Python numpy.ma() Examples
The following are 30 code examples for showing how to use numpy.ma(). These examples are extracted from open source projects. You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example.
You may check out the related API usage on the sidebar.
You may also want to check out all available functions/classes of the module
numpy
, or try the search function
.
Example 1
Project: recruit Author: Frank-qlu File: bench.py License: Apache License 2.0 | 6 votes |
def timer(s, v='', nloop=500, nrep=3): units = ["s", "ms", "µs", "ns"] scaling = [1, 1e3, 1e6, 1e9] print("%s : %-50s : " % (v, s), end=' ') varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz'] setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames) Timer = timeit.Timer(stmt=s, setup=setup) best = min(Timer.repeat(nrep, nloop)) / nloop if best > 0.0: order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3) else: order = 3 print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep, 3, best * scaling[order], units[order]))
Example 2
Project: lambda-packs Author: ryfeus File: bench.py License: MIT License | 6 votes |
def timer(s, v='', nloop=500, nrep=3): units = ["s", "ms", "µs", "ns"] scaling = [1, 1e3, 1e6, 1e9] print("%s : %-50s : " % (v, s), end=' ') varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz'] setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames) Timer = timeit.Timer(stmt=s, setup=setup) best = min(Timer.repeat(nrep, nloop)) / nloop if best > 0.0: order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3) else: order = 3 print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep, 3, best * scaling[order], units[order]))
Example 3
Project: lambda-packs Author: ryfeus File: test_old_ma.py License: MIT License | 6 votes |
def test_testPut(self): # Test of put with suppress_warnings() as sup: sup.filter( np.ma.core.MaskedArrayFutureWarning, "setting an item on a masked array which has a " "shared mask will not copy") d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) x = array(d, mask=m) self.assertTrue(x[3] is masked) self.assertTrue(x[4] is masked) x[[1, 4]] = [10, 40] self.assertTrue(x.mask is not m) self.assertTrue(x[3] is masked) self.assertTrue(x[4] is not masked) self.assertTrue(eq(x, [0, 10, 2, -1, 40])) x = array(d, mask=m) x.put([0, 1, 2], [-1, 100, 200]) self.assertTrue(eq(x, [-1, 100, 200, 0, 0])) self.assertTrue(x[3] is masked) self.assertTrue(x[4] is masked)
Example 4
Project: lambda-packs Author: ryfeus File: bench.py License: MIT License | 6 votes |
def timer(s, v='', nloop=500, nrep=3): units = ["s", "ms", "µs", "ns"] scaling = [1, 1e3, 1e6, 1e9] print("%s : %-50s : " % (v, s), end=' ') varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz'] setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames) Timer = timeit.Timer(stmt=s, setup=setup) best = min(Timer.repeat(nrep, nloop)) / nloop if best > 0.0: order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3) else: order = 3 print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep, 3, best * scaling[order], units[order]))
Example 5
Project: auto-alt-text-lambda-api Author: abhisuri97 File: bench.py License: MIT License | 6 votes |
def timer(s, v='', nloop=500, nrep=3): units = ["s", "ms", "µs", "ns"] scaling = [1, 1e3, 1e6, 1e9] print("%s : %-50s : " % (v, s), end=' ') varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz'] setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames) Timer = timeit.Timer(stmt=s, setup=setup) best = min(Timer.repeat(nrep, nloop)) / nloop if best > 0.0: order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3) else: order = 3 print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep, 3, best * scaling[order], units[order]))
Example 6
Project: vnpy_crypto Author: birforce File: bench.py License: MIT License | 6 votes |
def timer(s, v='', nloop=500, nrep=3): units = ["s", "ms", "µs", "ns"] scaling = [1, 1e3, 1e6, 1e9] print("%s : %-50s : " % (v, s), end=' ') varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz'] setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames) Timer = timeit.Timer(stmt=s, setup=setup) best = min(Timer.repeat(nrep, nloop)) / nloop if best > 0.0: order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3) else: order = 3 print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep, 3, best * scaling[order], units[order]))
Example 7
Project: Computable Author: ktraunmueller File: bench.py License: MIT License | 6 votes |
def timer(s, v='', nloop=500, nrep=3): units = ["s", "ms", "µs", "ns"] scaling = [1, 1e3, 1e6, 1e9] print("%s : %-50s : " % (v, s), end=' ') varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz'] setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames) Timer = timeit.Timer(stmt=s, setup=setup) best = min(Timer.repeat(nrep, nloop)) / nloop if best > 0.0: order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3) else: order = 3 print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep, 3, best * scaling[order], units[order])) # ip.magic('timeit -n%i %s' % (nloop,s))
Example 8
Project: Computable Author: ktraunmueller File: mlab.py License: MIT License | 6 votes |
def poly_between(x, ylower, yupper): """ Given a sequence of *x*, *ylower* and *yupper*, return the polygon that fills the regions between them. *ylower* or *yupper* can be scalar or iterable. If they are iterable, they must be equal in length to *x*. Return value is *x*, *y* arrays for use with :meth:`matplotlib.axes.Axes.fill`. """ if ma.isMaskedArray(ylower) or ma.isMaskedArray(yupper) or ma.isMaskedArray(x): numpy = ma else: numpy = np Nx = len(x) if not cbook.iterable(ylower): ylower = ylower*numpy.ones(Nx) if not cbook.iterable(yupper): yupper = yupper*numpy.ones(Nx) x = numpy.concatenate( (x, x[::-1]) ) y = numpy.concatenate( (yupper, ylower[::-1]) ) return x,y
Example 9
Project: Mastering-Elasticsearch-7.0 Author: PacktPublishing File: bench.py License: MIT License | 6 votes |
def timer(s, v='', nloop=500, nrep=3): units = ["s", "ms", "µs", "ns"] scaling = [1, 1e3, 1e6, 1e9] print("%s : %-50s : " % (v, s), end=' ') varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz'] setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames) Timer = timeit.Timer(stmt=s, setup=setup) best = min(Timer.repeat(nrep, nloop)) / nloop if best > 0.0: order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3) else: order = 3 print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep, 3, best * scaling[order], units[order]))
Example 10
Project: matplotlib-4-abaqus Author: Solid-Mechanics File: mlab.py License: MIT License | 6 votes |
def poly_between(x, ylower, yupper): """ Given a sequence of *x*, *ylower* and *yupper*, return the polygon that fills the regions between them. *ylower* or *yupper* can be scalar or iterable. If they are iterable, they must be equal in length to *x*. Return value is *x*, *y* arrays for use with :meth:`matplotlib.axes.Axes.fill`. """ if ma.isMaskedArray(ylower) or ma.isMaskedArray(yupper) or ma.isMaskedArray(x): numpy = ma else: numpy = np Nx = len(x) if not cbook.iterable(ylower): ylower = ylower*numpy.ones(Nx) if not cbook.iterable(yupper): yupper = yupper*numpy.ones(Nx) x = numpy.concatenate( (x, x[::-1]) ) y = numpy.concatenate( (yupper, ylower[::-1]) ) return x,y
Example 11
Project: neural-network-animation Author: miloharper File: mlab.py License: MIT License | 6 votes |
def poly_between(x, ylower, yupper): """ Given a sequence of *x*, *ylower* and *yupper*, return the polygon that fills the regions between them. *ylower* or *yupper* can be scalar or iterable. If they are iterable, they must be equal in length to *x*. Return value is *x*, *y* arrays for use with :meth:`matplotlib.axes.Axes.fill`. """ if ma.isMaskedArray(ylower) or ma.isMaskedArray(yupper) or ma.isMaskedArray(x): numpy = ma else: numpy = np Nx = len(x) if not cbook.iterable(ylower): ylower = ylower*numpy.ones(Nx) if not cbook.iterable(yupper): yupper = yupper*numpy.ones(Nx) x = numpy.concatenate( (x, x[::-1]) ) y = numpy.concatenate( (yupper, ylower[::-1]) ) return x,y
Example 12
Project: GraphicDesignPatternByPython Author: Relph1119 File: bench.py License: MIT License | 6 votes |
def timer(s, v='', nloop=500, nrep=3): units = ["s", "ms", "µs", "ns"] scaling = [1, 1e3, 1e6, 1e9] print("%s : %-50s : " % (v, s), end=' ') varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz'] setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames) Timer = timeit.Timer(stmt=s, setup=setup) best = min(Timer.repeat(nrep, nloop)) / nloop if best > 0.0: order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3) else: order = 3 print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep, 3, best * scaling[order], units[order]))
Example 13
Project: GraphicDesignPatternByPython Author: Relph1119 File: mlab.py License: MIT License | 6 votes |
def poly_between(x, ylower, yupper): """ Given a sequence of *x*, *ylower* and *yupper*, return the polygon that fills the regions between them. *ylower* or *yupper* can be scalar or iterable. If they are iterable, they must be equal in length to *x*. Return value is *x*, *y* arrays for use with :meth:`matplotlib.axes.Axes.fill`. """ if any(isinstance(var, np.ma.MaskedArray) for var in [ylower, yupper, x]): numpy = np.ma else: numpy = np Nx = len(x) if not cbook.iterable(ylower): ylower = ylower*numpy.ones(Nx) if not cbook.iterable(yupper): yupper = yupper*numpy.ones(Nx) x = numpy.concatenate((x, x[::-1])) y = numpy.concatenate((yupper, ylower[::-1])) return x, y
Example 14
Project: python3_ios Author: holzschu File: mlab.py License: BSD 3-Clause "New" or "Revised" License | 6 votes |
def poly_between(x, ylower, yupper): """ Given a sequence of *x*, *ylower* and *yupper*, return the polygon that fills the regions between them. *ylower* or *yupper* can be scalar or iterable. If they are iterable, they must be equal in length to *x*. Return value is *x*, *y* arrays for use with :meth:`matplotlib.axes.Axes.fill`. """ if any(isinstance(var, np.ma.MaskedArray) for var in [ylower, yupper, x]): numpy = np.ma else: numpy = np Nx = len(x) if not cbook.iterable(ylower): ylower = ylower*numpy.ones(Nx) if not cbook.iterable(yupper): yupper = yupper*numpy.ones(Nx) x = numpy.concatenate((x, x[::-1])) y = numpy.concatenate((yupper, ylower[::-1])) return x, y
Example 15
Project: predictive-maintenance-using-machine-learning Author: awslabs File: bench.py License: Apache License 2.0 | 6 votes |
def timer(s, v='', nloop=500, nrep=3): units = ["s", "ms", "µs", "ns"] scaling = [1, 1e3, 1e6, 1e9] print("%s : %-50s : " % (v, s), end=' ') varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz'] setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames) Timer = timeit.Timer(stmt=s, setup=setup) best = min(Timer.repeat(nrep, nloop)) / nloop if best > 0.0: order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3) else: order = 3 print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep, 3, best * scaling[order], units[order]))
Example 16
Project: Fluid-Designer Author: Microvellum File: bench.py License: GNU General Public License v3.0 | 6 votes |
def timer(s, v='', nloop=500, nrep=3): units = ["s", "ms", "µs", "ns"] scaling = [1, 1e3, 1e6, 1e9] print("%s : %-50s : " % (v, s), end=' ') varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz'] setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames) Timer = timeit.Timer(stmt=s, setup=setup) best = min(Timer.repeat(nrep, nloop)) / nloop if best > 0.0: order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3) else: order = 3 print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep, 3, best * scaling[order], units[order])) # ip.magic('timeit -n%i %s' % (nloop,s))
Example 17
Project: Fluid-Designer Author: Microvellum File: bench.py License: GNU General Public License v3.0 | 6 votes |
def compare_functions_2v(func, nloop=500, test=True, xs=xs, nmxs=nmxs, ys=ys, nmys=nmys, xl=xl, nmxl=nmxl, yl=yl, nmyl=nmyl): funcname = func.__name__ print("-"*50) print("%s on small arrays" % funcname) module, data = "numpy.ma", "nmxs,nmys" timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop) # print("%s on large arrays" % funcname) module, data = "numpy.ma", "nmxl,nmyl" timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop) return ############################################################################### ################################################################################
Example 18
Project: pySINDy Author: luckystarufo File: bench.py License: MIT License | 6 votes |
def timer(s, v='', nloop=500, nrep=3): units = ["s", "ms", "µs", "ns"] scaling = [1, 1e3, 1e6, 1e9] print("%s : %-50s : " % (v, s), end=' ') varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz'] setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames) Timer = timeit.Timer(stmt=s, setup=setup) best = min(Timer.repeat(nrep, nloop)) / nloop if best > 0.0: order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3) else: order = 3 print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep, 3, best * scaling[order], units[order]))
Example 19
Project: mxnet-lambda Author: awslabs File: test_old_ma.py License: Apache License 2.0 | 6 votes |
def test_testPut(self): # Test of put with suppress_warnings() as sup: sup.filter( np.ma.core.MaskedArrayFutureWarning, "setting an item on a masked array which has a " "shared mask will not copy") d = arange(5) n = [0, 0, 0, 1, 1] m = make_mask(n) x = array(d, mask=m) self.assertTrue(x[3] is masked) self.assertTrue(x[4] is masked) x[[1, 4]] = [10, 40] self.assertTrue(x.mask is not m) self.assertTrue(x[3] is masked) self.assertTrue(x[4] is not masked) self.assertTrue(eq(x, [0, 10, 2, -1, 40])) x = array(d, mask=m) x.put([0, 1, 2], [-1, 100, 200]) self.assertTrue(eq(x, [-1, 100, 200, 0, 0])) self.assertTrue(x[3] is masked) self.assertTrue(x[4] is masked)
Example 20
Project: mxnet-lambda Author: awslabs File: bench.py License: Apache License 2.0 | 6 votes |
def timer(s, v='', nloop=500, nrep=3): units = ["s", "ms", "µs", "ns"] scaling = [1, 1e3, 1e6, 1e9] print("%s : %-50s : " % (v, s), end=' ') varnames = ["%ss,nm%ss,%sl,nm%sl" % tuple(x*4) for x in 'xyz'] setup = 'from __main__ import numpy, ma, %s' % ','.join(varnames) Timer = timeit.Timer(stmt=s, setup=setup) best = min(Timer.repeat(nrep, nloop)) / nloop if best > 0.0: order = min(-int(numpy.floor(numpy.log10(best)) // 3), 3) else: order = 3 print("%d loops, best of %d: %.*g %s per loop" % (nloop, nrep, 3, best * scaling[order], units[order]))
Example 21
Project: pseudonetcdf Author: barronh File: _functions.py License: GNU Lesser General Public License v3.0 | 6 votes |
def mask_vals(f, maskdef, metakeys=_metakeys): mtype = maskdef.split(',')[0] mval = ','.join(maskdef.split(',')[1:]) if mtype == 'where': maskexpr = 'np.ma.masked_where(mask, var[:].view(np.ndarray))' # mask = eval(mval, None, f.variables) else: maskexpr = 'np.ma.masked_%s(var[:], %s)' % (mtype, mval) for varkey, var in f.variables.items(): if varkey not in metakeys: try: vout = eval(maskexpr) f.variables[varkey] = PseudoNetCDFMaskedVariable( f, varkey, var.dtype.char, var.dimensions, values=vout, **dict([(pk, getattr(var, pk)) for pk in var.ncattrs()])) except Exception as e: warn('Cannot mask %s: %s' % (varkey, str(e))) return f
Example 22
Project: recruit Author: Frank-qlu File: test_old_ma.py License: Apache License 2.0 | 5 votes |
def test_testMixedArithmetic(self): na = np.array([1]) ma = array([1]) assert_(isinstance(na + ma, MaskedArray)) assert_(isinstance(ma + na, MaskedArray))
Example 23
Project: recruit Author: Frank-qlu File: test_old_ma.py License: Apache License 2.0 | 5 votes |
def test_testUfuncRegression(self): f_invalid_ignore = [ 'sqrt', 'arctanh', 'arcsin', 'arccos', 'arccosh', 'arctanh', 'log', 'log10', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod'] for f in ['sqrt', 'log', 'log10', 'exp', 'conjugate', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'absolute', 'fabs', 'negative', 'floor', 'ceil', 'logical_not', 'add', 'subtract', 'multiply', 'divide', 'true_divide', 'floor_divide', 'remainder', 'fmod', 'hypot', 'arctan2', 'equal', 'not_equal', 'less_equal', 'greater_equal', 'less', 'greater', 'logical_and', 'logical_or', 'logical_xor']: try: uf = getattr(umath, f) except AttributeError: uf = getattr(fromnumeric, f) mf = getattr(np.ma, f) args = self.d[:uf.nin] with np.errstate(): if f in f_invalid_ignore: np.seterr(invalid='ignore') if f in ['arctanh', 'log', 'log10']: np.seterr(divide='ignore') ur = uf(*args) mr = mf(*args) assert_(eq(ur.filled(0), mr.filled(0), f)) assert_(eqmask(ur.mask, mr.mask))
Example 24
Project: recruit Author: Frank-qlu File: bench.py License: Apache License 2.0 | 5 votes |
def compare_functions_1v(func, nloop=500, xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl): funcname = func.__name__ print("-"*50) print("%s on small arrays" % funcname) module, data = "numpy.ma", "nmxs" timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop) print("%s on large arrays" % funcname) module, data = "numpy.ma", "nmxl" timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop) return
Example 25
Project: recruit Author: Frank-qlu File: bench.py License: Apache License 2.0 | 5 votes |
def compare_methods(methodname, args, vars='x', nloop=500, test=True, xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl): print("-"*50) print("%s on small arrays" % methodname) data, ver = "nm%ss" % vars, 'numpy.ma' timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop) print("%s on large arrays" % methodname) data, ver = "nm%sl" % vars, 'numpy.ma' timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop) return
Example 26
Project: typhon Author: atmtools File: dataset.py License: MIT License | 5 votes |
def _ensure_large_enough(self, arr, cont, N, newsize, frac_done): """Allocate new space while adding gran to data Helper for _add_gran_to_data, part of the read_period family of helpers. Does NOT add cont to arr!""" if isinstance(cont, xarray.Dataset): raise NotImplementedError("Not used for xarray datasets. " "But see version history at " "https://arts.mi.uni-hamburg.de/trac/rt/browser/typhon/trunk/typhon/datasets/dataset.py?rev=10396#L462 " "if there is a wish to reimplemented!") else: if newsize * arr.itemsize > self.maxsize: raise MemoryError("This dataset is too large " "for typhons little mind. Continuing might " "ultimately need {:,.0f} MiB of RAM. This exceeds my " "maximum (self.maxsize) of {:,.0f} MiB. " "Sorry! ".format( newsize*arr.itemsize/MiB, self.maxsize/MiB)) logger.debug( "New size ({:d} items, {:,.0f} MiB) would exceed allocated " "size ({:d} items, {:,.0f} MiB). I'm {:.3%} " "through. Allocating new: {:d} items, {:,.0f} " "MiB. New size: {:d} items, {:,.0f} " "MiB.".format(N+cont.size, (cont.nbytes+arr.nbytes)/MiB, arr.size, arr.nbytes/MiB, frac_done, newsize-arr.size, (newsize-arr.size)*arr.itemsize/MiB, newsize, newsize*arr.itemsize/MiB)) mod = (numpy.ma if hasattr(arr, "mask") else numpy) arr = mod.concatenate( (arr, mod.zeros(dtype=arr.dtype, shape=newsize-arr.size))) return arr
Example 27
Project: typhon Author: atmtools File: dataset.py License: MIT License | 5 votes |
def _add_pseudo_fields(self, M, pseudo_fields, extra, f): D = collections.OrderedDict() for (k, fnc) in pseudo_fields.items(): try: D[k] = fnc(M, D, extra, f) except TypeError as exc: if "positional argument" in exc.args[0]: # backward compatibility D[k] = fnc(M) else: raise if D != {}: if self.read_returns == "ndarray": mod = (numpy.ma if hasattr(M, "mask") else numpy) newM = mod.zeros(shape=M.shape, dtype=M.dtype.descr + [(k, v.dtype, v.shape[1:]) for (k,v) in D.items()]) for k in M.dtype.names: newM[k] = M[k] elif self.read_returns == "xarray": newM = M else: raise ValueError("read_returns must be ndarray or xarray") for (k, v) in D.items(): newM[k] = v M = newM return M
Example 28
Project: typhon Author: atmtools File: dataset.py License: MIT License | 5 votes |
def _read(self, p, fields="all"): """Reads a single measurement converted to ndarray Arguments: p (pathlib.Path): path to file fields (Iterable[str] or str): What fields to return. See :func:`Dataset.read_period` for details. """ (head, body) = self.read_single(p, fields=fields) dt = [(s+body.shape if len(s)==2 else (s[0], s[1], s[2]+body.shape)) for s in body.dtype.descr] dt.extend([("lat", "f8"), ("lon", "f8"), ("time", "M8[s]")]) dt.extend([(s, self._head_dtype[s]) for s in (head.keys() & self._head_dtype.keys()) if s not in {"lat", "lon", "time"}]) if self.filename_fields: info = self.get_info_for_granule(p) dt.extend(self.filename_fields.items()) D = numpy.ma.empty(1, dt) for nm in body.dtype.names: D[nm] = body[nm] for nm in {"lat", "lon", "time"}: D[nm] = head[nm] for nm in head.keys() & D.dtype.names: if nm not in {"lat", "lon", "time"}: D[nm] = head[nm] if self.filename_fields: for nm in self.filename_fields.keys(): D[nm] = info[nm] return (D, {})
Example 29
Project: lambda-packs Author: ryfeus File: bench.py License: MIT License | 5 votes |
def compare_functions_1v(func, nloop=500, xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl): funcname = func.__name__ print("-"*50) print("%s on small arrays" % funcname) module, data = "numpy.ma", "nmxs" timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop) print("%s on large arrays" % funcname) module, data = "numpy.ma", "nmxl" timer("%(module)s.%(funcname)s(%(data)s)" % locals(), v="%11s" % module, nloop=nloop) return
Example 30
Project: lambda-packs Author: ryfeus File: bench.py License: MIT License | 5 votes |
def compare_methods(methodname, args, vars='x', nloop=500, test=True, xs=xs, nmxs=nmxs, xl=xl, nmxl=nmxl): print("-"*50) print("%s on small arrays" % methodname) data, ver = "nm%ss" % vars, 'numpy.ma' timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop) print("%s on large arrays" % methodname) data, ver = "nm%sl" % vars, 'numpy.ma' timer("%(data)s.%(methodname)s(%(args)s)" % locals(), v=ver, nloop=nloop) return