Java Code Examples for java.math.BigInteger#clearBit()
The following examples show how to use
java.math.BigInteger#clearBit() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: ECFieldF2m.java From Java8CN with Apache License 2.0 | 6 votes |
/** * Creates an elliptic curve characteristic 2 finite * field which has 2^{@code m} elements with * polynomial basis. * The reduction polynomial for this field is based * on {@code rp} whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial.<p> * Note: A valid reduction polynomial is either a * trinomial (X^{@code m} + X^{@code k} + 1 * with {@code m} > {@code k} >= 1) or a * pentanomial (X^{@code m} + X^{@code k3} * + X^{@code k2} + X^{@code k1} + 1 with * {@code m} > {@code k3} > {@code k2} * > {@code k1} >= 1). * @param m with 2^{@code m} being the number of elements. * @param rp the BigInteger whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial. * @exception NullPointerException if {@code rp} is null. * @exception IllegalArgumentException if {@code m} * is not positive, or {@code rp} does not represent * a valid reduction polynomial. */ public ECFieldF2m(int m, BigInteger rp) { // check m and rp this.m = m; this.rp = rp; if (m <= 0) { throw new IllegalArgumentException("m is not positive"); } int bitCount = this.rp.bitCount(); if (!this.rp.testBit(0) || !this.rp.testBit(m) || ((bitCount != 3) && (bitCount != 5))) { throw new IllegalArgumentException ("rp does not represent a valid reduction polynomial"); } // convert rp into ks BigInteger temp = this.rp.clearBit(0).clearBit(m); this.ks = new int[bitCount-2]; for (int i = this.ks.length-1; i >= 0; i--) { int index = temp.getLowestSetBit(); this.ks[i] = index; temp = temp.clearBit(index); } }
Example 2
Source File: ECFieldF2m.java From dragonwell8_jdk with GNU General Public License v2.0 | 6 votes |
/** * Creates an elliptic curve characteristic 2 finite * field which has 2^{@code m} elements with * polynomial basis. * The reduction polynomial for this field is based * on {@code rp} whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial.<p> * Note: A valid reduction polynomial is either a * trinomial (X^{@code m} + X^{@code k} + 1 * with {@code m} > {@code k} >= 1) or a * pentanomial (X^{@code m} + X^{@code k3} * + X^{@code k2} + X^{@code k1} + 1 with * {@code m} > {@code k3} > {@code k2} * > {@code k1} >= 1). * @param m with 2^{@code m} being the number of elements. * @param rp the BigInteger whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial. * @exception NullPointerException if {@code rp} is null. * @exception IllegalArgumentException if {@code m} * is not positive, or {@code rp} does not represent * a valid reduction polynomial. */ public ECFieldF2m(int m, BigInteger rp) { // check m and rp this.m = m; this.rp = rp; if (m <= 0) { throw new IllegalArgumentException("m is not positive"); } int bitCount = this.rp.bitCount(); if (!this.rp.testBit(0) || !this.rp.testBit(m) || ((bitCount != 3) && (bitCount != 5))) { throw new IllegalArgumentException ("rp does not represent a valid reduction polynomial"); } // convert rp into ks BigInteger temp = this.rp.clearBit(0).clearBit(m); this.ks = new int[bitCount-2]; for (int i = this.ks.length-1; i >= 0; i--) { int index = temp.getLowestSetBit(); this.ks[i] = index; temp = temp.clearBit(index); } }
Example 3
Source File: ECFieldF2m.java From j2objc with Apache License 2.0 | 6 votes |
/** * Creates an elliptic curve characteristic 2 finite * field which has 2^{@code m} elements with * polynomial basis. * The reduction polynomial for this field is based * on {@code rp} whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial.<p> * Note: A valid reduction polynomial is either a * trinomial (X^{@code m} + X^{@code k} + 1 * with {@code m} > {@code k} >= 1) or a * pentanomial (X^{@code m} + X^{@code k3} * + X^{@code k2} + X^{@code k1} + 1 with * {@code m} > {@code k3} > {@code k2} * > {@code k1} >= 1). * @param m with 2^{@code m} being the number of elements. * @param rp the BigInteger whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial. * @exception NullPointerException if {@code rp} is null. * @exception IllegalArgumentException if {@code m} * is not positive, or {@code rp} does not represent * a valid reduction polynomial. */ public ECFieldF2m(int m, BigInteger rp) { // check m and rp this.m = m; this.rp = rp; if (m <= 0) { throw new IllegalArgumentException("m is not positive"); } int bitCount = this.rp.bitCount(); if (!this.rp.testBit(0) || !this.rp.testBit(m) || ((bitCount != 3) && (bitCount != 5))) { throw new IllegalArgumentException ("rp does not represent a valid reduction polynomial"); } // convert rp into ks BigInteger temp = this.rp.clearBit(0).clearBit(m); this.ks = new int[bitCount-2]; for (int i = this.ks.length-1; i >= 0; i--) { int index = temp.getLowestSetBit(); this.ks[i] = index; temp = temp.clearBit(index); } }
Example 4
Source File: NetworkSpace.java From android with GNU General Public License v3.0 | 6 votes |
private BigInteger getMaskedAddress(boolean one) { BigInteger numAddress = netAddress; int numBits; if (isV4) { numBits = 32 - networkMask; } else { numBits = 128 - networkMask; } for (int i = 0; i < numBits; i++) { if (one) numAddress = numAddress.setBit(i); else numAddress = numAddress.clearBit(i); } return numAddress; }
Example 5
Source File: ECFieldF2m.java From TencentKona-8 with GNU General Public License v2.0 | 6 votes |
/** * Creates an elliptic curve characteristic 2 finite * field which has 2^{@code m} elements with * polynomial basis. * The reduction polynomial for this field is based * on {@code rp} whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial.<p> * Note: A valid reduction polynomial is either a * trinomial (X^{@code m} + X^{@code k} + 1 * with {@code m} > {@code k} >= 1) or a * pentanomial (X^{@code m} + X^{@code k3} * + X^{@code k2} + X^{@code k1} + 1 with * {@code m} > {@code k3} > {@code k2} * > {@code k1} >= 1). * @param m with 2^{@code m} being the number of elements. * @param rp the BigInteger whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial. * @exception NullPointerException if {@code rp} is null. * @exception IllegalArgumentException if {@code m} * is not positive, or {@code rp} does not represent * a valid reduction polynomial. */ public ECFieldF2m(int m, BigInteger rp) { // check m and rp this.m = m; this.rp = rp; if (m <= 0) { throw new IllegalArgumentException("m is not positive"); } int bitCount = this.rp.bitCount(); if (!this.rp.testBit(0) || !this.rp.testBit(m) || ((bitCount != 3) && (bitCount != 5))) { throw new IllegalArgumentException ("rp does not represent a valid reduction polynomial"); } // convert rp into ks BigInteger temp = this.rp.clearBit(0).clearBit(m); this.ks = new int[bitCount-2]; for (int i = this.ks.length-1; i >= 0; i--) { int index = temp.getLowestSetBit(); this.ks[i] = index; temp = temp.clearBit(index); } }
Example 6
Source File: ECFieldF2m.java From jdk8u60 with GNU General Public License v2.0 | 6 votes |
/** * Creates an elliptic curve characteristic 2 finite * field which has 2^{@code m} elements with * polynomial basis. * The reduction polynomial for this field is based * on {@code rp} whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial.<p> * Note: A valid reduction polynomial is either a * trinomial (X^{@code m} + X^{@code k} + 1 * with {@code m} > {@code k} >= 1) or a * pentanomial (X^{@code m} + X^{@code k3} * + X^{@code k2} + X^{@code k1} + 1 with * {@code m} > {@code k3} > {@code k2} * > {@code k1} >= 1). * @param m with 2^{@code m} being the number of elements. * @param rp the BigInteger whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial. * @exception NullPointerException if {@code rp} is null. * @exception IllegalArgumentException if {@code m} * is not positive, or {@code rp} does not represent * a valid reduction polynomial. */ public ECFieldF2m(int m, BigInteger rp) { // check m and rp this.m = m; this.rp = rp; if (m <= 0) { throw new IllegalArgumentException("m is not positive"); } int bitCount = this.rp.bitCount(); if (!this.rp.testBit(0) || !this.rp.testBit(m) || ((bitCount != 3) && (bitCount != 5))) { throw new IllegalArgumentException ("rp does not represent a valid reduction polynomial"); } // convert rp into ks BigInteger temp = this.rp.clearBit(0).clearBit(m); this.ks = new int[bitCount-2]; for (int i = this.ks.length-1; i >= 0; i--) { int index = temp.getLowestSetBit(); this.ks[i] = index; temp = temp.clearBit(index); } }
Example 7
Source File: NetworkSpace.java From bitmask_android with GNU General Public License v3.0 | 6 votes |
private BigInteger getMaskedAddress(boolean one) { BigInteger numAddress = netAddress; int numBits; if (isV4) { numBits = 32 - networkMask; } else { numBits = 128 - networkMask; } for (int i = 0; i < numBits; i++) { if (one) numAddress = numAddress.setBit(i); else numAddress = numAddress.clearBit(i); } return numAddress; }
Example 8
Source File: NetworkSpace.java From EasyVPN-Free with GNU General Public License v3.0 | 6 votes |
private BigInteger getMaskedAddress(boolean one) { BigInteger numAddress = netAddress; int numBits; if (isV4) { numBits = 32 - networkMask; } else { numBits = 128 - networkMask; } for (int i = 0; i < numBits; i++) { if (one) numAddress = numAddress.setBit(i); else numAddress = numAddress.clearBit(i); } return numAddress; }
Example 9
Source File: ECFieldF2m.java From jdk1.8-source-analysis with Apache License 2.0 | 6 votes |
/** * Creates an elliptic curve characteristic 2 finite * field which has 2^{@code m} elements with * polynomial basis. * The reduction polynomial for this field is based * on {@code rp} whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial.<p> * Note: A valid reduction polynomial is either a * trinomial (X^{@code m} + X^{@code k} + 1 * with {@code m} > {@code k} >= 1) or a * pentanomial (X^{@code m} + X^{@code k3} * + X^{@code k2} + X^{@code k1} + 1 with * {@code m} > {@code k3} > {@code k2} * > {@code k1} >= 1). * @param m with 2^{@code m} being the number of elements. * @param rp the BigInteger whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial. * @exception NullPointerException if {@code rp} is null. * @exception IllegalArgumentException if {@code m} * is not positive, or {@code rp} does not represent * a valid reduction polynomial. */ public ECFieldF2m(int m, BigInteger rp) { // check m and rp this.m = m; this.rp = rp; if (m <= 0) { throw new IllegalArgumentException("m is not positive"); } int bitCount = this.rp.bitCount(); if (!this.rp.testBit(0) || !this.rp.testBit(m) || ((bitCount != 3) && (bitCount != 5))) { throw new IllegalArgumentException ("rp does not represent a valid reduction polynomial"); } // convert rp into ks BigInteger temp = this.rp.clearBit(0).clearBit(m); this.ks = new int[bitCount-2]; for (int i = this.ks.length-1; i >= 0; i--) { int index = temp.getLowestSetBit(); this.ks[i] = index; temp = temp.clearBit(index); } }
Example 10
Source File: ECFieldF2m.java From jdk8u-dev-jdk with GNU General Public License v2.0 | 6 votes |
/** * Creates an elliptic curve characteristic 2 finite * field which has 2^{@code m} elements with * polynomial basis. * The reduction polynomial for this field is based * on {@code rp} whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial.<p> * Note: A valid reduction polynomial is either a * trinomial (X^{@code m} + X^{@code k} + 1 * with {@code m} > {@code k} >= 1) or a * pentanomial (X^{@code m} + X^{@code k3} * + X^{@code k2} + X^{@code k1} + 1 with * {@code m} > {@code k3} > {@code k2} * > {@code k1} >= 1). * @param m with 2^{@code m} being the number of elements. * @param rp the BigInteger whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial. * @exception NullPointerException if {@code rp} is null. * @exception IllegalArgumentException if {@code m} * is not positive, or {@code rp} does not represent * a valid reduction polynomial. */ public ECFieldF2m(int m, BigInteger rp) { // check m and rp this.m = m; this.rp = rp; if (m <= 0) { throw new IllegalArgumentException("m is not positive"); } int bitCount = this.rp.bitCount(); if (!this.rp.testBit(0) || !this.rp.testBit(m) || ((bitCount != 3) && (bitCount != 5))) { throw new IllegalArgumentException ("rp does not represent a valid reduction polynomial"); } // convert rp into ks BigInteger temp = this.rp.clearBit(0).clearBit(m); this.ks = new int[bitCount-2]; for (int i = this.ks.length-1; i >= 0; i--) { int index = temp.getLowestSetBit(); this.ks[i] = index; temp = temp.clearBit(index); } }
Example 11
Source File: ECFieldF2m.java From jdk-1.7-annotated with Apache License 2.0 | 6 votes |
/** * Creates an elliptic curve characteristic 2 finite * field which has 2^<code>m</code> elements with * polynomial basis. * The reduction polynomial for this field is based * on <code>rp</code> whose i-th bit correspondes to * the i-th coefficient of the reduction polynomial.<p> * Note: A valid reduction polynomial is either a * trinomial (X^<code>m</code> + X^<code>k</code> + 1 * with <code>m</code> > <code>k</code> >= 1) or a * pentanomial (X^<code>m</code> + X^<code>k3</code> * + X^<code>k2</code> + X^<code>k1</code> + 1 with * <code>m</code> > <code>k3</code> > <code>k2</code> * > <code>k1</code> >= 1). * @param m with 2^<code>m</code> being the number of elements. * @param rp the BigInteger whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial. * @exception NullPointerException if <code>rp</code> is null. * @exception IllegalArgumentException if <code>m</code> * is not positive, or <code>rp</code> does not represent * a valid reduction polynomial. */ public ECFieldF2m(int m, BigInteger rp) { // check m and rp this.m = m; this.rp = rp; if (m <= 0) { throw new IllegalArgumentException("m is not positive"); } int bitCount = this.rp.bitCount(); if (!this.rp.testBit(0) || !this.rp.testBit(m) || ((bitCount != 3) && (bitCount != 5))) { throw new IllegalArgumentException ("rp does not represent a valid reduction polynomial"); } // convert rp into ks BigInteger temp = this.rp.clearBit(0).clearBit(m); this.ks = new int[bitCount-2]; for (int i = this.ks.length-1; i >= 0; i--) { int index = temp.getLowestSetBit(); this.ks[i] = index; temp = temp.clearBit(index); } }
Example 12
Source File: ECFieldF2m.java From jdk8u-jdk with GNU General Public License v2.0 | 6 votes |
/** * Creates an elliptic curve characteristic 2 finite * field which has 2^{@code m} elements with * polynomial basis. * The reduction polynomial for this field is based * on {@code rp} whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial.<p> * Note: A valid reduction polynomial is either a * trinomial (X^{@code m} + X^{@code k} + 1 * with {@code m} > {@code k} >= 1) or a * pentanomial (X^{@code m} + X^{@code k3} * + X^{@code k2} + X^{@code k1} + 1 with * {@code m} > {@code k3} > {@code k2} * > {@code k1} >= 1). * @param m with 2^{@code m} being the number of elements. * @param rp the BigInteger whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial. * @exception NullPointerException if {@code rp} is null. * @exception IllegalArgumentException if {@code m} * is not positive, or {@code rp} does not represent * a valid reduction polynomial. */ public ECFieldF2m(int m, BigInteger rp) { // check m and rp this.m = m; this.rp = rp; if (m <= 0) { throw new IllegalArgumentException("m is not positive"); } int bitCount = this.rp.bitCount(); if (!this.rp.testBit(0) || !this.rp.testBit(m) || ((bitCount != 3) && (bitCount != 5))) { throw new IllegalArgumentException ("rp does not represent a valid reduction polynomial"); } // convert rp into ks BigInteger temp = this.rp.clearBit(0).clearBit(m); this.ks = new int[bitCount-2]; for (int i = this.ks.length-1; i >= 0; i--) { int index = temp.getLowestSetBit(); this.ks[i] = index; temp = temp.clearBit(index); } }
Example 13
Source File: ECFieldF2m.java From openjdk-jdk9 with GNU General Public License v2.0 | 6 votes |
/** * Creates an elliptic curve characteristic 2 finite * field which has 2^{@code m} elements with * polynomial basis. * The reduction polynomial for this field is based * on {@code rp} whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial.<p> * Note: A valid reduction polynomial is either a * trinomial (X^{@code m} + X^{@code k} + 1 * with {@code m} > {@code k} >= 1) or a * pentanomial (X^{@code m} + X^{@code k3} * + X^{@code k2} + X^{@code k1} + 1 with * {@code m} > {@code k3} > {@code k2} * > {@code k1} >= 1). * @param m with 2^{@code m} being the number of elements. * @param rp the BigInteger whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial. * @exception NullPointerException if {@code rp} is null. * @exception IllegalArgumentException if {@code m} * is not positive, or {@code rp} does not represent * a valid reduction polynomial. */ public ECFieldF2m(int m, BigInteger rp) { // check m and rp this.m = m; this.rp = rp; if (m <= 0) { throw new IllegalArgumentException("m is not positive"); } int bitCount = this.rp.bitCount(); if (!this.rp.testBit(0) || !this.rp.testBit(m) || ((bitCount != 3) && (bitCount != 5))) { throw new IllegalArgumentException ("rp does not represent a valid reduction polynomial"); } // convert rp into ks BigInteger temp = this.rp.clearBit(0).clearBit(m); this.ks = new int[bitCount-2]; for (int i = this.ks.length-1; i >= 0; i--) { int index = temp.getLowestSetBit(); this.ks[i] = index; temp = temp.clearBit(index); } }
Example 14
Source File: ECFieldF2m.java From Bytecoder with Apache License 2.0 | 6 votes |
/** * Creates an elliptic curve characteristic 2 finite * field which has 2^{@code m} elements with * polynomial basis. * The reduction polynomial for this field is based * on {@code rp} whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial.<p> * Note: A valid reduction polynomial is either a * trinomial (X^{@code m} + X^{@code k} + 1 * with {@code m} > {@code k} >= 1) or a * pentanomial (X^{@code m} + X^{@code k3} * + X^{@code k2} + X^{@code k1} + 1 with * {@code m} > {@code k3} > {@code k2} * > {@code k1} >= 1). * @param m with 2^{@code m} being the number of elements. * @param rp the BigInteger whose i-th bit corresponds to * the i-th coefficient of the reduction polynomial. * @throws NullPointerException if {@code rp} is null. * @throws IllegalArgumentException if {@code m} * is not positive, or {@code rp} does not represent * a valid reduction polynomial. */ public ECFieldF2m(int m, BigInteger rp) { // check m and rp this.m = m; this.rp = rp; if (m <= 0) { throw new IllegalArgumentException("m is not positive"); } int bitCount = this.rp.bitCount(); if (!this.rp.testBit(0) || !this.rp.testBit(m) || ((bitCount != 3) && (bitCount != 5))) { throw new IllegalArgumentException ("rp does not represent a valid reduction polynomial"); } // convert rp into ks BigInteger temp = this.rp.clearBit(0).clearBit(m); this.ks = new int[bitCount-2]; for (int i = this.ks.length-1; i >= 0; i--) { int index = temp.getLowestSetBit(); this.ks[i] = index; temp = temp.clearBit(index); } }
Example 15
Source File: BigIntegerOperateBitsTest.java From j2objc with Apache License 2.0 | 5 votes |
/** * clearBit(int n) inside a positive number */ public void testClearBitPositiveInside4 () { byte aBytes[] = {1, -128, 56, 100, -2, -76, 89, 45, 91, 3, -15, 35, 26}; int aSign = 1; int number = 50; byte rBytes[] = {1, -128, 56, 100, -2, -76, 89, 45, 91, 3, -15, 35, 26}; BigInteger aNumber = new BigInteger(aSign, aBytes); BigInteger result = aNumber.clearBit(number); byte resBytes[] = new byte[rBytes.length]; resBytes = result.toByteArray(); for(int i = 0; i < resBytes.length; i++) { assertTrue(resBytes[i] == rBytes[i]); } assertEquals("incorrect sign", 1, result.signum()); }
Example 16
Source File: BigIntegerOperateBitsTest.java From j2objc with Apache License 2.0 | 5 votes |
/** * clearBit(int n) outside a positive number */ public void testClearBitPositiveOutside1() { byte aBytes[] = {1, -128, 56, 100, -2, -76, 89, 45, 91, 3, -15, 35, 26}; int aSign = 1; int number = 150; byte rBytes[] = {1, -128, 56, 100, -2, -76, 89, 45, 91, 3, -15, 35, 26}; BigInteger aNumber = new BigInteger(aSign, aBytes); BigInteger result = aNumber.clearBit(number); byte resBytes[] = new byte[rBytes.length]; resBytes = result.toByteArray(); for(int i = 0; i < resBytes.length; i++) { assertTrue(resBytes[i] == rBytes[i]); } assertEquals("incorrect sign", 1, result.signum()); }
Example 17
Source File: BigIntegerOperateBitsTest.java From j2objc with Apache License 2.0 | 5 votes |
/** * clearBit(int n) outside a positive number */ public void testClearBitPositiveOutside2() { byte aBytes[] = {1, -128, 56, 100, -2, -76, 89, 45, 91, 3, -15, 35, 26}; int aSign = 1; int number = 191; byte rBytes[] = {1, -128, 56, 100, -2, -76, 89, 45, 91, 3, -15, 35, 26}; BigInteger aNumber = new BigInteger(aSign, aBytes); BigInteger result = aNumber.clearBit(number); byte resBytes[] = new byte[rBytes.length]; resBytes = result.toByteArray(); for(int i = 0; i < resBytes.length; i++) { assertTrue(resBytes[i] == rBytes[i]); } assertEquals("incorrect sign", 1, result.signum()); }
Example 18
Source File: BigIntegerOperateBitsTest.java From j2objc with Apache License 2.0 | 5 votes |
/** * clearBit(2) in the negative number with all ones in bit representation */ public void testClearBitNegativeInside3() { String as = "-18446744073709551615"; int number = 2; BigInteger aNumber = new BigInteger(as); BigInteger result = aNumber.clearBit(number); assertEquals(as, result.toString()); }
Example 19
Source File: Tnaf.java From ripple-lib-java with ISC License | 4 votes |
/** * Computes the <code>τ</code>-adic NAF (non-adjacent form) of an * element <code>λ</code> of <code><b>Z</b>[τ]</code>. * @param mu The parameter <code>μ</code> of the elliptic curve. * @param lambda The element <code>λ</code> of * <code><b>Z</b>[τ]</code>. * @return The <code>τ</code>-adic NAF of <code>λ</code>. */ public static byte[] tauAdicNaf(byte mu, ZTauElement lambda) { if (!((mu == 1) || (mu == -1))) { throw new IllegalArgumentException("mu must be 1 or -1"); } BigInteger norm = norm(mu, lambda); // Ceiling of log2 of the norm int log2Norm = norm.bitLength(); // If length(TNAF) > 30, then length(TNAF) < log2Norm + 3.52 int maxLength = log2Norm > 30 ? log2Norm + 4 : 34; // The array holding the TNAF byte[] u = new byte[maxLength]; int i = 0; // The actual length of the TNAF int length = 0; BigInteger r0 = lambda.u; BigInteger r1 = lambda.v; while(!((r0.equals(ECConstants.ZERO)) && (r1.equals(ECConstants.ZERO)))) { // If r0 is odd if (r0.testBit(0)) { u[i] = (byte) ECConstants.TWO.subtract((r0.subtract(r1.shiftLeft(1))).mod(ECConstants.FOUR)).intValue(); // r0 = r0 - u[i] if (u[i] == 1) { r0 = r0.clearBit(0); } else { // u[i] == -1 r0 = r0.add(ECConstants.ONE); } length = i; } else { u[i] = 0; } BigInteger t = r0; BigInteger s = r0.shiftRight(1); if (mu == 1) { r0 = r1.add(s); } else { // mu == -1 r0 = r1.subtract(s); } r1 = t.shiftRight(1).negate(); i++; } length++; // Reduce the TNAF array to its actual length byte[] tnaf = new byte[length]; System.arraycopy(u, 0, tnaf, 0, length); return tnaf; }
Example 20
Source File: BigIntegerMutatorTest.java From pitest with Apache License 2.0 | 4 votes |
@Override BigInteger apply(BigInteger left, BigInteger right) { return left.clearBit(right.intValue()); }