Java Code Examples for org.opencv.utils.Converters#vector_vector_KeyPoint_to_Mat()
The following examples show how to use
org.opencv.utils.Converters#vector_vector_KeyPoint_to_Mat() .
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example. You may check out the related API usage on the sidebar.
Example 1
Source File: DescriptorExtractor.java From sudokufx with Apache License 2.0 | 5 votes |
public void compute(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> descriptors) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); Mat descriptors_mat = new Mat(); compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); keypoints_mat.release(); Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); descriptors_mat.release(); return; }
Example 2
Source File: Feature2D.java From Chinese-number-gestures-recognition with BSD 2-Clause "Simplified" License | 5 votes |
public void compute(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> descriptors) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); Mat descriptors_mat = new Mat(); compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); keypoints_mat.release(); Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); descriptors_mat.release(); return; }
Example 3
Source File: Feature2D.java From MOAAP with MIT License | 5 votes |
public void compute(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> descriptors) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); Mat descriptors_mat = new Mat(); compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); keypoints_mat.release(); Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); descriptors_mat.release(); return; }
Example 4
Source File: Feature2D.java From OpenCvFaceDetect with Apache License 2.0 | 5 votes |
public void compute(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> descriptors) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); Mat descriptors_mat = new Mat(); compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); keypoints_mat.release(); Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); descriptors_mat.release(); return; }
Example 5
Source File: DescriptorExtractor.java From PixaToon with GNU General Public License v3.0 | 5 votes |
public void compute(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> descriptors) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); Mat descriptors_mat = new Mat(); compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); keypoints_mat.release(); Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); descriptors_mat.release(); return; }
Example 6
Source File: DescriptorExtractor.java From MOAAP with MIT License | 5 votes |
public void compute(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> descriptors) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); Mat descriptors_mat = new Mat(); compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); keypoints_mat.release(); Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); descriptors_mat.release(); return; }
Example 7
Source File: DescriptorExtractor.java From Form-N-Fun with MIT License | 5 votes |
public void compute(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> descriptors) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); Mat descriptors_mat = new Mat(); compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); keypoints_mat.release(); Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); descriptors_mat.release(); return; }
Example 8
Source File: DescriptorExtractor.java From SmartPaperScan with Apache License 2.0 | 5 votes |
public void compute(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> descriptors) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); Mat descriptors_mat = new Mat(); compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); keypoints_mat.release(); Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); descriptors_mat.release(); return; }
Example 9
Source File: Feature2D.java From MOAAP with MIT License | 5 votes |
public void compute(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> descriptors) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); Mat descriptors_mat = new Mat(); compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); keypoints_mat.release(); Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); descriptors_mat.release(); return; }
Example 10
Source File: Feature2D.java From SmartPaperScan with Apache License 2.0 | 5 votes |
public void compute(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> descriptors) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); Mat descriptors_mat = new Mat(); compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); keypoints_mat.release(); Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); descriptors_mat.release(); return; }
Example 11
Source File: Feature2D.java From opencv-documentscanner-android with Apache License 2.0 | 5 votes |
public void compute(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> descriptors) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); Mat descriptors_mat = new Mat(); compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); keypoints_mat.release(); Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); descriptors_mat.release(); return; }
Example 12
Source File: Feature2D.java From LPR with Apache License 2.0 | 5 votes |
public void compute(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> descriptors) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); Mat descriptors_mat = new Mat(); compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); keypoints_mat.release(); Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); descriptors_mat.release(); return; }
Example 13
Source File: DescriptorExtractor.java From LPR with Apache License 2.0 | 5 votes |
public void compute(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> descriptors) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); Mat descriptors_mat = new Mat(); compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); keypoints_mat.release(); Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); descriptors_mat.release(); return; }
Example 14
Source File: DescriptorExtractor.java From VIA-AI with MIT License | 5 votes |
public void compute(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> descriptors) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); Mat descriptors_mat = new Mat(); compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); keypoints_mat.release(); Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); descriptors_mat.release(); return; }
Example 15
Source File: GenericDescriptorMatcher.java From marvel with MIT License | 3 votes |
/** * <p>Adds images and their keypoints to the training collection stored in the * class instance.</p> * * @param images Image collection. * @param keypoints Point collection. It is assumed that <code>keypoints[i]</code> * are keypoints detected in the image <code>images[i]</code>. * * @see <a href="http://docs.opencv.org/modules/features2d/doc/common_interfaces_of_generic_descriptor_matchers.html#genericdescriptormatcher-add">org.opencv.features2d.GenericDescriptorMatcher.add</a> */ public void add(List<Mat> images, List<MatOfKeyPoint> keypoints) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); add_0(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj); return; }
Example 16
Source File: DescriptorExtractor.java From Android-Car-duino with GNU General Public License v2.0 | 3 votes |
/** * <p>Computes the descriptors for a set of keypoints detected in an image (first * variant) or image set (second variant).</p> * * @param images Image set. * @param keypoints Input collection of keypoints. Keypoints for which a * descriptor cannot be computed are removed and the remaining ones may be * reordered. Sometimes new keypoints can be added, for example: * <code>SIFT</code> duplicates a keypoint with several dominant orientations * (for each orientation). * @param descriptors Computed descriptors. In the second variant of the method * <code>descriptors[i]</code> are descriptors computed for a <code>keypoints[i]</code>. * Row <code>j</code> is the <code>keypoints</code> (or <code>keypoints[i]</code>) * is the descriptor for keypoint <code>j</code>-th keypoint. * * @see <a href="http://docs.opencv.org/modules/features2d/doc/common_interfaces_of_descriptor_extractors.html#descriptorextractor-compute">org.opencv.features2d.DescriptorExtractor.compute</a> */ public void compute(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> descriptors) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); Mat descriptors_mat = new Mat(); compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); return; }
Example 17
Source File: DescriptorExtractor.java From ResistorScanner with MIT License | 3 votes |
/** * <p>Computes the descriptors for a set of keypoints detected in an image (first * variant) or image set (second variant).</p> * * @param images Image set. * @param keypoints Input collection of keypoints. Keypoints for which a * descriptor cannot be computed are removed and the remaining ones may be * reordered. Sometimes new keypoints can be added, for example: * <code>SIFT</code> duplicates a keypoint with several dominant orientations * (for each orientation). * @param descriptors Computed descriptors. In the second variant of the method * <code>descriptors[i]</code> are descriptors computed for a <code>keypoints[i]</code>. * Row <code>j</code> is the <code>keypoints</code> (or <code>keypoints[i]</code>) * is the descriptor for keypoint <code>j</code>-th keypoint. * * @see <a href="http://docs.opencv.org/modules/features2d/doc/common_interfaces_of_descriptor_extractors.html#descriptorextractor-compute">org.opencv.features2d.DescriptorExtractor.compute</a> */ public void compute(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> descriptors) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); Mat descriptors_mat = new Mat(); compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); return; }
Example 18
Source File: DescriptorExtractor.java From marvel with MIT License | 3 votes |
/** * <p>Computes the descriptors for a set of keypoints detected in an image (first * variant) or image set (second variant).</p> * * @param images Image set. * @param keypoints Input collection of keypoints. Keypoints for which a * descriptor cannot be computed are removed and the remaining ones may be * reordered. Sometimes new keypoints can be added, for example: * <code>SIFT</code> duplicates a keypoint with several dominant orientations * (for each orientation). * @param descriptors Computed descriptors. In the second variant of the method * <code>descriptors[i]</code> are descriptors computed for a <code>keypoints[i]</code>. * Row <code>j</code> is the <code>keypoints</code> (or <code>keypoints[i]</code>) * is the descriptor for keypoint <code>j</code>-th keypoint. * * @see <a href="http://docs.opencv.org/modules/features2d/doc/common_interfaces_of_descriptor_extractors.html#descriptorextractor-compute">org.opencv.features2d.DescriptorExtractor.compute</a> */ public void compute(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> descriptors) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); Mat descriptors_mat = new Mat(); compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); return; }
Example 19
Source File: GenericDescriptorMatcher.java From effective_android_sample with Apache License 2.0 | 3 votes |
/** * <p>Adds images and their keypoints to the training collection stored in the * class instance.</p> * * @param images Image collection. * @param keypoints Point collection. It is assumed that <code>keypoints[i]</code> * are keypoints detected in the image <code>images[i]</code>. * * @see <a href="http://docs.opencv.org/modules/features2d/doc/common_interfaces_of_generic_descriptor_matchers.html#genericdescriptormatcher-add">org.opencv.features2d.GenericDescriptorMatcher.add</a> */ public void add(List<Mat> images, List<MatOfKeyPoint> keypoints) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); add_0(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj); return; }
Example 20
Source File: DescriptorExtractor.java From SoftwarePilot with MIT License | 3 votes |
/** * <p>Computes the descriptors for a set of keypoints detected in an image (first * variant) or image set (second variant).</p> * * @param images Image set. * @param keypoints Input collection of keypoints. Keypoints for which a * descriptor cannot be computed are removed and the remaining ones may be * reordered. Sometimes new keypoints can be added, for example: * <code>SIFT</code> duplicates a keypoint with several dominant orientations * (for each orientation). * @param descriptors Computed descriptors. In the second variant of the method * <code>descriptors[i]</code> are descriptors computed for a <code>keypoints[i]</code>. * Row <code>j</code> is the <code>keypoints</code> (or <code>keypoints[i]</code>) * is the descriptor for keypoint <code>j</code>-th keypoint. * * @see <a href="http://docs.opencv.org/modules/features2d/doc/common_interfaces_of_descriptor_extractors.html#descriptorextractor-compute">org.opencv.features2d.DescriptorExtractor.compute</a> */ public void compute(List<Mat> images, List<MatOfKeyPoint> keypoints, List<Mat> descriptors) { Mat images_mat = Converters.vector_Mat_to_Mat(images); List<Mat> keypoints_tmplm = new ArrayList<Mat>((keypoints != null) ? keypoints.size() : 0); Mat keypoints_mat = Converters.vector_vector_KeyPoint_to_Mat(keypoints, keypoints_tmplm); Mat descriptors_mat = new Mat(); compute_1(nativeObj, images_mat.nativeObj, keypoints_mat.nativeObj, descriptors_mat.nativeObj); Converters.Mat_to_vector_vector_KeyPoint(keypoints_mat, keypoints); Converters.Mat_to_vector_Mat(descriptors_mat, descriptors); return; }