrix_identity
    #   (L + UDV^H)^{-1}
    #   = L^{-1} - L^{-1} U (D^{-1} + V^H L^{-1} U)^{-1} V^H L^{-1}
    #   = L^{-1} - L^{-1} U C^{-1} V^H L^{-1}
    # where C is the capacitance matrix, C := D^{-1} + V^H L^{-1} U
    # Note also that, with ^{-H} being the inverse of the adjoint,
    #   (L + UDV^H)^{-H}
    #   = L^{-H} - L^{-H} V C^{-H} U^H L^{-H}
    l = self.base_operator
    if adjoint:
      v = self.u
      u = self.v
    else:
      v = self.v
      u = self.u

    # L^{-1} rhs
    linv_rhs = l.solve(rhs, adjoint=adjoint, adjoint_arg=adjoint_arg)
    # V^H L^{-1} rhs
    vh_linv_rhs = math_ops.matmul(v, linv_rhs, adjoint_a=True)
    # C^{-1} V^H L^{-1} rhs
    if self._use_cholesky:
      capinv_vh_linv_rhs = linalg_ops.cholesky_solve(
          self._chol_capacitance, vh_linv_rhs)
    else:
      capinv_vh_linv_rhs = linalg_ops.matrix_solve(
          self._capacitance, vh_linv_rhs, adjoint=adjoint)
    # U C^{-1} V^H M^{-1} rhs
    u_capinv_vh_linv_rhs = math_ops.matmul(u, capinv_vh_linv_rhs)
    # L^{-1} U C^{-1} V^H L^{-1} rhs
    linv_u_capinv_vh_linv_rhs = l.solve(u_capinv_vh_linv_rhs, adjoint=adjoint)

    # L^{-1} - L^{-1} U C^{-1} V^H L^{-1}
    return linv_rhs - linv_u_capinv_vh_linv_rhs 
Example #15
Source File: linear_operator.py    From lambda-packs with MIT License 5 votes vote down vote up
def _solve(self, rhs, adjoint=False, adjoint_arg=False):
    """Default implementation of _solve."""
    if self.is_square is False:
      raise NotImplementedError(
          "Solve is not yet implemented for non-square operators.")
    logging.warn(
        "Using (possibly slow) default implementation of solve."
        "  Requires conversion to a dense matrix and O(N^3) operations.")
    rhs = linear_operator_util.matrix_adjoint(rhs) if adjoint_arg else rhs
    if self._can_use_cholesky():
      return linalg_ops.cholesky_solve(self._get_cached_chol(), rhs)
    return linalg_ops.matrix_solve(
        self._get_cached_dense_matrix(), rhs, adjoint=adjoint) 
Example #16
Source File: operator_pd_vdvt_update.py    From lambda-packs with MIT License 5 votes vote down vote up
def _batch_sqrt_solve(self, rhs):
    # Recall the square root of this operator is M + VDV^T.
    # The Woodbury formula gives:
    # (M + VDV^T)^{-1}
    # = M^{-1} - M^{-1} V (D^{-1} + V^T M^{-1} V)^{-1} V^T M^{-1}
    # = M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    # where C is the capacitance matrix.
    m = self._operator
    v = self._v
    cchol = self._chol_capacitance(batch_mode=True)

    # The operators will use batch/singleton mode automatically.  We don't
    # override.
    # M^{-1} rhs
    minv_rhs = m.solve(rhs)
    # V^T M^{-1} rhs
    vt_minv_rhs = math_ops.matmul(v, minv_rhs, adjoint_a=True)
    # C^{-1} V^T M^{-1} rhs
    cinv_vt_minv_rhs = linalg_ops.cholesky_solve(cchol, vt_minv_rhs)
    # V C^{-1} V^T M^{-1} rhs
    v_cinv_vt_minv_rhs = math_ops.matmul(v, cinv_vt_minv_rhs)
    # M^{-1} V C^{-1} V^T M^{-1} rhs
    minv_v_cinv_vt_minv_rhs = m.solve(v_cinv_vt_minv_rhs)

    # M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    return minv_rhs - minv_v_cinv_vt_minv_rhs 
Example #17
Source File: operator_pd_vdvt_update.py    From lambda-packs with MIT License 5 votes vote down vote up
def _sqrt_solve(self, rhs):
    # Recall the square root of this operator is M + VDV^T.
    # The Woodbury formula gives:
    # (M + VDV^T)^{-1}
    # = M^{-1} - M^{-1} V (D^{-1} + V^T M^{-1} V)^{-1} V^T M^{-1}
    # = M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    # where C is the capacitance matrix.
    # TODO(jvdillon) Determine if recursively applying rank-1 updates is more
    # efficient.  May not be possible because a general n x n matrix can be
    # represeneted as n rank-1 updates, and solving with this matrix is always
    # done in O(n^3) time.
    m = self._operator
    v = self._v
    cchol = self._chol_capacitance(batch_mode=False)

    # The operators will use batch/singleton mode automatically.  We don't
    # override.
    # M^{-1} rhs
    minv_rhs = m.solve(rhs)
    # V^T M^{-1} rhs
    vt_minv_rhs = math_ops.matmul(v, minv_rhs, transpose_a=True)
    # C^{-1} V^T M^{-1} rhs
    cinv_vt_minv_rhs = linalg_ops.cholesky_solve(cchol, vt_minv_rhs)
    # V C^{-1} V^T M^{-1} rhs
    v_cinv_vt_minv_rhs = math_ops.matmul(v, cinv_vt_minv_rhs)
    # M^{-1} V C^{-1} V^T M^{-1} rhs
    minv_v_cinv_vt_minv_rhs = m.solve(v_cinv_vt_minv_rhs)

    # M^{-1} - M^{-1} V C^{-1} V^T M^{-1}
    return minv_rhs - minv_v_cinv_vt_minv_rhs