Java Code Examples for org.apache.kylin.common.util.HadoopUtil#deletePath()
The following examples show how to use
org.apache.kylin.common.util.HadoopUtil#deletePath() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: HBaseMROutput2Transition.java From kylin-on-parquet-v2 with Apache License 2.0 | 6 votes |
@Override public void configureJobOutput(Job job, String output, CubeSegment segment, CuboidScheduler cuboidScheduler, int level) throws Exception { int reducerNum = 1; Class mapperClass = job.getMapperClass(); //allow user specially set config for base cuboid step if (mapperClass == HiveToBaseCuboidMapper.class) { for (Map.Entry<String, String> entry : segment.getConfig().getBaseCuboidMRConfigOverride().entrySet()) { job.getConfiguration().set(entry.getKey(), entry.getValue()); } } if (mapperClass == HiveToBaseCuboidMapper.class || mapperClass == NDCuboidMapper.class) { reducerNum = MapReduceUtil.getLayeredCubingReduceTaskNum(segment, cuboidScheduler, AbstractHadoopJob.getTotalMapInputMB(job), level); } else if (mapperClass == InMemCuboidMapper.class) { reducerNum = MapReduceUtil.getInmemCubingReduceTaskNum(segment, cuboidScheduler); } Path outputPath = new Path(output); FileOutputFormat.setOutputPath(job, outputPath); job.setOutputFormatClass(SequenceFileOutputFormat.class); job.setNumReduceTasks(reducerNum); HadoopUtil.deletePath(job.getConfiguration(), outputPath); }
Example 2
Source File: HBaseMROutput2Transition.java From kylin with Apache License 2.0 | 5 votes |
@Override public void configureJobOutput(Job job, String output, CubeSegment segment) throws Exception { int reducerNum = MapReduceUtil.getLayeredCubingReduceTaskNum(segment, segment.getCuboidScheduler(), AbstractHadoopJob.getTotalMapInputMB(job), -1); job.setNumReduceTasks(reducerNum); Path outputPath = new Path(output); HadoopUtil.deletePath(job.getConfiguration(), outputPath); FileOutputFormat.setOutputPath(job, outputPath); job.setOutputFormatClass(SequenceFileOutputFormat.class); }
Example 3
Source File: HBaseMROutput2Transition.java From kylin-on-parquet-v2 with Apache License 2.0 | 5 votes |
@Override public void configureJobOutput(Job job, String output, CubeSegment segment) throws Exception { int reducerNum = MapReduceUtil.getLayeredCubingReduceTaskNum(segment, segment.getCuboidScheduler(), AbstractHadoopJob.getTotalMapInputMB(job), -1); job.setNumReduceTasks(reducerNum); Path outputPath = new Path(output); HadoopUtil.deletePath(job.getConfiguration(), outputPath); FileOutputFormat.setOutputPath(job, outputPath); job.setOutputFormatClass(SequenceFileOutputFormat.class); }
Example 4
Source File: DstClusterUtil.java From kylin with Apache License 2.0 | 5 votes |
public static void copyInit(FileSystem fs, Path path) throws IOException { path = Path.getPathWithoutSchemeAndAuthority(path); Path pathP = path.getParent(); if (!fs.exists(pathP)) { fs.mkdirs(pathP); } if (fs.exists(path)) { logger.warn("path {} already existed and will be deleted", path); HadoopUtil.deletePath(fs.getConf(), path); } }
Example 5
Source File: NSparkExecutable.java From kylin-on-parquet-v2 with Apache License 2.0 | 5 votes |
private void deleteJobTmpDirectoryOnExists() { StorageURL storageURL = StorageURL.valueOf(getDistMetaUrl()); String metaPath = storageURL.getParameter("path"); String[] directories = metaPath.split("/"); String lastDirectory = directories[directories.length - 1]; String taskPath = metaPath.substring(0, metaPath.length() - 1 - lastDirectory.length()); try { Path path = new Path(taskPath); HadoopUtil.deletePath(HadoopUtil.getCurrentConfiguration(), path); } catch (Exception e) { logger.error("delete job tmp in path {} failed.", taskPath, e); } }
Example 6
Source File: SparkColumnCardinality.java From kylin with Apache License 2.0 | 4 votes |
@Override protected void execute(OptionsHelper optionsHelper) throws Exception { String tableName = optionsHelper.getOptionValue(OPTION_TABLE_NAME); String output = optionsHelper.getOptionValue(OPTION_OUTPUT); int columnCnt = Integer.valueOf(optionsHelper.getOptionValue(OPTION_COLUMN_COUNT)); Class[] kryoClassArray = new Class[]{Class.forName("scala.reflect.ClassTag$$anon$1"), Class.forName("org.apache.kylin.engine.mr.steps.SelfDefineSortableKey")}; SparkConf conf = new SparkConf().setAppName("Calculate table:" + tableName); //set spark.sql.catalogImplementation=hive, If it is not set, SparkSession can't read hive metadata, and throw "org.apache.spark.sql.AnalysisException" conf.set("spark.sql.catalogImplementation", "hive"); //serialization conf conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); conf.set("spark.kryo.registrator", "org.apache.kylin.engine.spark.KylinKryoRegistrator"); conf.set("spark.kryo.registrationRequired", "true").registerKryoClasses(kryoClassArray); KylinSparkJobListener jobListener = new KylinSparkJobListener(); try (JavaSparkContext sc = new JavaSparkContext(conf)) { sc.sc().addSparkListener(jobListener); HadoopUtil.deletePath(sc.hadoopConfiguration(), new Path(output)); // table will be loaded by spark sql, so isSequenceFile set false final JavaRDD<String[]> recordRDD = SparkUtil.hiveRecordInputRDD(false, sc, null, tableName); JavaPairRDD<Integer, Long> resultRdd = recordRDD.mapPartitionsToPair(new BuildHllCounter()) .reduceByKey((x, y) -> { x.merge(y); return x; }) .mapToPair(record -> { return new Tuple2<>(record._1, record._2.getCountEstimate()); }) .sortByKey(true, 1) .cache(); if (resultRdd.count() == 0) { ArrayList<Tuple2<Integer, Long>> list = new ArrayList<>(); for (int i = 0; i < columnCnt; ++i) { list.add(new Tuple2<>(i, 0L)); } JavaPairRDD<Integer, Long> nullRdd = sc.parallelizePairs(list).repartition(1); nullRdd.saveAsNewAPIHadoopFile(output, IntWritable.class, LongWritable.class, TextOutputFormat.class); } else { resultRdd.saveAsNewAPIHadoopFile(output, IntWritable.class, LongWritable.class, TextOutputFormat.class); } } }
Example 7
Source File: AbstractHadoopJob.java From kylin with Apache License 2.0 | 4 votes |
protected void deletePath(Configuration conf, Path path) throws IOException { HadoopUtil.deletePath(conf, path); }
Example 8
Source File: MergeDictionaryJob.java From kylin with Apache License 2.0 | 4 votes |
@Override public int run(String[] args) throws Exception { try { Options options = new Options(); options.addOption(OPTION_JOB_NAME); options.addOption(OPTION_SEGMENT_ID); options.addOption(OPTION_CUBE_NAME); options.addOption(OPTION_META_URL); options.addOption(OPTION_MERGE_SEGMENT_IDS); options.addOption(OPTION_OUTPUT_PATH_DICT); options.addOption(OPTION_OUTPUT_PATH_STAT); parseOptions(options, args); final String segmentId = getOptionValue(OPTION_SEGMENT_ID); final String segmentIds = getOptionValue(OPTION_MERGE_SEGMENT_IDS); final String cubeName = getOptionValue(OPTION_CUBE_NAME); final String metaUrl = getOptionValue(OPTION_META_URL); final String dictOutputPath = getOptionValue(OPTION_OUTPUT_PATH_DICT); final String statOutputPath = getOptionValue(OPTION_OUTPUT_PATH_STAT); CubeManager cubeMgr = CubeManager.getInstance(KylinConfig.getInstanceFromEnv()); CubeInstance cube = cubeMgr.getCube(cubeName); CubeDesc cubeDesc = cube.getDescriptor(); CubeSegment segment = cube.getSegmentById(segmentId); Segments<CubeSegment> mergingSeg = cube.getMergingSegments(segment); job = Job.getInstance(getConf(), getOptionValue(OPTION_JOB_NAME)); job.getConfiguration().set(BatchConstants.ARG_CUBE_NAME, cubeName); job.getConfiguration().set(OPTION_META_URL.getOpt(), metaUrl); job.getConfiguration().set(OPTION_SEGMENT_ID.getOpt(), segmentId); job.getConfiguration().set(OPTION_MERGE_SEGMENT_IDS.getOpt(), segmentIds); job.getConfiguration().set(OPTION_OUTPUT_PATH_STAT.getOpt(), statOutputPath); job.getConfiguration().set("num.map.tasks", String.valueOf(cubeDesc.getAllColumnsNeedDictionaryBuilt().size() + 1)); job.setNumReduceTasks(1); setJobClasspath(job, cube.getConfig()); // dump metadata to HDFS attachSegmentsMetadataWithDict(mergingSeg, metaUrl); // clean output dir HadoopUtil.deletePath(job.getConfiguration(), new Path(dictOutputPath)); job.setMapperClass(MergeDictionaryMapper.class); job.setReducerClass(MergeDictionaryReducer.class); job.setMapOutputKeyClass(IntWritable.class); job.setMapOutputValueClass(Text.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); job.setInputFormatClass(IndexArrInputFormat.class); job.setOutputFormatClass(SequenceFileOutputFormat.class); SequenceFileOutputFormat.setOutputCompressionType(job, SequenceFile.CompressionType.NONE); SequenceFileOutputFormat.setOutputPath(job, new Path(dictOutputPath)); logger.info("Starting: " + job.getJobName()); return waitForCompletion(job); } finally { if (job != null) cleanupTempConfFile(job.getConfiguration()); } }
Example 9
Source File: SparkCubingByLayer.java From kylin with Apache License 2.0 | 4 votes |
@Override protected void execute(OptionsHelper optionsHelper) throws Exception { String metaUrl = optionsHelper.getOptionValue(OPTION_META_URL); String hiveTable = optionsHelper.getOptionValue(OPTION_INPUT_TABLE); String inputPath = optionsHelper.getOptionValue(OPTION_INPUT_PATH); String cubeName = optionsHelper.getOptionValue(OPTION_CUBE_NAME); String segmentId = optionsHelper.getOptionValue(OPTION_SEGMENT_ID); String outputPath = optionsHelper.getOptionValue(OPTION_OUTPUT_PATH); Class[] kryoClassArray = new Class[] { Class.forName("scala.reflect.ClassTag$$anon$1") }; SparkConf conf = new SparkConf().setAppName("Cubing for:" + cubeName + " segment " + segmentId); //serialization conf conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); conf.set("spark.kryo.registrator", "org.apache.kylin.engine.spark.KylinKryoRegistrator"); conf.set("spark.kryo.registrationRequired", "true").registerKryoClasses(kryoClassArray); KylinSparkJobListener jobListener = new KylinSparkJobListener(); JavaSparkContext sc = new JavaSparkContext(conf); sc.sc().addSparkListener(jobListener); HadoopUtil.deletePath(sc.hadoopConfiguration(), new Path(outputPath)); SparkUtil.modifySparkHadoopConfiguration(sc.sc(), AbstractHadoopJob.loadKylinConfigFromHdfs(new SerializableConfiguration(sc.hadoopConfiguration()), metaUrl)); // set dfs.replication and enable compress final SerializableConfiguration sConf = new SerializableConfiguration(sc.hadoopConfiguration()); KylinConfig envConfig = AbstractHadoopJob.loadKylinConfigFromHdfs(sConf, metaUrl); final CubeInstance cubeInstance = CubeManager.getInstance(envConfig).getCube(cubeName); final CubeDesc cubeDesc = cubeInstance.getDescriptor(); final CubeSegment cubeSegment = cubeInstance.getSegmentById(segmentId); logger.info("RDD input path: {}", inputPath); logger.info("RDD Output path: {}", outputPath); final Job job = Job.getInstance(sConf.get()); SparkUtil.setHadoopConfForCuboid(job, cubeSegment, metaUrl); int countMeasureIndex = 0; for (MeasureDesc measureDesc : cubeDesc.getMeasures()) { if (measureDesc.getFunction().isCount() == true) { break; } else { countMeasureIndex++; } } final CubeStatsReader cubeStatsReader = new CubeStatsReader(cubeSegment, envConfig); boolean[] needAggr = new boolean[cubeDesc.getMeasures().size()]; boolean allNormalMeasure = true; for (int i = 0; i < cubeDesc.getMeasures().size(); i++) { needAggr[i] = !cubeDesc.getMeasures().get(i).getFunction().getMeasureType().onlyAggrInBaseCuboid(); allNormalMeasure = allNormalMeasure && needAggr[i]; } logger.info("All measure are normal (agg on all cuboids) ? : " + allNormalMeasure); StorageLevel storageLevel = StorageLevel.fromString(envConfig.getSparkStorageLevel()); boolean isSequenceFile = JoinedFlatTable.SEQUENCEFILE.equalsIgnoreCase(envConfig.getFlatTableStorageFormat()); final JavaPairRDD<ByteArray, Object[]> encodedBaseRDD = SparkUtil .hiveRecordInputRDD(isSequenceFile, sc, inputPath, hiveTable) .mapToPair(new EncodeBaseCuboid(cubeName, segmentId, metaUrl, sConf)); Long totalCount = 0L; if (envConfig.isSparkSanityCheckEnabled()) { totalCount = encodedBaseRDD.count(); } final BaseCuboidReducerFunction2 baseCuboidReducerFunction = new BaseCuboidReducerFunction2(cubeName, metaUrl, sConf); BaseCuboidReducerFunction2 reducerFunction2 = baseCuboidReducerFunction; if (allNormalMeasure == false) { reducerFunction2 = new CuboidReducerFunction2(cubeName, metaUrl, sConf, needAggr); } final int totalLevels = cubeSegment.getCuboidScheduler().getBuildLevel(); JavaPairRDD<ByteArray, Object[]>[] allRDDs = new JavaPairRDD[totalLevels + 1]; int level = 0; int partition = SparkUtil.estimateLayerPartitionNum(level, cubeStatsReader, envConfig); // aggregate to calculate base cuboid allRDDs[0] = encodedBaseRDD.reduceByKey(baseCuboidReducerFunction, partition).persist(storageLevel); saveToHDFS(allRDDs[0], metaUrl, cubeName, cubeSegment, outputPath, 0, job, envConfig); PairFlatMapFunction flatMapFunction = new CuboidFlatMap(cubeName, segmentId, metaUrl, sConf); // aggregate to ND cuboids for (level = 1; level <= totalLevels; level++) { partition = SparkUtil.estimateLayerPartitionNum(level, cubeStatsReader, envConfig); allRDDs[level] = allRDDs[level - 1].flatMapToPair(flatMapFunction).reduceByKey(reducerFunction2, partition) .persist(storageLevel); allRDDs[level - 1].unpersist(false); if (envConfig.isSparkSanityCheckEnabled() == true) { sanityCheck(allRDDs[level], totalCount, level, cubeStatsReader, countMeasureIndex); } saveToHDFS(allRDDs[level], metaUrl, cubeName, cubeSegment, outputPath, level, job, envConfig); } allRDDs[totalLevels].unpersist(false); logger.info("Finished on calculating all level cuboids."); logger.info("HDFS: Number of bytes written=" + jobListener.metrics.getBytesWritten()); //HadoopUtil.deleteHDFSMeta(metaUrl); }
Example 10
Source File: FlinkMergingDictionary.java From kylin with Apache License 2.0 | 4 votes |
@Override protected void execute(OptionsHelper optionsHelper) throws Exception { final String cubeName = optionsHelper.getOptionValue(OPTION_CUBE_NAME); final String segmentId = optionsHelper.getOptionValue(OPTION_SEGMENT_ID); final String metaUrl = optionsHelper.getOptionValue(OPTION_META_URL); final String segmentIds = optionsHelper.getOptionValue(OPTION_MERGE_SEGMENT_IDS); final String dictOutputPath = optionsHelper.getOptionValue(OPTION_OUTPUT_PATH_DICT); final String statOutputPath = optionsHelper.getOptionValue(OPTION_OUTPUT_PATH_STAT); final String enableObjectReuseOptValue = optionsHelper.getOptionValue(OPTION_ENABLE_OBJECT_REUSE); boolean enableObjectReuse = false; if (enableObjectReuseOptValue != null && !enableObjectReuseOptValue.isEmpty()) { enableObjectReuse = true; } final Job job = Job.getInstance(); ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); if (enableObjectReuse) { env.getConfig().enableObjectReuse(); } HadoopUtil.deletePath(job.getConfiguration(), new Path(dictOutputPath)); final SerializableConfiguration sConf = new SerializableConfiguration(job.getConfiguration()); final KylinConfig envConfig = AbstractHadoopJob.loadKylinConfigFromHdfs(sConf, metaUrl); final CubeInstance cubeInstance = CubeManager.getInstance(envConfig).getCube(cubeName); final CubeDesc cubeDesc = CubeDescManager.getInstance(envConfig).getCubeDesc(cubeInstance.getDescName()); logger.info("Dictionary output path: {}", dictOutputPath); logger.info("Statistics output path: {}", statOutputPath); final TblColRef[] tblColRefs = cubeDesc.getAllColumnsNeedDictionaryBuilt().toArray(new TblColRef[0]); final int columnLength = tblColRefs.length; List<Integer> indexs = Lists.newArrayListWithCapacity(columnLength); for (int i = 0; i <= columnLength; i++) { indexs.add(i); } DataSource<Integer> indexDS = env.fromCollection(indexs); DataSet<Tuple2<Text, Text>> colToDictPathDS = indexDS.map(new MergeDictAndStatsFunction(cubeName, metaUrl, segmentId, StringUtil.splitByComma(segmentIds), statOutputPath, tblColRefs, sConf)); FlinkUtil.setHadoopConfForCuboid(job, null, null); HadoopOutputFormat<Text, Text> hadoopOF = new HadoopOutputFormat<>(new SequenceFileOutputFormat<>(), job); SequenceFileOutputFormat.setOutputPath(job, new Path(dictOutputPath)); colToDictPathDS.output(hadoopOF).setParallelism(1); env.execute("Merge dictionary for cube:" + cubeName + ", segment " + segmentId); }
Example 11
Source File: FlinkCubingByLayer.java From kylin with Apache License 2.0 | 4 votes |
@Override protected void execute(OptionsHelper optionsHelper) throws Exception { String metaUrl = optionsHelper.getOptionValue(OPTION_META_URL); String hiveTable = optionsHelper.getOptionValue(OPTION_INPUT_TABLE); String inputPath = optionsHelper.getOptionValue(OPTION_INPUT_PATH); String cubeName = optionsHelper.getOptionValue(OPTION_CUBE_NAME); String segmentId = optionsHelper.getOptionValue(OPTION_SEGMENT_ID); String outputPath = optionsHelper.getOptionValue(OPTION_OUTPUT_PATH); String enableObjectReuseOptValue = optionsHelper.getOptionValue(OPTION_ENABLE_OBJECT_REUSE); boolean enableObjectReuse = false; if (enableObjectReuseOptValue != null && !enableObjectReuseOptValue.isEmpty()) { enableObjectReuse = true; } Job job = Job.getInstance(); FileSystem fs = HadoopUtil.getWorkingFileSystem(); HadoopUtil.deletePath(job.getConfiguration(), new Path(outputPath)); final SerializableConfiguration sConf = new SerializableConfiguration(job.getConfiguration()); KylinConfig envConfig = AbstractHadoopJob.loadKylinConfigFromHdfs(sConf, metaUrl); final CubeInstance cubeInstance = CubeManager.getInstance(envConfig).getCube(cubeName); final CubeDesc cubeDesc = cubeInstance.getDescriptor(); final CubeSegment cubeSegment = cubeInstance.getSegmentById(segmentId); logger.info("DataSet input path : {}", inputPath); logger.info("DataSet output path : {}", outputPath); int countMeasureIndex = 0; for (MeasureDesc measureDesc : cubeDesc.getMeasures()) { if (measureDesc.getFunction().isCount() == true) { break; } else { countMeasureIndex++; } } final CubeStatsReader cubeStatsReader = new CubeStatsReader(cubeSegment, envConfig); boolean[] needAggr = new boolean[cubeDesc.getMeasures().size()]; boolean allNormalMeasure = true; for (int i = 0; i < cubeDesc.getMeasures().size(); i++) { needAggr[i] = !cubeDesc.getMeasures().get(i).getFunction().getMeasureType().onlyAggrInBaseCuboid(); allNormalMeasure = allNormalMeasure && needAggr[i]; } logger.info("All measure are normal (agg on all cuboids) ? : " + allNormalMeasure); boolean isSequenceFile = JoinedFlatTable.SEQUENCEFILE.equalsIgnoreCase(envConfig.getFlatTableStorageFormat()); ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); if (enableObjectReuse) { env.getConfig().enableObjectReuse(); } env.getConfig().registerKryoType(PercentileCounter.class); env.getConfig().registerTypeWithKryoSerializer(PercentileCounter.class, PercentileCounterSerializer.class); DataSet<String[]> hiveDataSet = FlinkUtil.readHiveRecords(isSequenceFile, env, inputPath, hiveTable, job); DataSet<Tuple2<ByteArray, Object[]>> encodedBaseDataSet = hiveDataSet.mapPartition( new EncodeBaseCuboidMapPartitionFunction(cubeName, segmentId, metaUrl, sConf)); Long totalCount = 0L; if (envConfig.isFlinkSanityCheckEnabled()) { totalCount = encodedBaseDataSet.count(); } final BaseCuboidReduceGroupFunction baseCuboidReducerFunction = new BaseCuboidReduceGroupFunction(cubeName, metaUrl, sConf); BaseCuboidReduceGroupFunction reducerFunction = baseCuboidReducerFunction; if (!allNormalMeasure) { reducerFunction = new CuboidReduceGroupFunction(cubeName, metaUrl, sConf, needAggr); } final int totalLevels = cubeSegment.getCuboidScheduler().getBuildLevel(); DataSet<Tuple2<ByteArray, Object[]>>[] allDataSets = new DataSet[totalLevels + 1]; int level = 0; // aggregate to calculate base cuboid allDataSets[0] = encodedBaseDataSet.groupBy(0).reduceGroup(baseCuboidReducerFunction); sinkToHDFS(allDataSets[0], metaUrl, cubeName, cubeSegment, outputPath, 0, Job.getInstance(), envConfig); CuboidMapPartitionFunction mapPartitionFunction = new CuboidMapPartitionFunction(cubeName, segmentId, metaUrl, sConf); for (level = 1; level <= totalLevels; level++) { allDataSets[level] = allDataSets[level - 1].mapPartition(mapPartitionFunction).groupBy(0).reduceGroup(reducerFunction); if (envConfig.isFlinkSanityCheckEnabled()) { sanityCheck(allDataSets[level], totalCount, level, cubeStatsReader, countMeasureIndex); } sinkToHDFS(allDataSets[level], metaUrl, cubeName, cubeSegment, outputPath, level, Job.getInstance(), envConfig); } env.execute("Cubing for : " + cubeName + " segment " + segmentId); logger.info("Finished on calculating all level cuboids."); logger.info("HDFS: Number of bytes written=" + FlinkBatchCubingJobBuilder2.getFileSize(outputPath, fs)); }
Example 12
Source File: FlinkFactDistinctColumns.java From kylin with Apache License 2.0 | 4 votes |
@Override protected void execute(OptionsHelper optionsHelper) throws Exception { String cubeName = optionsHelper.getOptionValue(OPTION_CUBE_NAME); String metaUrl = optionsHelper.getOptionValue(OPTION_META_URL); String segmentId = optionsHelper.getOptionValue(OPTION_SEGMENT_ID); String hiveTable = optionsHelper.getOptionValue(OPTION_INPUT_TABLE); String inputPath = optionsHelper.getOptionValue(OPTION_INPUT_PATH); String outputPath = optionsHelper.getOptionValue(OPTION_OUTPUT_PATH); String counterPath = optionsHelper.getOptionValue(OPTION_COUNTER_PATH); int samplingPercent = Integer.parseInt(optionsHelper.getOptionValue(OPTION_STATS_SAMPLING_PERCENT)); String enableObjectReuseOptValue = optionsHelper.getOptionValue(OPTION_ENABLE_OBJECT_REUSE); Job job = Job.getInstance(); FileSystem fs = HadoopUtil.getWorkingFileSystem(job.getConfiguration()); HadoopUtil.deletePath(job.getConfiguration(), new Path(outputPath)); final SerializableConfiguration sConf = new SerializableConfiguration(job.getConfiguration()); KylinConfig envConfig = AbstractHadoopJob.loadKylinConfigFromHdfs(sConf, metaUrl); final CubeInstance cubeInstance = CubeManager.getInstance(envConfig).getCube(cubeName); final FactDistinctColumnsReducerMapping reducerMapping = new FactDistinctColumnsReducerMapping(cubeInstance); final int totalReducer = reducerMapping.getTotalReducerNum(); logger.info("getTotalReducerNum: {}", totalReducer); logger.info("getCuboidRowCounterReducerNum: {}", reducerMapping.getCuboidRowCounterReducerNum()); logger.info("counter path {}", counterPath); boolean isSequenceFile = JoinedFlatTable.SEQUENCEFILE.equalsIgnoreCase(envConfig.getFlatTableStorageFormat()); // calculate source record bytes size final String bytesWrittenName = "byte-writer-counter"; final String recordCounterName = "record-counter"; ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); if (!StringUtil.isEmpty(enableObjectReuseOptValue) && enableObjectReuseOptValue.equalsIgnoreCase("true")) { env.getConfig().enableObjectReuse(); } DataSet<String[]> recordDataSet = FlinkUtil.readHiveRecords(isSequenceFile, env, inputPath, hiveTable, job); // read record from flat table // output: // 1, statistic // 2, field value of dict col // 3, min/max field value of not dict col DataSet<Tuple2<SelfDefineSortableKey, Text>> flatOutputDataSet = recordDataSet.mapPartition( new FlatOutputMapPartitionFunction(sConf, cubeName, segmentId, metaUrl, samplingPercent, bytesWrittenName, recordCounterName)); // repartition data, make each reducer handle only one col data or the statistic data DataSet<Tuple2<SelfDefineSortableKey, Text>> partitionDataSet = flatOutputDataSet .partitionCustom(new FactDistinctColumnPartitioner(cubeName, metaUrl, sConf), 0) .setParallelism(totalReducer); // multiple output result // 1, CFG_OUTPUT_COLUMN: field values of dict col, which will not be built in reducer, like globalDictCol // 2, CFG_OUTPUT_DICT: dictionary object built in reducer // 3, CFG_OUTPUT_STATISTICS: cube statistic: hll of cuboids ... // 4, CFG_OUTPUT_PARTITION: dimension value range(min,max) DataSet<Tuple2<String, Tuple3<Writable, Writable, String>>> outputDataSet = partitionDataSet .mapPartition(new MultiOutputMapPartitionFunction(sConf, cubeName, segmentId, metaUrl, samplingPercent)) .setParallelism(totalReducer); // make each reducer output to respective dir MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_COLUMN, SequenceFileOutputFormat.class, NullWritable.class, Text.class); MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_DICT, SequenceFileOutputFormat.class, NullWritable.class, ArrayPrimitiveWritable.class); MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_STATISTICS, SequenceFileOutputFormat.class, LongWritable.class, BytesWritable.class); MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_PARTITION, TextOutputFormat.class, NullWritable.class, LongWritable.class); FileOutputFormat.setOutputPath(job, new Path(outputPath)); FileOutputFormat.setCompressOutput(job, false); // prevent to create zero-sized default output LazyOutputFormat.setOutputFormatClass(job, SequenceFileOutputFormat.class); outputDataSet.output(new HadoopMultipleOutputFormat(new LazyOutputFormat(), job)); JobExecutionResult jobExecutionResult = env.execute("Fact distinct columns for:" + cubeName + " segment " + segmentId); Map<String, Object> accumulatorResults = jobExecutionResult.getAllAccumulatorResults(); Long recordCount = (Long) accumulatorResults.get(recordCounterName); Long bytesWritten = (Long) accumulatorResults.get(bytesWrittenName); logger.info("Map input records={}", recordCount); logger.info("HDFS Read: {} HDFS Write", bytesWritten); logger.info("HDFS: Number of bytes written=" + FlinkBatchCubingJobBuilder2.getFileSize(outputPath, fs)); Map<String, String> counterMap = Maps.newHashMap(); counterMap.put(ExecutableConstants.SOURCE_RECORDS_COUNT, String.valueOf(recordCount)); counterMap.put(ExecutableConstants.SOURCE_RECORDS_SIZE, String.valueOf(bytesWritten)); // save counter to hdfs HadoopUtil.writeToSequenceFile(job.getConfiguration(), counterPath, counterMap); }
Example 13
Source File: SparkMergingDictionary.java From kylin with Apache License 2.0 | 4 votes |
@Override protected void execute(OptionsHelper optionsHelper) throws Exception { final String cubeName = optionsHelper.getOptionValue(OPTION_CUBE_NAME); final String segmentId = optionsHelper.getOptionValue(OPTION_SEGMENT_ID); final String metaUrl = optionsHelper.getOptionValue(OPTION_META_URL); final String segmentIds = optionsHelper.getOptionValue(OPTION_MERGE_SEGMENT_IDS); final String dictOutputPath = optionsHelper.getOptionValue(OPTION_OUTPUT_PATH_DICT); final String statOutputPath = optionsHelper.getOptionValue(OPTION_OUTPUT_PATH_STAT); Class[] kryoClassArray = new Class[] { Class.forName("scala.reflect.ClassTag$$anon$1"), Class.forName("scala.collection.mutable.WrappedArray$ofRef") }; SparkConf conf = new SparkConf().setAppName("Merge dictionary for cube:" + cubeName + ", segment " + segmentId); //serialization conf conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); conf.set("spark.kryo.registrator", "org.apache.kylin.engine.spark.KylinKryoRegistrator"); conf.set("spark.kryo.registrationRequired", "true").registerKryoClasses(kryoClassArray); try (JavaSparkContext sc = new JavaSparkContext(conf)) { KylinSparkJobListener jobListener = new KylinSparkJobListener(); sc.sc().addSparkListener(jobListener); HadoopUtil.deletePath(sc.hadoopConfiguration(), new Path(dictOutputPath)); final SerializableConfiguration sConf = new SerializableConfiguration(sc.hadoopConfiguration()); final KylinConfig envConfig = AbstractHadoopJob.loadKylinConfigFromHdfs(sConf, metaUrl); final CubeInstance cubeInstance = CubeManager.getInstance(envConfig).getCube(cubeName); final CubeDesc cubeDesc = CubeDescManager.getInstance(envConfig).getCubeDesc(cubeInstance.getDescName()); logger.info("Dictionary output path: {}", dictOutputPath); logger.info("Statistics output path: {}", statOutputPath); final TblColRef[] tblColRefs = cubeDesc.getAllColumnsNeedDictionaryBuilt().toArray(new TblColRef[0]); final int columnLength = tblColRefs.length; List<Integer> indexs = Lists.newArrayListWithCapacity(columnLength); for (int i = 0; i <= columnLength; i++) { indexs.add(i); } JavaRDD<Integer> indexRDD = sc.parallelize(indexs, columnLength + 1); JavaPairRDD<Text, Text> colToDictPathRDD = indexRDD.mapToPair(new MergeDictAndStatsFunction(cubeName, metaUrl, segmentId, StringUtil.splitByComma(segmentIds), statOutputPath, tblColRefs, sConf)); colToDictPathRDD.coalesce(1, false).saveAsNewAPIHadoopFile(dictOutputPath, Text.class, Text.class, SequenceFileOutputFormat.class); } }
Example 14
Source File: FlinkCubingByLayer.java From kylin-on-parquet-v2 with Apache License 2.0 | 4 votes |
@Override protected void execute(OptionsHelper optionsHelper) throws Exception { String metaUrl = optionsHelper.getOptionValue(OPTION_META_URL); String hiveTable = optionsHelper.getOptionValue(OPTION_INPUT_TABLE); String inputPath = optionsHelper.getOptionValue(OPTION_INPUT_PATH); String cubeName = optionsHelper.getOptionValue(OPTION_CUBE_NAME); String segmentId = optionsHelper.getOptionValue(OPTION_SEGMENT_ID); String outputPath = optionsHelper.getOptionValue(OPTION_OUTPUT_PATH); String enableObjectReuseOptValue = optionsHelper.getOptionValue(OPTION_ENABLE_OBJECT_REUSE); boolean enableObjectReuse = false; if (enableObjectReuseOptValue != null && !enableObjectReuseOptValue.isEmpty()) { enableObjectReuse = true; } Job job = Job.getInstance(); FileSystem fs = HadoopUtil.getWorkingFileSystem(); HadoopUtil.deletePath(job.getConfiguration(), new Path(outputPath)); final SerializableConfiguration sConf = new SerializableConfiguration(job.getConfiguration()); KylinConfig envConfig = AbstractHadoopJob.loadKylinConfigFromHdfs(sConf, metaUrl); final CubeInstance cubeInstance = CubeManager.getInstance(envConfig).getCube(cubeName); final CubeDesc cubeDesc = cubeInstance.getDescriptor(); final CubeSegment cubeSegment = cubeInstance.getSegmentById(segmentId); logger.info("DataSet input path : {}", inputPath); logger.info("DataSet output path : {}", outputPath); int countMeasureIndex = 0; for (MeasureDesc measureDesc : cubeDesc.getMeasures()) { if (measureDesc.getFunction().isCount() == true) { break; } else { countMeasureIndex++; } } final CubeStatsReader cubeStatsReader = new CubeStatsReader(cubeSegment, envConfig); boolean[] needAggr = new boolean[cubeDesc.getMeasures().size()]; boolean allNormalMeasure = true; for (int i = 0; i < cubeDesc.getMeasures().size(); i++) { needAggr[i] = !cubeDesc.getMeasures().get(i).getFunction().getMeasureType().onlyAggrInBaseCuboid(); allNormalMeasure = allNormalMeasure && needAggr[i]; } logger.info("All measure are normal (agg on all cuboids) ? : " + allNormalMeasure); boolean isSequenceFile = JoinedFlatTable.SEQUENCEFILE.equalsIgnoreCase(envConfig.getFlatTableStorageFormat()); ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); if (enableObjectReuse) { env.getConfig().enableObjectReuse(); } env.getConfig().registerKryoType(PercentileCounter.class); env.getConfig().registerTypeWithKryoSerializer(PercentileCounter.class, PercentileCounterSerializer.class); DataSet<String[]> hiveDataSet = FlinkUtil.readHiveRecords(isSequenceFile, env, inputPath, hiveTable, job); DataSet<Tuple2<ByteArray, Object[]>> encodedBaseDataSet = hiveDataSet.mapPartition( new EncodeBaseCuboidMapPartitionFunction(cubeName, segmentId, metaUrl, sConf)); Long totalCount = 0L; if (envConfig.isFlinkSanityCheckEnabled()) { totalCount = encodedBaseDataSet.count(); } final BaseCuboidReduceGroupFunction baseCuboidReducerFunction = new BaseCuboidReduceGroupFunction(cubeName, metaUrl, sConf); BaseCuboidReduceGroupFunction reducerFunction = baseCuboidReducerFunction; if (!allNormalMeasure) { reducerFunction = new CuboidReduceGroupFunction(cubeName, metaUrl, sConf, needAggr); } final int totalLevels = cubeSegment.getCuboidScheduler().getBuildLevel(); DataSet<Tuple2<ByteArray, Object[]>>[] allDataSets = new DataSet[totalLevels + 1]; int level = 0; // aggregate to calculate base cuboid allDataSets[0] = encodedBaseDataSet.groupBy(0).reduceGroup(baseCuboidReducerFunction); sinkToHDFS(allDataSets[0], metaUrl, cubeName, cubeSegment, outputPath, 0, Job.getInstance(), envConfig); CuboidMapPartitionFunction mapPartitionFunction = new CuboidMapPartitionFunction(cubeName, segmentId, metaUrl, sConf); for (level = 1; level <= totalLevels; level++) { allDataSets[level] = allDataSets[level - 1].mapPartition(mapPartitionFunction).groupBy(0).reduceGroup(reducerFunction); if (envConfig.isFlinkSanityCheckEnabled()) { sanityCheck(allDataSets[level], totalCount, level, cubeStatsReader, countMeasureIndex); } sinkToHDFS(allDataSets[level], metaUrl, cubeName, cubeSegment, outputPath, level, Job.getInstance(), envConfig); } env.execute("Cubing for : " + cubeName + " segment " + segmentId); logger.info("Finished on calculating all level cuboids."); logger.info("HDFS: Number of bytes written=" + FlinkBatchCubingJobBuilder2.getFileSize(outputPath, fs)); }
Example 15
Source File: SparkUHCDictionary.java From kylin-on-parquet-v2 with Apache License 2.0 | 4 votes |
@Override protected void execute(OptionsHelper optionsHelper) throws Exception { String cubeName = optionsHelper.getOptionValue(OPTION_CUBE_NAME); String metaUrl = optionsHelper.getOptionValue(OPTION_META_URL); String segmentId = optionsHelper.getOptionValue(OPTION_SEGMENT_ID); String inputPath = optionsHelper.getOptionValue(OPTION_INPUT_PATH); String outputPath = optionsHelper.getOptionValue(OPTION_OUTPUT_PATH); String counterPath = optionsHelper.getOptionValue(OPTION_COUNTER_PATH); Class[] kryoClassArray = new Class[]{Class.forName("scala.reflect.ClassTag$$anon$1"), Class.forName("org.apache.kylin.engine.mr.steps.SelfDefineSortableKey")}; SparkConf conf = new SparkConf().setAppName("Build uhc dictionary with spark for:" + cubeName + " segment " + segmentId); //serialization conf conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); conf.set("spark.kryo.registrator", "org.apache.kylin.engine.spark.KylinKryoRegistrator"); conf.set("spark.kryo.registrationRequired", "true").registerKryoClasses(kryoClassArray); KylinSparkJobListener jobListener = new KylinSparkJobListener(); try (JavaSparkContext sc = new JavaSparkContext(conf)) { sc.sc().addSparkListener(jobListener); HadoopUtil.deletePath(sc.hadoopConfiguration(), new Path(outputPath)); Configuration hadoopConf = sc.hadoopConfiguration(); hadoopConf.set("mapreduce.input.pathFilter.class", "org.apache.kylin.engine.mr.steps.filter.UHCDictPathFilter"); final SerializableConfiguration sConf = new SerializableConfiguration(hadoopConf); KylinConfig config = AbstractHadoopJob.loadKylinConfigFromHdfs(sConf, metaUrl); CubeManager cubeMgr = CubeManager.getInstance(config); CubeInstance cube = cubeMgr.getCube(cubeName); final Job job = Job.getInstance(sConf.get()); // calculate source record bytes size final LongAccumulator bytesWritten = sc.sc().longAccumulator(); String hdfsDir = sc.hadoopConfiguration().get(BatchConstants.CFG_GLOBAL_DICT_BASE_DIR); List<TblColRef> uhcColumns = cube.getDescriptor().getAllUHCColumns(); int reducerCount = uhcColumns.size(); if (reducerCount == 0) { return; } logger.info("RDD Output path: {}", outputPath); logger.info("getTotalReducerNum: {}", reducerCount); logger.info("counter path {}", counterPath); JavaPairRDD<String, String> wholeSequenceFileNames = null; for (TblColRef tblColRef : uhcColumns) { String columnPath = inputPath + "/" + tblColRef.getIdentity(); if (!HadoopUtil.getFileSystem(columnPath).exists(new Path(columnPath))) { continue; } if (wholeSequenceFileNames == null) { wholeSequenceFileNames = sc.wholeTextFiles(columnPath); } else { wholeSequenceFileNames = wholeSequenceFileNames.union(sc.wholeTextFiles(columnPath)); } } if (wholeSequenceFileNames == null) { logger.error("There're no sequence files at " + inputPath + " !"); return; } JavaPairRDD<String, Tuple3<Writable, Writable, String>> pairRDD = wholeSequenceFileNames.map(tuple -> tuple._1) .mapToPair(new InputPathAndFilterAddFunction2(config, uhcColumns)) .filter(tuple -> tuple._1 != -1) .reduceByKey((list1, list2) -> combineAllColumnDistinctValues(list1, list2)) .mapToPair(new ProcessUHCColumnValues(cubeName, config, hdfsDir, uhcColumns)); MultipleOutputs.addNamedOutput(job, BatchConstants.CFG_OUTPUT_DICT, SequenceFileOutputFormat.class, NullWritable.class, ArrayPrimitiveWritable.class); FileOutputFormat.setOutputPath(job, new Path(outputPath)); job.getConfiguration().set(BatchConstants.CFG_OUTPUT_PATH, outputPath); //prevent to create zero-sized default output LazyOutputFormat.setOutputFormatClass(job, SequenceFileOutputFormat.class); MultipleOutputsRDD multipleOutputsRDD = MultipleOutputsRDD.rddToMultipleOutputsRDD(pairRDD); multipleOutputsRDD.saveAsNewAPIHadoopDatasetWithMultipleOutputs(job.getConfiguration()); logger.info("Map input records={}", reducerCount); logger.info("HDFS Read: {} HDFS Write", bytesWritten.value()); Map<String, String> counterMap = Maps.newHashMap(); counterMap.put(ExecutableConstants.SOURCE_RECORDS_COUNT, String.valueOf(reducerCount)); counterMap.put(ExecutableConstants.SOURCE_RECORDS_SIZE, String.valueOf(bytesWritten.value())); // save counter to hdfs HadoopUtil.writeToSequenceFile(sc.hadoopConfiguration(), counterPath, counterMap); HadoopUtil.deleteHDFSMeta(metaUrl); } }
Example 16
Source File: SparkColumnCardinality.java From kylin-on-parquet-v2 with Apache License 2.0 | 4 votes |
@Override protected void execute(OptionsHelper optionsHelper) throws Exception { String tableName = optionsHelper.getOptionValue(OPTION_TABLE_NAME); String output = optionsHelper.getOptionValue(OPTION_OUTPUT); int columnCnt = Integer.valueOf(optionsHelper.getOptionValue(OPTION_COLUMN_COUNT)); Class[] kryoClassArray = new Class[]{Class.forName("scala.reflect.ClassTag$$anon$1"), Class.forName("org.apache.kylin.engine.mr.steps.SelfDefineSortableKey")}; SparkConf conf = new SparkConf().setAppName("Calculate table:" + tableName); //set spark.sql.catalogImplementation=hive, If it is not set, SparkSession can't read hive metadata, and throw "org.apache.spark.sql.AnalysisException" conf.set("spark.sql.catalogImplementation", "hive"); //serialization conf conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); conf.set("spark.kryo.registrator", "org.apache.kylin.engine.spark.KylinKryoRegistrator"); conf.set("spark.kryo.registrationRequired", "true").registerKryoClasses(kryoClassArray); KylinSparkJobListener jobListener = new KylinSparkJobListener(); try (JavaSparkContext sc = new JavaSparkContext(conf)) { sc.sc().addSparkListener(jobListener); HadoopUtil.deletePath(sc.hadoopConfiguration(), new Path(output)); // table will be loaded by spark sql, so isSequenceFile set false final JavaRDD<String[]> recordRDD = SparkUtil.hiveRecordInputRDD(false, sc, null, tableName); JavaPairRDD<Integer, Long> resultRdd = recordRDD.mapPartitionsToPair(new BuildHllCounter()) .reduceByKey((x, y) -> { x.merge(y); return x; }) .mapToPair(record -> { return new Tuple2<>(record._1, record._2.getCountEstimate()); }) .sortByKey(true, 1) .cache(); if (resultRdd.count() == 0) { ArrayList<Tuple2<Integer, Long>> list = new ArrayList<>(); for (int i = 0; i < columnCnt; ++i) { list.add(new Tuple2<>(i, 0L)); } JavaPairRDD<Integer, Long> nullRdd = sc.parallelizePairs(list).repartition(1); nullRdd.saveAsNewAPIHadoopFile(output, IntWritable.class, LongWritable.class, TextOutputFormat.class); } else { resultRdd.saveAsNewAPIHadoopFile(output, IntWritable.class, LongWritable.class, TextOutputFormat.class); } } }
Example 17
Source File: SparkCubingByLayer.java From kylin-on-parquet-v2 with Apache License 2.0 | 4 votes |
@Override protected void execute(OptionsHelper optionsHelper) throws Exception { String metaUrl = optionsHelper.getOptionValue(OPTION_META_URL); String hiveTable = optionsHelper.getOptionValue(OPTION_INPUT_TABLE); String inputPath = optionsHelper.getOptionValue(OPTION_INPUT_PATH); String cubeName = optionsHelper.getOptionValue(OPTION_CUBE_NAME); String segmentId = optionsHelper.getOptionValue(OPTION_SEGMENT_ID); String outputPath = optionsHelper.getOptionValue(OPTION_OUTPUT_PATH); Class[] kryoClassArray = new Class[] { Class.forName("scala.reflect.ClassTag$$anon$1") }; SparkConf conf = new SparkConf().setAppName("Cubing for:" + cubeName + " segment " + segmentId); //serialization conf conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer"); conf.set("spark.kryo.registrator", "org.apache.kylin.engine.spark.KylinKryoRegistrator"); conf.set("spark.kryo.registrationRequired", "true").registerKryoClasses(kryoClassArray); KylinSparkJobListener jobListener = new KylinSparkJobListener(); JavaSparkContext sc = new JavaSparkContext(conf); sc.sc().addSparkListener(jobListener); HadoopUtil.deletePath(sc.hadoopConfiguration(), new Path(outputPath)); SparkUtil.modifySparkHadoopConfiguration(sc.sc()); // set dfs.replication=2 and enable compress final SerializableConfiguration sConf = new SerializableConfiguration(sc.hadoopConfiguration()); KylinConfig envConfig = AbstractHadoopJob.loadKylinConfigFromHdfs(sConf, metaUrl); final CubeInstance cubeInstance = CubeManager.getInstance(envConfig).getCube(cubeName); final CubeDesc cubeDesc = cubeInstance.getDescriptor(); final CubeSegment cubeSegment = cubeInstance.getSegmentById(segmentId); logger.info("RDD input path: {}", inputPath); logger.info("RDD Output path: {}", outputPath); final Job job = Job.getInstance(sConf.get()); SparkUtil.setHadoopConfForCuboid(job, cubeSegment, metaUrl); int countMeasureIndex = 0; for (MeasureDesc measureDesc : cubeDesc.getMeasures()) { if (measureDesc.getFunction().isCount() == true) { break; } else { countMeasureIndex++; } } final CubeStatsReader cubeStatsReader = new CubeStatsReader(cubeSegment, envConfig); boolean[] needAggr = new boolean[cubeDesc.getMeasures().size()]; boolean allNormalMeasure = true; for (int i = 0; i < cubeDesc.getMeasures().size(); i++) { needAggr[i] = !cubeDesc.getMeasures().get(i).getFunction().getMeasureType().onlyAggrInBaseCuboid(); allNormalMeasure = allNormalMeasure && needAggr[i]; } logger.info("All measure are normal (agg on all cuboids) ? : " + allNormalMeasure); StorageLevel storageLevel = StorageLevel.fromString(envConfig.getSparkStorageLevel()); boolean isSequenceFile = JoinedFlatTable.SEQUENCEFILE.equalsIgnoreCase(envConfig.getFlatTableStorageFormat()); final JavaPairRDD<ByteArray, Object[]> encodedBaseRDD = SparkUtil .hiveRecordInputRDD(isSequenceFile, sc, inputPath, hiveTable) .mapToPair(new EncodeBaseCuboid(cubeName, segmentId, metaUrl, sConf)); Long totalCount = 0L; if (envConfig.isSparkSanityCheckEnabled()) { totalCount = encodedBaseRDD.count(); } final BaseCuboidReducerFunction2 baseCuboidReducerFunction = new BaseCuboidReducerFunction2(cubeName, metaUrl, sConf); BaseCuboidReducerFunction2 reducerFunction2 = baseCuboidReducerFunction; if (allNormalMeasure == false) { reducerFunction2 = new CuboidReducerFunction2(cubeName, metaUrl, sConf, needAggr); } final int totalLevels = cubeSegment.getCuboidScheduler().getBuildLevel(); JavaPairRDD<ByteArray, Object[]>[] allRDDs = new JavaPairRDD[totalLevels + 1]; int level = 0; int partition = SparkUtil.estimateLayerPartitionNum(level, cubeStatsReader, envConfig); // aggregate to calculate base cuboid allRDDs[0] = encodedBaseRDD.reduceByKey(baseCuboidReducerFunction, partition).persist(storageLevel); saveToHDFS(allRDDs[0], metaUrl, cubeName, cubeSegment, outputPath, 0, job, envConfig); PairFlatMapFunction flatMapFunction = new CuboidFlatMap(cubeName, segmentId, metaUrl, sConf); // aggregate to ND cuboids for (level = 1; level <= totalLevels; level++) { partition = SparkUtil.estimateLayerPartitionNum(level, cubeStatsReader, envConfig); allRDDs[level] = allRDDs[level - 1].flatMapToPair(flatMapFunction).reduceByKey(reducerFunction2, partition) .persist(storageLevel); allRDDs[level - 1].unpersist(false); if (envConfig.isSparkSanityCheckEnabled() == true) { sanityCheck(allRDDs[level], totalCount, level, cubeStatsReader, countMeasureIndex); } saveToHDFS(allRDDs[level], metaUrl, cubeName, cubeSegment, outputPath, level, job, envConfig); } allRDDs[totalLevels].unpersist(false); logger.info("Finished on calculating all level cuboids."); logger.info("HDFS: Number of bytes written=" + jobListener.metrics.getBytesWritten()); //HadoopUtil.deleteHDFSMeta(metaUrl); }
Example 18
Source File: AbstractHadoopJob.java From kylin-on-parquet-v2 with Apache License 2.0 | 4 votes |
protected void deletePath(Configuration conf, Path path) throws IOException { HadoopUtil.deletePath(conf, path); }
Example 19
Source File: MergeDictionaryJob.java From kylin-on-parquet-v2 with Apache License 2.0 | 4 votes |
@Override public int run(String[] args) throws Exception { try { Options options = new Options(); options.addOption(OPTION_JOB_NAME); options.addOption(OPTION_SEGMENT_ID); options.addOption(OPTION_CUBE_NAME); options.addOption(OPTION_META_URL); options.addOption(OPTION_MERGE_SEGMENT_IDS); options.addOption(OPTION_OUTPUT_PATH_DICT); options.addOption(OPTION_OUTPUT_PATH_STAT); parseOptions(options, args); final String segmentId = getOptionValue(OPTION_SEGMENT_ID); final String segmentIds = getOptionValue(OPTION_MERGE_SEGMENT_IDS); final String cubeName = getOptionValue(OPTION_CUBE_NAME); final String metaUrl = getOptionValue(OPTION_META_URL); final String dictOutputPath = getOptionValue(OPTION_OUTPUT_PATH_DICT); final String statOutputPath = getOptionValue(OPTION_OUTPUT_PATH_STAT); CubeManager cubeMgr = CubeManager.getInstance(KylinConfig.getInstanceFromEnv()); CubeInstance cube = cubeMgr.getCube(cubeName); CubeDesc cubeDesc = cube.getDescriptor(); CubeSegment segment = cube.getSegmentById(segmentId); Segments<CubeSegment> mergingSeg = cube.getMergingSegments(segment); job = Job.getInstance(getConf(), getOptionValue(OPTION_JOB_NAME)); job.getConfiguration().set(BatchConstants.ARG_CUBE_NAME, cubeName); job.getConfiguration().set(OPTION_META_URL.getOpt(), metaUrl); job.getConfiguration().set(OPTION_SEGMENT_ID.getOpt(), segmentId); job.getConfiguration().set(OPTION_MERGE_SEGMENT_IDS.getOpt(), segmentIds); job.getConfiguration().set(OPTION_OUTPUT_PATH_STAT.getOpt(), statOutputPath); job.getConfiguration().set("num.map.tasks", String.valueOf(cubeDesc.getAllColumnsNeedDictionaryBuilt().size() + 1)); job.setNumReduceTasks(1); setJobClasspath(job, cube.getConfig()); // dump metadata to HDFS attachSegmentsMetadataWithDict(mergingSeg, metaUrl); // clean output dir HadoopUtil.deletePath(job.getConfiguration(), new Path(dictOutputPath)); job.setMapperClass(MergeDictionaryMapper.class); job.setReducerClass(MergeDictionaryReducer.class); job.setMapOutputKeyClass(IntWritable.class); job.setMapOutputValueClass(Text.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); job.setInputFormatClass(IndexArrInputFormat.class); job.setOutputFormatClass(SequenceFileOutputFormat.class); SequenceFileOutputFormat.setOutputCompressionType(job, SequenceFile.CompressionType.NONE); SequenceFileOutputFormat.setOutputPath(job, new Path(dictOutputPath)); logger.info("Starting: " + job.getJobName()); return waitForCompletion(job); } finally { if (job != null) cleanupTempConfFile(job.getConfiguration()); } }
Example 20
Source File: FlinkMergingDictionary.java From kylin-on-parquet-v2 with Apache License 2.0 | 4 votes |
@Override protected void execute(OptionsHelper optionsHelper) throws Exception { final String cubeName = optionsHelper.getOptionValue(OPTION_CUBE_NAME); final String segmentId = optionsHelper.getOptionValue(OPTION_SEGMENT_ID); final String metaUrl = optionsHelper.getOptionValue(OPTION_META_URL); final String segmentIds = optionsHelper.getOptionValue(OPTION_MERGE_SEGMENT_IDS); final String dictOutputPath = optionsHelper.getOptionValue(OPTION_OUTPUT_PATH_DICT); final String statOutputPath = optionsHelper.getOptionValue(OPTION_OUTPUT_PATH_STAT); final String enableObjectReuseOptValue = optionsHelper.getOptionValue(OPTION_ENABLE_OBJECT_REUSE); boolean enableObjectReuse = false; if (enableObjectReuseOptValue != null && !enableObjectReuseOptValue.isEmpty()) { enableObjectReuse = true; } final Job job = Job.getInstance(); ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); if (enableObjectReuse) { env.getConfig().enableObjectReuse(); } HadoopUtil.deletePath(job.getConfiguration(), new Path(dictOutputPath)); final SerializableConfiguration sConf = new SerializableConfiguration(job.getConfiguration()); final KylinConfig envConfig = AbstractHadoopJob.loadKylinConfigFromHdfs(sConf, metaUrl); final CubeInstance cubeInstance = CubeManager.getInstance(envConfig).getCube(cubeName); final CubeDesc cubeDesc = CubeDescManager.getInstance(envConfig).getCubeDesc(cubeInstance.getDescName()); logger.info("Dictionary output path: {}", dictOutputPath); logger.info("Statistics output path: {}", statOutputPath); final TblColRef[] tblColRefs = cubeDesc.getAllColumnsNeedDictionaryBuilt().toArray(new TblColRef[0]); final int columnLength = tblColRefs.length; List<Integer> indexs = Lists.newArrayListWithCapacity(columnLength); for (int i = 0; i <= columnLength; i++) { indexs.add(i); } DataSource<Integer> indexDS = env.fromCollection(indexs); DataSet<Tuple2<Text, Text>> colToDictPathDS = indexDS.map(new MergeDictAndStatsFunction(cubeName, metaUrl, segmentId, StringUtil.splitByComma(segmentIds), statOutputPath, tblColRefs, sConf)); FlinkUtil.setHadoopConfForCuboid(job, null, null); HadoopOutputFormat<Text, Text> hadoopOF = new HadoopOutputFormat<>(new SequenceFileOutputFormat<>(), job); SequenceFileOutputFormat.setOutputPath(job, new Path(dictOutputPath)); colToDictPathDS.output(hadoopOF).setParallelism(1); env.execute("Merge dictionary for cube:" + cubeName + ", segment " + segmentId); }